偏置滑块机构的设计

偏置滑块机构的设计
偏置滑块机构的设计

偏置滑块机构的设计

由题目给定的数据L=100mm

行程速比系数K 在1.2-1.5范围内选取 可由曲柄滑块机构的极位夹角公式11801

k k θ-=+

k=1.2-1.5 ∴其极位夹角θ的取值范围为16.36~36

在这范围内取极位夹角为 25 。

滑块的行程题目给出S=100mm

偏置距离e 选取40mm

用图解法求出各杆的长度如下:

由已知滑块的工作行程为100mm ,作BB ’ 为100mm ,过点B 作BB ’所在水平面的垂线BP ,过点B ’作直线作直线B ’P 交于点P ,并使'BPB ∠=25。然后过

B 、B ’、P 三点作圆。因为已知偏距e=40mm,所以作直线平行于直线BB ’,向下平移40mm ,与圆O ’交于一点O ,则O 点为曲柄的支点,连接OB 、OB ’, 则

OB-OB ’=2a

OB+OB ’=2b

从图中量取得: AB=151.32mm AB ’=61.86mm

则可知曲柄滑块机构的:曲柄 a=44.73mm 连杆b=106.59mm

由已知滑块的工作行程为100mm ,作BB ’ 为100mm ,过点B 作BB ’所在水平面的垂线BP ,过点B ’作直线作直线B ’P 交于点P ,并使'BPB ∠=25。然后过

B 、B ’、P 三点作圆。因为已知偏距e=40mm,所以作直线平行于直线BB ’,向下平移40mm ,与圆O ’交于一点O ,则O 点为曲柄的支点,连接OB 、OB ’, 则

OB-OB ’=2a

OB+OB ’=2b

从图中量取得: AB=151.32mm AB ’=61.86mm

则可知曲柄滑块机构的:曲柄 a=44.73mm 连杆b=106.59mm 因为题目要求推头回程向下的距离为30mm ,因此从动件的行程h=30mm 。

由选定条件近休止角为127'90s πφ=推程角为718o πφ=回程角1990

s πφ=远休止角'9

o π

φ=,h=30mm ,基圆半径050r =mm,从动杆长度为40mm ,滚子半径5r r =mm 。 电动机的选定及传动系统方案的设计

1、电动机转速、功率的确定

题目要求5-6s 包装一个件,即要求曲柄和凸轮的转速为12r/min 考虑到转速比较低,因此可选用低转速的电动机,查常用电动机规格,选用Y160L-8型电动机,其转速为720r/min,功率为7.5kW 。

2、传动系统的设计

系统的输入输出传动比1251260i i i =?=?=7206012

i == ,即要求设计出一个传动比60i =的减速器,使输出能达到要求的转速。

其传动系统设计如下图:电动机连接一个直径为10的皮带轮2,经过皮带

的传动传到安装在二级减速器的输入段,这段皮带传动的传动比为

150510i ==,此时转速为720144/min 5

r =。 从皮带轮1输入到一个二级减速器,为了带到要求的传动比,设计齿轮齿数为,115Z =,260Z =,315Z =,445Z =。

验算二级减速器其传动比242136045121515

Z Z i Z Z ??===?? 整个传动系统的传动比1251260i i i =?=?=

则电动机转速经过此传动系统减速后能满足题目要求推包机构主动件的转

速。

偏置曲柄滑块机构

具有最优传力性能的曲柄滑块机构的设计 宁海霞1董萍 摘要:在曲柄滑块机构的设计中,将x作为设计变量,求出已知滑块行程H,行程速比系数K时机构传力性能最优的x值,使得最小传动角γ 为最大,从 min 而设计出此机构。 关键词:最优传力性能;曲柄滑块机构;行程速比系数;最小传动角机器种类很多,但它们都是由各种机构组成的,曲柄滑块机构就是常用机构之一。它有一个重要特点是具有急回特性。故按行程速比系数K设计具有最优传力性能的曲柄滑块机构是设计中常遇到的问题。本文将x作为设计变量,给出了解决问题的方法。

在曲柄与滑块导路垂直的位置,其值为: )(cos 1min b e a +=-γ (1) 2.X 和最小传动角γmin 的关系 设计一曲柄滑块机构,已知:滑块行程H ,行程速比系数K ,待定设计参数 为a 、b 和e 。 e 也就确定。下 在△AC 1C 2中 θcos ))((2)()(222a b a b a b a b H +--++-= 因为 x a b =- 所以 θcos )2(2)2(222a x x a x x H +-++=

2sin )1(cos 222θ θx H x a -+-= (2) 又因为 x e a x C AC b a H /2)sin(sin 21+= ∠+=θ 所以 H a x e /)2(sin 22+=θ (3) 将 a x b += 代入 (1) )( cos 1min a x a e ++=-γ (4) 将式(2)、(3)代入式(4),γmin 仅为 x 的函数,则可求得γ min 的值。 二、设计最优传力性能的曲柄滑块机构 设计变量 x 的取值范围。 寻优区间起点在C 1处: x min =0 寻优区间终点在M 点: θ tg H x = max 在 x 的取值范围内根据式(2)、(3)和(4)可求得x 一一对应的γmin 值。 利用一维寻优最优化技术黄金分割法,来求γmin 取极大值时的x 值。 将γ min 最大时的x 值代入(2)、(3)求出a 、e ,由b=x+a 求出b 值。 三、设计实例 试设计一曲柄滑块机构,已知滑块行程H=50mm ,行程速比系数K=1.5。求传力性能最优的曲柄滑块机构。 x 的取值范围为0~68.819mm ,x=19.104mm 时,γmin 的最大值为 27.458°。 曲柄a=22.537mm 连杆 b=41.641mm 偏心距 e=14.413 四、结论 本文结合图解法和解析法把x 作为设计变量,给出了根据行程速比系数K

滑块设计要求及注意事项

倒勾处理(滑块) 一?斜撑销块的动作原理及设计要点 是利用成型的开模动作用,使斜撑梢与滑块产生相对运动趋势,使滑块沿开模方向及水平方向的两种运动形式,使之脱离倒勾。如下图所示: 上图中: β=α+2°~3°(防止合模产生干涉以及开模减少磨擦) α≦25°(α为斜撑销倾斜角度) L=1.5D (L为配合长度)

S=T+2~3mm(S为滑块需要水平运动距离;T为成品倒勾) S=(L1xsina-δ)/cosα(δ为斜撑梢与滑块间的间隙,一般为0.5MM; L1为斜撑梢在滑块的垂直距离) 二?斜撑梢锁紧方式及使用场合 简图说明 适宜用在模板较薄且上固定 板与母模板不分开的情况下配 合面较长,稳定较好

适宜用在模板厚、模具空间大 的情况下且两板模、三板板均 可使用 配合面L≧1.5D(D为斜撑销直径) 稳定性较好 适宜用在模板较厚的情况下 且两板模、三板板均可使用, 配合面L≧1.5D(D为斜撑销直径) 稳定性不好,加工困难. 适宜用在模板较薄且上固定板 与母模板可分开的情况下 配合面较长,稳定较好 三?拔块动作原理及设计要点 是利用成型机的开模动作,使拔块与滑块产生相对运动趋势,拨动面B拨动滑块使滑块沿开模方向及水平方向的两种运动形式,使之脱离倒勾。 如下图所示:

上图中: β=α≦25°(α为拔块倾斜角度) H1≧1.5W (H1为配合长度) S=T+2~3mm (S为滑块需要水平运动距离;T为成品倒勾) S=H*sinα-δ/cosα (δ为斜撑梢与滑块间的间隙,一般为0.5MM; H为拔块在滑块的垂直距离) C为止动面,所以拨块形式一般不须装止动块。(不能有间隙)

可调行程的曲柄滑块机构的设计与制作

东南大学 机械工程院 “机械设计与制造综合实践”工作报告可调行程的曲柄滑块机构的设计与制作 项目组成员: 02007635 陈逸民 02007620 龚威豪 日期:2011年1月18日

第1章选题分析 (4) 1.1应用背景: (4) 1.2 预期实现功能: (4) 第2章实现的原理与方案 (4) 2.1 驱动部分 (4) 2.2. 曲柄滑块机构 (4) 2.3 后续分工 (5) 第3章执行系统设计 (5) 3.1 功能要求 (6) 3.2 执行机构的形式设计 (6) 3.3机构的尺度设计 (6) 第5章加工工艺设计与数控加工编程 (7) 5.1加工工艺设计 (7) 5.2对加工的零件进行分类 (8) 5.2.1 连杆的加工路线 (8) 5.2.2 导槽的加工路线 (8) 5.2.3 连接件的加工路线 (8) 5.2.4 底座的加工路线 (8) 5.3 数控加工编程 (8) 5.3.1 数控车床部分 (8) 5.3.2 数控铣床部分 (9) 第6章装配与调试 (10) 参考文献 (14) 附录C:数控加工程序 (24)

摘要:曲柄滑块机构是一种应用非常广泛的机械结构。我们所设计可调行程的曲柄滑块机构在原来的基础上给它增加了一个可调导槽,通过改变该导槽的安装角度,间接地改变连杆的实际长度,从而达到改变滑块行程的目的。我们通过对普通的曲柄滑块机构的分析,了解了其滑块行程的算法,但是由于可变行程的该机构的极限位置是变化的,且我们能力有限,因此须在制造出实物后运行方能给出。在设计的过程中,我们体会到了连杆机构的设计方法,并对制造学有了稍微的了解。 关键字:曲柄滑块机构可调行程 Abstract:Slider-crank mechanism is a very extensive mechanical structure. We are design adjustable trip slider-crank mechanism in the original basis to give it adds an adjustable guide groove, changes in this guide groove installation Angle indirectly change the actual length o f the connecting rod, so as to achieve the purpose of changing the slider trip. We through for ordinary slider-crank mechanism analysis, understand the slider trip, but due to the algorithm of the agency's variable travel limit position is changed and our ability is limited, so must create real after operation can give. In the design process, we realized the linkage mechanism design methods, and learn to have a slightly to manufacture of understanding. Keywords:Slider-crank mechanism,adjustable itinerary

压铸模具滑块机构设计(b_slide)

八?倾斜滑块参数计算 由于成品的倒勾面是斜方向,因此滑块的运动方向要与成品倒勾斜面方向一致,否侧会拉伤成品。 1.滑块抽芯方向与分型面成交角的关系为滑块抽向动模. 如下图所示: α°=d°-b° d°+b°≦25° c°=α°+(2°-3°) H=H1-S*sinb° S=H1*tgd°/cosb° L4=H1/cosd° 2.滑块抽芯方向与分型面成交角的关系为滑块抽向定模. 如下图所示: α1°=d°-b° d-b°≦25° c°=a°+(2°+3°) H=H1+S*sinb°

S=H1+tgd °/cosb ° L4=H/cosd ° 九?母模遂道滑块 1.应用特点 a.制品倒勾成型在母模侧 b.制品外观有允许有痕迹 c.滑块成型面积不大 如下图所示: 2.母模遂道块简图如下:(超级链接2183动画) 合模状态

第一次开模

(3).设计注意事项 a.上固定板的厚度H2≧1.5D (D为大拉杆直径;大拉杆直径计算超级链接三 板 模大拉杆计算;H2上固定板的厚度) b.拨块镶入上固定板深度H≧2/3H2 c.注口衬套头部要做一段锥度,以便合模。且要装在上固定板上,以防止成型 机上的喷嘴脱离注口衬套,产生拉丝现象不便取出,影响下一次注射。 d.拨块在母模板内要逃料。 e.耐磨板要高出母模板0.5mm,保护母模板。以及支撑拨块防止拨块受力变形。 f.小拉杆限位行程S≦2/3H1,以利合模。(H1为滑块高度) g.拨杆前端最好装固定块,易调整,易加工,构成三点支撑,增加拨块强度。 h.要使耐磨块装配顺利,要求点E在点D右侧。如下图所示: i.滑块座与拨块装配时,要特别注意尺寸B与B1的关系,应为B>B1,但为了 装配的顺畅,也可将其滑块座后模板部分全部挖通。

曲柄滑块机构的设计页完整版

曲柄滑块机构的设计页 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

本篇再考察一道曲柄滑块机构的设计。同样是给定行程速比系数来确定杆长。 设计一偏置曲柄滑块机构,已知滑块的行程速比系数为,滑块的行程50 ,导路的偏距20 ,求曲柄和连杆长度,并求其最大压力角。 问题分析 首先设计机构,然后再求最大压力角。 机构的设计。先计算出行程速比系数如下 那么根据题意,最后的结果应当如下图。滑块的两个极位之间距离是50mm,而固定铰链A在与CD平行20mm的直线上,而且A点到C,D的夹角是36度。 图解总是从已知条件开始,然后逐步确定未知因素。本问题中知道三个数字:50mm,20mm,36度。而这个36度时与DC的距离相关的,所以图解时先画出滑块的两个极限位置,然后确定铰链A 所在的水平线,接着就是根据36度这个条件最终确定A的位置。 (1)确定滑块的极位及固定铰链A所在的直线 先绘制水平线段C2C1,使得其距离为50mm. 然后在其上方20mm的地方绘制一条水平直线I.那么铰链A就应该在这条直线上。 (2)根据极位夹角确定铰链A所在的圆 下面要根据极位夹角来确定A所在的曲线,这样,该曲线与上述曲线相交就可以唯一确定A点的位置。 A点到C1,C2形成的夹角是36度。那么所有与C1,C2形成夹角为36度的点有什么特征呢?---圆周角具有这种特征。

从几何知道,在一个圆上面,对应于同一个圆弧的圆周角都相等。基于这一点,过C2做直线垂直于C2C1,而作射线C1E与C2C1夹角为90-36=54度,二者交于点E,则C2EC1这个角度就是36度。 现在以C1E为直径做一个圆,则在该圆上任意取一点,该点与C2C1连线的夹角就都是36度,从而A点必然在该圆上面。 根据上述规则做出的上图发现,该圆与水平线I并不相交。这意味着作图有问题。实际上,刚才作的C1E在C2C1之下,所以导致不相交。因此改变策略,在C2C1之上作C1E,使得它与C2C1的夹角为54度。 然后以C1E为直径作出一个圆。该圆与直线I有两个交点:A1和A2。这样,该问题有两组解。但是观察下图可以发现,取A1或者A2,实际上结果是一样的,只是关于C2C1的中垂线对称而已。所以这里只取A1这个点,它就是固定铰支座A。 (3)测量曲柄和连杆的尺寸 量取A1C1,A1C2如下图。 则可以推知曲柄和连杆的长度 到此为止,连杆机构设计完毕。 (4)得到最大的压力角 从图中可以发现,当滑块在最左边时,有最大的压力角(滑块受到的推力与滑块速度方向的夹角),测量得到角度为53度。 至此,该曲柄滑块机构的设计和分析结束。

偏置曲柄滑块机构的运动学分析

研究生课程论文科目: 是否进修生?是□ 否■

偏置曲柄滑块机构的运动学分析 摘要:综合利用函数法和矢量法,在ADAMS软件中对偏置式曲柄滑块机构进 行了仿真和运动分析。首先,通过函数法对偏置式曲柄滑块机构的运动特性进行分析,根据矢量法建立机构的运动学矩阵方程。然后,介绍了ADAMS在偏置 曲柄滑块机构运动学及动力学分析中的应用。通过对偏置曲柄滑块进行仿真和分析,得到其运动曲线。该方法的仿真形象直观,测量方便,在机械系统运动学特性分析中具有一定的应用价值。 关键词:偏置曲柄滑块;ADAMS;仿真;运动学 Abstract: The article analyzes the simulation and kinetic characteristic of deflection slider-crank mechanism by the function and the vector method in ADAMS.The kinematic equation of the deflection slider-crank mechanism is established by vector method. The application of ADAMS in kinematics analysis of slider-crank mechanism is presented. The motion and dynamic curves of offset slider-crank by ADAMS/View is obtained. In the method, simulation is authentic, visualized and convenient in measurement. The result shows that the method is efficient and useful in the kinematic characteristics analysis of mechanism. Keyword: offset slider-crank mechanism ; ADAMS; simulation ; kinematic 0.引言 平面连杆机构是由若干个构件用低副(转动副、移动副)连接组成的平而机构,它不仅在众多工农业机械和工程机械中得到广泛应用,还应用于人造卫星太阳能板的展开机构、机械手的传动机构等。曲柄滑块机构是铰链四杆机构的演化形式,对曲柄滑块机构进行运动学仿真意义重大[1]。 机构运动分析是根据给定的原动件运动规律,求出机构中其它构件的运动。通过分析可以确定某些构件运动所需的空间,校验其运动是否干涉;速度分析可以确定机构从动件的速度是否合乎要求;加速度分析为惯性力计算提供加速度数据。运动分析是综合分析和力分析的基础。一般而言,机构设计的目标之一是能够实现某一预先设定的运动轨迹,因此在研究机构的运动特性时,利用运动学方程来获取一些重要的特定参数,并用数值方法进行计算机仿真求解是十分有益的。本文将采用三维仿真软件ADAMS对曲柄滑块机构进行运动学仿真,建立矢量方程表达式,进行数值求解,从而得到偏置曲柄滑块机构的运动曲线。该方法较手工计算或作图法效率高、精确,应用非常广泛。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等[2]。现主要研究ADAMS/View对机构的建模分析,从而得到偏置曲柄滑块机构的运动学曲线和动力学曲线。 1函数法分析偏置式曲柄滑块机构的运动特性 偏置式曲柄滑块机构见图1,为了研究方便,建立如图 1 所示的坐标系。曲柄长度为r2,连杆长度为r3,偏距为r,曲柄转角为θ2,连杆转角为θ3。

曲柄滑块机构的运动分析及应用

机械原理课程机构设计 实验报告 题目:曲柄滑块机构的运动分析及应用 小组成员与学号:刘泽陆(11071182) 陈柯宇(11071177) 熊宇飞(11071174) 张保开(11071183) 班级:110717 2013年6月10日

摘要 (3) 曲柄滑块机构简介 (4) 曲柄滑块机构定义 (4) 曲柄滑块机构的特性及应用 (4) 曲柄滑块机构的分类 (8) 偏心轮机构简介 (9) 曲柄滑块的动力学特性 (10) 曲柄滑块的运动学特性 (11) 曲柄滑块机构运行中的振动与平衡 (14) 参考文献 (15) 组员分工 (15)

摘要 本文着重介绍了曲柄滑块机构的结构,分类,用途,并进行了曲柄滑块机构的动力学和运动学分析,曲柄滑块机构的运动学特性分析,得出了机构压力表达式,曲柄滑块机构的运动特性分析,得出了滑块的位移、速度和加速度的运动表达式。最后,对曲柄滑块机构运动中振动、平衡稳定性等进行了总结。 关键字:曲柄滑块动力与运动分析振动与平稳性 ABSTRACT The paper describes the composition of planar linkage, focusing on the structure, classification, use of a slider-crank mechanism and making the dynamic and kinematic analysis, kinematics characteristics of the crank slider mechanism analysis for a slider-crank mechanism, on one hand , we obtain the drive pressure of the slider-crank mechanism ,on the other hand,we obtain the expression of displacement, velocity and acceleration of movement. Finally, the movement of the vibration and balance stability of the crank slider mechanism are summarized.

偏置滑块机构的设计

偏置滑块机构的设计 由题目给定的数据L=100mm 行程速比系数K在1.2-1.5范围内选取 可由曲柄滑块机构的极位夹角公式二“180 k+1 / k=1.2-1.5 .其极位夹角的取值范围为16.36:?36 在这范围内取极位夹角为 25 。 滑块的行程题目给出S=100mm 偏置距离e选取40mm 用图解法求出各杆的长度如下: 由已知滑块的工作行程为100mm,作BB '为100mm,过点B作BB '所在水平面的垂线BP,过点B'作直线作直线B'P交于点P,并使N BPB' = 25。然后过 B、B'、P三点作圆。因为已知偏距e=40mm所以作直线平行于直线BB向下平移40mm,与圆0'交于一点O,则O点为曲柄的支点,连接OB、OB', 则 OB-OB '2a OB+OB '2b 从图中量取得:AB=151.32mm AB '61.86mm 则可知曲柄滑块机构的:曲柄a=44.73mm 连杆b=106.59mm 由已知滑块的工作行程为100mm,作BB '为100mm,过点B作BB '所在水平面的垂线BP,过点B'作直线作直线B'交于点P,并使N BPB' = 25。然后过 B、B'、P三点作圆。因为已知偏距e=40mm所以作直线平行于直线BB向下平移40mm,与圆O'交于一点O,则O点为曲柄的支点,连接OB、OB', 则 OB-OB '2a OB+OB '2b

从图中量取得:AB=151.32mm AB '61.86mm 则可知曲柄滑块机构的:曲柄a=44.73mm连杆b=106.59mm因为题目要求推头 回程向下的距离为30mm,因此从动件的行程h=30mm。 127H7H19TT 由选定条件近休止角为s' 推程角为o 回程角s 远休止角 90 18 90 o' ,h=30mm ,基圆半径r0 = 50 mm,从动杆长度为40mm,滚子半径r r = 5mm。 9 电动机的选定及传动系统方案的设计 1、电动机转速、功率的确定 题目要求5-6s包装一个件,即要求曲柄和凸轮的转速为12r/min考虑到转速比较低,因此可选用低转速的电动机,查常用电动机规格,选用丫160L-8型电动机,其转速为720r/min,功率为7.5kW。 2、传动系统的设计 720 系统的输入输出传动比i=h i2 =5 12=60i 60,即要求设计出一 12 个传动比i =60的减速器,使输出能达到要求的转速。 其传动系统设计如下图:电动机连接一个直径为10的皮带轮2,经过皮带的传动传到安装在二级减速器的输入段,这段皮带传动的传动比为h 二50=5,此时转速为-144r / min 。 10 5 从皮带轮1输入到一个二级减速器,为了带到要求的传动比,设计齿轮齿数 为,乙=15,Z2 =60,Z3=15,Z4 =45。 验算二级减速器其传动比i2二互厶二■6^岀=12 ZMZ3 1515 整个传动系统的传动比i* i^5 12=60 则电动机转速经过此传动系统减速后能满足题目要求推包机构主动件的转速。

曲柄滑块机构设计

本篇再考察一道曲柄滑块机构的设计。同样是给定行程速比系数来确定杆长。 设计一偏置曲柄滑块机构,已知滑块的行程速比系数为1.5,滑块的行程50 ,导路的偏距20 ,求曲柄和连杆长度,并求其最大压力角。 问题分析 首先设计机构,然后再求最大压力角。 机构的设计。先计算出行程速比系数如下 那么根据题意,最后的结果应当如下图。滑块的两个极位之间距离是50mm,而固定铰链A 在与CD平行20mm的直线上,而且A点到C,D的夹角是36度。 图解总是从已知条件开始,然后逐步确定未知因素。本问题中知道三个数字:50mm,20mm,36度。而这个36度时与DC的距离相关的,所以图解时先画出滑块的两个极限位置,然后确定铰链A所在的水平线,接着就是根据36度这个条件最终确定A的位置。 (1)确定滑块的极位及固定铰链A所在的直线

先绘制水平线段C2C1,使得其距离为50mm. 然后在其上方20mm的地方绘制一条水平直线I.那么铰链A就应该在这条直线上。(2)根据极位夹角确定铰链A所在的圆 下面要根据极位夹角来确定A所在的曲线,这样,该曲线与上述曲线相交就可以唯一确定A点的位置。 A点到C1,C2形成的夹角是36度。那么所有与C1,C2形成夹角为36度的点有什么特征呢?---圆周角具有这种特征。 从几何知道,在一个圆上面,对应于同一个圆弧的圆周角都相等。基于这一点,过C2做直线垂直于C2C1,而作射线C1E与C2C1夹角为90-36=54度,二者交于点E,则C2EC1这个角度就是36度。 现在以C1E为直径做一个圆,则在该圆上任意取一点,该点与C2C1连线的夹角就都是36度,从而A点必然在该圆上面。 根据上述规则做出的上图发现,该圆与水平线I并不相交。这意味着作图有问题。实际上,刚才作的C1E在C2C1之下,所以导致不相交。因此改变策略,在C2C1之上作C1E,使得它与C2C1的夹角为54度。 然后以C1E为直径作出一个圆。该圆与直线I有两个交点:A1和A2。这样,该问题有两组解。但是观察下图可以发现,取A1或者A2,实际上结果是一样的,只是关于C2C1的中垂线对称而已。所以这里只取A1这个点,它就是固定铰支座A。 (3)测量曲柄和连杆的尺寸 量取A1C1,A1C2如下图。 则可以推知曲柄和连杆的长度 到此为止,连杆机构设计完毕。 (4)得到最大的压力角 从图中可以发现,当滑块在最左边时,有最大的压力角(滑块受到的推力与滑块速度方向的夹角),测量得到角度为53度。 至此,该曲柄滑块机构的设计和分析结束。

斜顶滑块及其避空位的规范设计

在客户没有特殊要求下,现对斜顶滑块结构规定如下几种形式: 一、当斜顶上位置很小,不够锁螺丝时采用销钉连接方式:(见图一) 斜顶滑块要求: <1>、斜顶滑块挂台高度H及宽度T尺寸,见表1。 <2>、销钉用顶针改制,尺寸尽可能选大但不能小于φ1.5mm。 <3>、斜顶滑块侧面避空位要求: L1≥斜顶滑动行程+3mm(安全量)。 L2≥2mm(安全量)。 L3:普通模具L3=0.5mm;精密模具L3=0.25mm; <4>、斜顶滑块比顶针板低1mm(顶针板无限位块时可保护斜顶滑块)。 <5>、斜顶滑块底部及挂台顶部滑动面开“V”型油槽,间距10mm深0.5mm与滑动 方向成45°。 H及T尺寸选择:表1 二、当斜顶上位置足够大(能够收到M5以上的杯头螺Array丝)时采用锁螺丝的方式:(见图二) 斜顶滑块要求: <1>、斜顶滑块挂台高度H及宽度T尺 寸,见表2。 M5的杯头螺丝。 L1≥斜顶滑动行程+3mm(安全量)。 L2≥2mm(安全量)。 L3:普通模具L3=0.5mm;精密模具L3=0.25mm; <4>、斜顶滑块比顶针板低1mm(顶针板无限位块时可保护斜顶滑块)。 <5>、斜顶滑块底部及挂台顶部滑动面开“V”型油槽,间距10mm深0.5mm与滑动 方向成45°。

及T 尺寸选择: 表3 斜顶滑块要求: <2>、螺丝尽量选大,不要小于M5的杯头螺丝。 <3>、斜顶滑块侧面避空位要求: L1≥斜顶滑动行程+3mm(安全量)。 L2≥2mm(安全量)。 L3:普通模具L3=0.5mm ;精密模具L3=0.25mm ; <4>、斜顶滑块比斜顶座低1mm (顶针板无限位块时可保护斜顶滑块)。 <5>、斜顶滑块底部及挂台顶部滑动面开“V ”型油槽,间距10mm 深0.5mm 与滑动方向成45°。 <6>、顶针托板,下码模板做螺丝的避空孔,以方便拆装。 ※当斜顶比较大须用斜顶杆时,斜顶座及斜顶滑块可以考虑以下结构形式:(见图四) 具体要求除上述要求外,可参考设计结构标准:顶出下落斜顶的计算及规范应用(文件编 H T 10 6 6 3 图三: 斜顶滑块在斜顶座斜面上滑动的形式1 斜顶座斜向导向槽角度应与斜顶胶位沿水平方向倒扣位的出模角度

模具设计滑块结构技巧

模具设计滑块结构技巧

————————————————————————————————作者:————————————————————————————————日期:

1用途 ?倒勾处理设计是帮助成品于离型方向产生倒勾,造成成品无法离型时, 能让成型品顺利离型的一种设计方式。 2作业内容:内缩滑块结构、外张滑块结构、斜梢(HOOKPIN)结构。 2.1内缩滑块结构: 主要零件及功能:? 束块(定位件):控制内缩滑块的行程与位置 束块材质使用范围: 材质硬度 NAK80HRC38 SKD61 HRC48 滑块(滑动件):在顶出动作之前,先将成品倒勾离型。 滑块材质使用范围: 材质硬度 NAK80 HRC38 SKD61 HRC48 STA V AX HRC52 使用规则:固定件,定位件,滑动件之间的配合,在材质与硬度 的选用上,可依加工的难易度予以适当的调配。对象与对象之间 的滑动配合需选用不同的材质或相同的材质,不同的硬度来搭配 使用。为使损耗公差偏重于单一对象,滑配间的对象其材质与硬 度不可相同。

2.1.1使用范例(一):?动作原理: A束块往下拉,鸠尾槽或T型槽带动BSLIDE往内缩达到脱模目 的 注意事项:?鸠尾槽上方是成品时,鸠尾槽勿贯穿到成品,因为贯穿会 造成合模困难;而合模不良会使塑料流入滑动面造成模具损坏。 开模后SLIDE脱模距离两边加起来要小于D。 尺寸C的强度要足够 2.1.2使用范例(二):?动作原理:?当PL面打开时,利用SPRING 的力量透过COREPIN推动DISCINSERT,顺着DISINSER T的圆心转动,达到脱模目的。 ??注意事项: COREPIN与DISCINSERT配合的A间隙不要过大,避免 ?DISCINSERT旋转角度>45度,而造成模具合模时压坏DISC INSERT ?机构 此机构仅适用于小距离的倒勾;在倒勾处的脱模角度,需注意是否 足够??? ?

adams曲柄滑块机构实例仿真设计

题6-6图为开槽机上用的急回机构。原动件BC 匀速转动,已知mm a 80=,mm b 200=, mm l AD 100=,mm l DF 400=。原动件为构件BC , 为匀速转动,角速度2/rad s ωπ=。对该机构进行运动分析和动力分析。 在本例子中,将展示在ADAMS 中可以先用未组装的形式构造急回机构的各个部件,然后在仿真前让 这些部件自动地组装起来,最后进行仿真。这种方法比较适合构造由较多部件组成的复杂模型。 创建过程 ⒈启动ADAMS 双击桌面上ADAMS/View 的快捷图标,打开ADAMS/View 。在欢迎对话框中选择“Create a new model ”,在模型名称(Model name )栏中输入:jihuijigou ;在重力名称(Gravity )栏中选择“Earth Normal (-Global Y)”;在单位名称(Units )栏中选择“MMKS –mm,kg,N,s,deg ”。如图1-1所示。 图1-1 欢迎对话框 题6-6图

⒉ 设置工作环境 2.1 对于这个模型,网格间距需要设置成更高的精度以满足要求。 在ADAMS/View 菜单栏中,选择设置(Setting )下拉菜单中的工作网 格(Working Grid )命令。系统弹出设置工作网格对话框,将网格的尺 寸(Size )中的X 和Y 分别设置成750mm 和1000mm ,间距(Spacing ) 中的X 和Y 都设置成10mm 。然后点击“OK ”确定。如图2-1所表示 。 2.2用鼠标左键点击动态放大(Dynamic Zoom )图标, 在模型窗口中,点击鼠标左键并按住不放,移动鼠标进行放大或缩小。 2.3 用鼠标左键点击动态移动(Dynamic Translate )图标, 在模型窗口中,按住鼠标左键,移动鼠标选择合适的网格。 ⒊创建机构的各个部件 3.1 在ADAMS/View 零件库中选择 连杆(Link )图标,长度为200mm (mm b 200 ),其他参数合理选择。如图 3-1所示。在ADAMS/View 工作窗口中先用 鼠标左键选择点(-80,0,0)mm(该点的位置 可以选择在其他地方),然后按照和题目中 差不多的倾斜角,点击鼠标左键(本题选择 点(-200,160,0)mm),创建出主曲柄BC (PART_2)。如图3-2所表示。 3.2在ADAMS/View 零件库中选择连杆 (Link )图标,参数选择如图3-3所示。在工作窗口 中先用鼠标左键选择原点(0,0,0)mm(根据上面创建的主曲柄BC 的位置和题中的条件,副曲柄AC 的位置是唯一的),然后按照和题目中差不多的倾斜角,点击鼠标左键(本题选择点(-230,290,0)mm ),创建出副曲柄AC (PART_3)。如图3-3所表示。 3.3该步骤将创建主、副曲柄之间的连接部分C , 在ADAMS/View 零件库中选择连杆(Link )图标 ,参数选择如图3-4 所示。在ADAMS/View 工 图 2-1 设置工作网格对话框 图3-1设置杆选项 图3-2 创建的主曲柄BC 图3-1设置杆选项

注塑模具斜顶滑块机构(非常专业的模具知识)

= 目录= 1.斜顶的一般结构和类别 2.斜顶的运动原理 3.斜顶的设计 4.斜顶运动图示 5.斜顶设计规范(参考) 6.其他滑块形式

斜顶一般由二个部分所构成:机体部分和成形部分。 它与滑块一样,由于机体部分与成形部分是否组合,斜顶可以分类为: 1.整体式斜顶(如图1,也可以叫做非组合式斜顶) 2. 非整体式斜顶(如图2,又可叫组合式斜顶)。 注意,由于斜顶相对比较小,一般我用整体式斜顶,很少去用组合式斜顶。整体式斜顶结构紧凑、强度较好、不容损坏。而对于较大的斜顶,设计时可运用组合式,这样更换比较方便,也便于维修维护,加工比较简单。

由于斜顶机体底端定位结构的不同,斜顶又可分类为: 圆柱销式斜顶(如图3)和T型块式斜顶(如图4)。 对于这两种斜顶来讲,圆柱销式斜顶在设计当中运用很多,主要原因就是加工方便、安装配合维修维护容易。T型块式斜顶主用于较大的精密度要求较高的产品,它还要与专用的T型底座(如图5)相配合(如图6),加工配合比较难,制造成本也会加大。

2.斜顶的运动原理 如右图所示,斜顶放置在一个固定不动的模板的斜孔中,斜顶与斜孔配合。从下向上给顶一个推力推动顶向上运动一段距离之后发现顶在斜孔和推力的强迫作用下,不仅向上运动了,并且向顶倾斜方向运动了一定距离(如图中所示的位置差距)。 在顶出过程当中,由于产品是垂直线运动,而顶不仅垂直线运动,且向死角反方向运动了,从而可以处理死角了。 动画演示动画演示

3.斜顶的设计 前提条件:已经确定了模板、模仁、模架的尺寸。具体如右图所示。 1. 查看图纸,仔细分析,确定死角的大小。如图所示。 2. 确定0°靠破面的起点,并且确定其长度(如图AB)。如果不设 计0°靠破面,则选择A点作为斜顶斜面的起点。 3. 以B点为基准,偏一距离,如图BC,BC=顶出行程。 4. 以C点为基准,向顶移动的反方向偏一距离,如图CD。CD=斜 顶行程(取整数)=死角大小+大于或等于3mm的最小安全量。 5. 连接DB,得到角度DBC。这个角度一般为小数。我们取一整数, 为M°。这个角度才是我们所需要的斜顶斜面的倾角度。 6. 其它的内容可根据前面所讲的结构及其要求完成斜顶其他部分 的设计。 其实,像上面这么复杂的内容主要的目地是教我们如何去求出顶的倾角度。我们可以简化为如右图所示:我们可以得出三角函数tgM°=顶行程/顶出行程。此时要求出M°是多大就很容易了,也可以直接在图纸上测量出来。

[曲柄,机构]简析基于CAD的偏置曲柄滑块机构的设计与研究

简析基于CAD的偏置曲柄滑块机构的设计与研究 0引言 曲柄滑块机构是指将转动和移动进行相互转换的平面连杆机构。在机器的设计中,曲柄滑块机构得到了广泛应用,该机构既可以将往复移动转换为回转运动;又可以将转动转换为往复移动。工程实践中,对曲柄滑块机构的设计是机构设计中的重要课题。该机构的设计一般采用的是解析计算法,该求解方法以列方程为主,进行求解,但在实际求解中,因为方程里的未知数较多,为多元多次方程,并含有三角函数,使求解过程复杂,计算量大,容易出错,造成设计的效果不理想。本文采用CAD进行图解法与解析法结合,对偏置曲柄滑块机构进行设计,大大简化了求解难度,提高了设计准确度。 1机构的解析法设计 设计要求举例:设计一往返直线运动机构,返回的速度要比工作时的速度快,比值约1.5,往返的行程为50cm,且减速箱的轴心与工作平面的距离为15cm。综合已知条件,可以选择曲柄滑块机构,具有往返直线运动的特点,另外根据条件作图,可设计为偏置曲柄滑块机构。 图中的AB杆和BC杆的长度都为未知,要根据已知条件,进行设计,可列公式,先进行往返速度的计算。根据行程速度变化系数K=(180+)(/180-)=1.5,可得=36,根据角度绘制极限位置图。 求出AB杆和BC杆的长度,可根据已知条件,设BC杆为a,AB杆为b,图2中CA2A1=a,列出方程: 1)502=(a+b)2+(a-b)2-2(a+b)(a-b)cos36 2)152+c2=(a-b)2; 3)152+(c+50)2=(a+b)2。 或者: 1)502=(a+b)2+(a-b)2-2(a+b)(a-b)cos36 2)15=(a+b)sin 3)15=(a-b)sin(+36) 经过复杂的求解,得出:a=22.4;b=42.2;c=12.9;=13。 这2组方程式解析a、b值都非常麻烦,过程不胜繁琐,在此,可采用CAD的绘图方法求解a、b值,通过几何作图,采用简易方法求解,从而得出AB杆和BC杆的长度。

斜顶设计精编版

一.概述: 斜顶机构是模具的重要组成部分,随着模具的不断发展不断改进,斜顶所起的作用越来越重要。它兼容了镶拼机构和顶出机构的双重作用。在以后的生产中它的数量会在模具中逐渐增加。斜顶根据结构分为两大类:分体式斜顶和整体式斜顶。对于斜顶和其类似的还有直顶,它们只是形状上有稍微的差异。我们常把它们统称为顶块。对于顶块的设计要点及加工工艺在正文中作了详细的介绍。 下面首先通过本公司所制造的几个具有代表性的斜顶的真彩图来认识一下斜顶的基本结构形状: 二.分体式斜顶 分体式斜顶指的是将斜顶头与斜顶杆分开设计加工,根据斜顶杆的截面形状分为两种:圆形斜顶杆与方形斜顶杆。其整体结构分为几个结构部件如图所示:斜顶头、斜顶杆、斜顶导向块、斜顶T型块、斜顶T型块滑道,耐磨板;根据每一个部件来分别制定标准规格以及设计加工规范。 适用范围:对于汽车模,应优先选用圆形斜顶杆,对于头部形状较复杂,或尺寸较大,截面尺寸大于16X16,应采用分体式结构。

斜顶T型滑道 斜顶导向 块 斜顶头 顶针板 底针板 底板 B0板 斜顶杆 镶块 斜顶T型块 斜顶头 斜顶杆 B0板 顶针板 底针板 底板 镶块 斜顶导向 块 斜顶T型块 斜顶耐磨板 图1.分体式斜顶的结构示意图分体式斜顶的重要组成部分----斜顶头的三维示意图如下: 图2.斜顶头三维示意图 (1 1.1) A°+2° 图中的A°为斜顶杆的角度 1.2

块通过工艺螺钉固定后NC加工顶面。 1.3)斜顶头的材料: 斜顶头的材料一般用638,氮化处理,对于透明件,如GPPS等,需采用738或718,腐蚀 1.4) 公差要求: 对于斜顶厚度方向的尺寸T,如果斜顶在该方向上没有斜度要求,该方向的尺寸要求为净1.5

附录3(曲柄滑块机构设计,例4-1程序设计,定稿)

附录3 例4-1程序设计如下: 1.标识符说明 有关控件名称及相关变量说明如下表。 有关控件名称及相关变量说明 2.程序设计 (1)变量声明 Option Explicit Public Const pi As Double = 3.1415926 'pi- 圆周率 Public Const rr As Double = pi / 180 'rr-度转换成弧度的系数 Public Const rr2 As Double = 180 / pi 'rr2-弧度转换成度的系数 Public sca As Double 'sca-绘图比例系数 Public ii As Integer, jj As Integer 'ii,jj-循环变量 Public q As Integer 'q-转向系数 Public e As Double 'w-偏距 Public p As Integer 'p-主动件转速 Public lab As Double 'lab-曲柄的长度 Public la0a As Double 'la0a-曲柄或主动连架杆的长度 Public lb0b As Double 'lb0b-从动连架杆的长度 Public la0b0 As Double 'la0b0-机架的长度 Public a0x As Double, a0y As Double 'a0x,a0y-主动连架杆与机架的铰链 Public a1x As Double, a1y As Double 'a1x,a1y-主动连架杆和连杆的铰链 Public b1x As Double, b1y As Double 'b1x,b1y-从动连架杆和连杆的铰链

曲柄滑块机构的设计

曲柄滑块机构的设计 Modified by JACK on the afternoon of December 26, 2020

本篇再考察一道曲柄滑块机构的设计。同样是给定行程速比系数来确定杆长。 设计一偏置曲柄滑块机构,已知滑块的行程速比系数为,滑块的行程50 ,导路的偏距20 ,求曲柄和连杆长度,并求其最大压力角。 问题分析 首先设计机构,然后再求最大压力角。 机构的设计。先计算出行程速比系数如下 那么根据题意,最后的结果应当如下图。滑块的两个极位之间距离是50mm,而固定铰链A在与CD平行20mm的直线上,而且A点到C,D的夹角是36度。 图解总是从已知条件开始,然后逐步确定未知因素。本问题中知道三个数字: 50mm,20mm,36度。而这个36度时与DC的距离相关的,所以图解时先画出滑块的两个极限位置,然后确定铰链A所在的水平线,接着就是根据36度这个条件最终确定A的位置。(1)确定滑块的极位及固定铰链A所在的直线 先绘制水平线段C2C1,使得其距离为50mm. 然后在其上方20mm的地方绘制一条水平直线I.那么铰链A就应该在这条直线上。

(2)根据极位夹角确定铰链A所在的圆 下面要根据极位夹角来确定A所在的曲线,这样,该曲线与上述曲线相交就可以唯一确定A点的位置。 A点到C1,C2形成的夹角是36度。那么所有与C1,C2形成夹角为36度的点有什么特征呢---圆周角具有这种特征。 从几何知道,在一个圆上面,对应于同一个圆弧的圆周角都相等。基于这一点,过C2做直线垂直于C2C1,而作射线C1E与C2C1夹角为90-36=54度,二者交于点E,则C2EC1这个角度就是36度。 现在以C1E为直径做一个圆,则在该圆上任意取一点,该点与C2C1连线的夹角就都是36度,从而A点必然在该圆上面。 根据上述规则做出的上图发现,该圆与水平线I并不相交。这意味着作图有问题。实际上,刚才作的C1E在C2C1之下,所以导致不相交。因此改变策略,在C2C1之上作C1E,使得它与C2C1的夹角为54度。 然后以C1E为直径作出一个圆。该圆与直线I有两个交点:A1和A2。这样,该问题有两组解。但是观察下图可以发现,取A1或者A2,实际上结果是一样的,只是关于C2C1的中垂线对称而已。所以这里只取A1这个点,它就是固定铰支座A。

曲柄压力机曲柄滑块工作机构设计概论

摘要 曲柄压力机广泛应用于冲裁,弯曲,校正,模具冲压等工作。本次设计的为单点闭式中型,公称压力为160吨曲柄压力机。 此次设计由于分工不同,主要完成的是曲柄压力机曲柄滑块机构的设计。在设计中主要是根据总体设计确定的压力机主要参数,公称压力,滑块行程等参数参考相关手册初步估算曲柄,连杆,滑块,导轨相关尺寸,然后分别校核,修正,最终确定各零部件尺寸,并根据要求完成装模高度调节装置设计。最后写出详尽曲柄滑块机构设计说明书,绘出主要零件图。 关键字:公称压力,曲轴,连杆,导轨,调节装置。

Abstract It was crank press slider crank mechanism design that crank press extensive use to blanking,bent,adjustment,mould stamping quiescent. This degree rated for single-point closed type mesotype skill pressure for 160 ton crank press. This degree design owing to division of labour differ. Mostly finished at design suffer primarily as per overall design final contractor major parameter,nominal pressure,slide stroke is isoparametric reference correlation manual general estimate winch,pitman,slipper rack correlation size,then parting check,amend,ultimately ascertain each spare size,combine or finish fit design up with. be the last written out at large slider crank mechanism design specifications,out major parts chart to. key word:nominal pressure,crankshaft,pitman,rack,regulating block.

相关文档
最新文档