偏置曲柄滑块机构的运动学分析

偏置曲柄滑块机构的运动学分析
偏置曲柄滑块机构的运动学分析

研究生课程论文科目:

是否进修生?是□ 否■

偏置曲柄滑块机构的运动学分析

摘要:综合利用函数法和矢量法,在ADAMS软件中对偏置式曲柄滑块机构进

行了仿真和运动分析。首先,通过函数法对偏置式曲柄滑块机构的运动特性进行分析,根据矢量法建立机构的运动学矩阵方程。然后,介绍了ADAMS在偏置

曲柄滑块机构运动学及动力学分析中的应用。通过对偏置曲柄滑块进行仿真和分析,得到其运动曲线。该方法的仿真形象直观,测量方便,在机械系统运动学特性分析中具有一定的应用价值。

关键词:偏置曲柄滑块;ADAMS;仿真;运动学

Abstract: The article analyzes the simulation and kinetic characteristic of deflection slider-crank mechanism by the function and the vector method in ADAMS.The kinematic equation of the deflection slider-crank mechanism is established by vector method. The application of ADAMS in kinematics analysis of slider-crank mechanism is presented. The motion and dynamic curves of offset slider-crank by ADAMS/View is obtained. In the method, simulation is authentic, visualized and convenient in measurement. The result shows that the method is efficient and useful in the kinematic characteristics analysis of mechanism.

Keyword: offset slider-crank mechanism ; ADAMS; simulation ; kinematic

0.引言

平面连杆机构是由若干个构件用低副(转动副、移动副)连接组成的平而机构,它不仅在众多工农业机械和工程机械中得到广泛应用,还应用于人造卫星太阳能板的展开机构、机械手的传动机构等。曲柄滑块机构是铰链四杆机构的演化形式,对曲柄滑块机构进行运动学仿真意义重大[1]。

机构运动分析是根据给定的原动件运动规律,求出机构中其它构件的运动。通过分析可以确定某些构件运动所需的空间,校验其运动是否干涉;速度分析可以确定机构从动件的速度是否合乎要求;加速度分析为惯性力计算提供加速度数据。运动分析是综合分析和力分析的基础。一般而言,机构设计的目标之一是能够实现某一预先设定的运动轨迹,因此在研究机构的运动特性时,利用运动学方程来获取一些重要的特定参数,并用数值方法进行计算机仿真求解是十分有益的。本文将采用三维仿真软件ADAMS对曲柄滑块机构进行运动学仿真,建立矢量方程表达式,进行数值求解,从而得到偏置曲柄滑块机构的运动曲线。该方法较手工计算或作图法效率高、精确,应用非常广泛。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等[2]。现主要研究ADAMS/View对机构的建模分析,从而得到偏置曲柄滑块机构的运动学曲线和动力学曲线。

1函数法分析偏置式曲柄滑块机构的运动特性

偏置式曲柄滑块机构见图1,为了研究方便,建立如图 1 所示的坐标系。曲柄长度为r2,连杆长度为r3,偏距为r,曲柄转角为θ2,连杆转角为θ3。

图1 偏置式曲柄滑块机构示意图

滑块的位移为:

(1)

将式( 1) 对时间 t 求导,得到滑块的速度:

(2)

由图 1 中 y 方向几何关系得:

(3)

式( 3) 两边对时间 t 求导并整理得到:

(4)

曲柄旋转角速度为:

(5)

将式( 4) 、式( 5) 代入式( 2) 得到:

(6)

将式( 6) 对时间 t 求导,得到滑块的加速度:

(7)

从式( 1) 、式( 6) 和式( 7) 可以看出,滑块的位移、速度及加速度与曲柄的转速、曲柄的转角以及连杆的转角有关,且由式( 3) 可知连杆转角也是曲柄转角的函数。因此,在曲柄、连杆和偏心距尺寸已知的条件下,滑块的位移、速度及加速度仅是曲柄转速的函数[6]。

2.矢量法建立偏置曲柄滑块机构的运动模型

机构在运动时﹐滑块B 的运动轨跡不通过曲柄的回转中心﹐则称为偏置曲柄滑块机构。例如在自动送料机构中的使用等。偏置曲柄滑块机构是一种常用的机械结构,它是将曲柄的转动转化为滑块在直线上的往复运动。根据图 1 建立了偏置式曲柄滑块机构向量模型,如图 2 所示。在此机构中,已知各构件的尺寸(假设已符合平面连杆机构曲柄的存在条件,在此不做赘述)及原动件1的方位角1θ和匀角速度1ω,便可对连杆和滑块的运动情况进行分析。对此曲柄滑块机构做出如下初始定义:

( 1) 曲柄1为原动件,以匀角速度s rad /301=ω逆时针旋转;

( 2) 曲柄和连杆的长度分别为mm l AB 50=,mm l BC 100=。

以此为参数对滑块和连杆进行运动分析,包括连杆和滑块的位移、速度和加

速度分析,两者的运动分析均以其理想几何中心为质点进行研究。

图2 偏置式曲柄滑块机构向量模型

建立直角坐标系,将各构件表示为各杆矢量,并将各杆矢量用指数形式的复数表示。具体过程如下:

( 1) 位移分析。如图1 所示,由封闭图形ABCA ,可写出机构各杆矢量所构成的封闭矢量方程为:

→→=+c S l l 21

其复数形式为: c i i S e l e l =+2121θθ

将上式的实部和虚部分离得:

c S l l l l =+=+22112211cos cos 0sin sin {

θθθθ(8)

由上式可解得: ???

? ??-=+=21122211sin arcsin cos cos {l l l l S c θθθθ

(2)速度分析。速度可由位移对时间求一次导数得到,故将(8)式对时间求一次导数,得速度关系:

c V l il =+222111cos cos θωθω

将上式的实部和虚部分离得:

0cos cos sin sin 222111222111{

=+=--θωθωθωθωl l V l l c

用矩阵表示即为: ????????????+????????????=??????---122222

22222221111110

cos 0sin 1sin 0cos cos sin 1ωωθωθωθθθωθωωl l a a l l l l c 解上式即可求得到角加速度和线加速度。

3.偏置曲柄滑块机构的运动学仿真

ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等。ADAMS是虚拟样机分析的应用软件,用户可以运用该软件非常方便地对虚拟机械系统进行静力学、运动学和动力学分析。该方法较手工计算或作图法效率高,精确应用广泛[3]。现主要研究ADAMS /View 对机构的建模分析,从而得到偏置曲柄滑块机构的运动学曲线和动力学曲线。

3.1建立Adams仿真模型

ADAMS样机仿真的基本流程首先是对机构进行建模,通过对模型定义参数,添加约束并对其施加力和驱动,从而建立测量,对机构进行仿真,最后处理分析结果并得出结论。

根据上述数据,忽略重力的影响,在Adams软件中建立次偏置曲柄滑块机构的仿真模型,结果如图3所示。

图3 曲柄连杆机构仿真模型

3.2运动学仿真结果及分析

定义仿真分析停止的绝对时间5s,在整个分析过程中总共输出的步数为700,执行仿真命令。在ADAMS中利用测量方式,可以完成滑块和连杆的位移曲线、速度曲线和加速度曲线的绘制。如图4、图5、图6分别为位移、速度和加速度对应的曲线。

图4 (a)连杆位移线图(b)滑块位移线图

图5 (a)连杆速度线图(b)滑块速度线图

图6 (a)连杆加速度线图(b)滑块加速度线图

由此可见ADAMS仿真形象直观,建立测量方便,并具有功能强大的数据后处理模块。分析仿真结果,可以得出如下结论:

(1)由位移曲线图可以看出,连杆的角位移和滑块的位移与曲柄转角呈周期性变化,变化比较均匀,而且两个位移变化情况相同,原因在于连杆和滑块刚性连接成为一体,但两者相差半个相位。其中,连杆位移随曲柄转角呈正弦变化,而滑块位移随曲柄转角呈余弦变化,这与实际观察到的曲柄滑块机构运动情况相符。

(2)由速度曲线图可以看出,连杆的角速度和滑块的速度均与曲柄转角呈周期性变化,但相差半个周期。虽然连杆的角速度和滑块的速度都随曲柄转角变化比较均匀,但两者变化情况有所差别,其中,连杆随曲柄转角呈余弦变化,这是由位移对时间求一阶导数所得的结果,而滑块呈现类似于锯齿形的柔性变化,最大速度也低于连杆的最大速度。

(3)由加速度曲线图可以看出,连杆的角加速度和滑块的加速度变化情况区别较大。连杆角加速度随曲柄转角呈正弦变化,这是连杆角速度对时间求一阶导数的结果,而滑块加速度虽也随曲柄转角呈周期性变化,却不是正余弦曲线变化,在滑块运动至其平衡点附近,其加速度变化幅度较小,其余位置变化幅度较大,在实际中可利用这一结论避免不必要的冲击。

4数学建模与仿真两者的对比

曲柄连杆机构是一种工程上广泛应用的传动机构,它的运动分析是机构学中的重要内容之一,数学建模方法主要是通过对机构本身的分析来建立数学模型,它的设计精度较高,设计思路比较灵活,清晰,结构准确,便于演绎,推理和分析,可适用于复杂机构的分析,但由于推导过程繁杂,且不够直观,对高维非线性方程组求解十分困难,解的检验也费时费力。但随着计算机的快速发展,数学建模的方法在机构设计中得到的普遍的应用。

在仿真平台上,只需要修改参数和函数模块,就可以得到任意时刻的位置、速度以及加速度的值,并且可以观察到各个构件在整个运动周期内的变化规律。将此方法运用于现代机械的设计中,不但能满足现代机械的设计要求,而且设计编程简单易懂,设计精度与设计效率高,从而提高了新产品的设计水平,也降低了研发的成本。同时,这种运动分析方法基于Adams软件中强大的矩阵计算功能,可以得到任意运动参数间的相互关系,这为后续研究机构的运动协调性及机构动力性能分析等方面提供了基础,为机构运动分析提供了一种新的方法。

与传统的方法相比,仿真的方法能在程序量极少的情况下,应用各种仿真功能模块对机构的运动性能进行分析,大大提高分析的工作效率和质量。该方法既可实时观察机构的运动和指定点轨迹的动态生成过程,又可方便地绘制机构的运动曲线。通过对曲柄滑块机构的运动仿真,可以直观地了解机构的运动情况、死点位置、传动角以及行程速比等运动规律和特性,为曲柄滑块机构的设计提供一种直观、高效快捷的设计仿真工具。

5结论

本文对偏置式曲柄滑块机构进行了分析,得到了相应的函数关系;运用矢量法建立了机构的矩阵方程;然后采用ADAMS对偏置曲柄滑块机构进行建模及运动学仿真分析,得到偏置曲柄滑块的运动学特性,与运用矢量法所得结果一致。该方法也可以用于其他四杆机构、复杂机构的运动学及动力学分析, 其优越性在于把用户从复杂繁琐的数学计算中解放出来,提高求解速度,保证了求解精度。

参考文献:

[1] 杨玉萍.含有移动副的平面四连杆机构的类型分析[J]. 南通工学院学报,1999,3:15-20.

[2] 王国明. 基于ADAMAS的曲柄滑块机构运动学仿真分析[J]. 滨州学院学

报,2011,12:95-97.

[3] 靳岚,谢黎明,沈浩.基于MATLAB的偏置曲柄滑块机构的运动特性仿真研究[J]. 现在设计与先进制造技术,2008,9:33-35.

[4]张欣悦,李连豪,王涛.基于MATLAB曲柄滑块机构的运动学分析. 农机使用与维

修,2012(4):58-60.

[5]王念峰,韦帅,张宪民. 基于四连杆机构的灵巧手结构设计与运动学分析[J].机械设计与研究,2013:112-117.

[6]杨侠,郭钊. 四连杆抽油机传动机构的运动学及动力学分析[J]. 石油和化

工,2011(14):11-13.

曲柄滑块机构的运动分析及应用

机械原理课程机构设计 实验报告 题目:曲柄滑块机构的运动分析及应用 小组成员与学号:泽陆(11071182) 柯宇 (11071177) 熊宇飞(11071174) 保开 (11071183) 班级: 110717 2013年6月10日

摘要 (3) 曲柄滑块机构简介 (4) 曲柄滑块机构定义 (4) 曲柄滑块机构的特性及应用 (4) 曲柄滑块机构的分类 (8) 偏心轮机构简介 (9) 曲柄滑块的动力学特性 (10) 曲柄滑块的运动学特性 (11) 曲柄滑块机构运行中的振动与平衡 (14) 参考文献 (15) 组员分工 (15)

摘要 本文着重介绍了曲柄滑块机构的结构,分类,用途,并进行了曲柄滑块机构的动力学和运动学分析,曲柄滑块机构的运动学特性分析,得出了机构压力表达式,曲柄滑块机构的运动特性分析,得出了滑块的位移、速度和加速度的运动表达式。最后,对曲柄滑块机构运动中振动、平衡稳定性等进行了总结。 关键字:曲柄滑块动力与运动分析振动与平稳性 ABSTRACT The paper describes the composition of planar linkage, focusing on the structure, classification, use of a slider-crank mechanism and making the dynamic and kinematic analysis, kinematics characteristics of the crank slider mechanism analysis for a slider-crank mechanism, on one hand , we obtain the drive pressure of the slider-crank mechanism ,on the other hand,we obtain the expression of displacement, velocity and acceleration of movement. Finally, the movement of the vibration and balance stability of the crank slider mechanism are summarized.

曲柄滑块机构运动分析

曲柄滑块机构运动分析 一、相关参数 在图1所示的曲柄滑块机构中,已知各构件的尺寸分别为mm l 1001=,mm l 3002=,s rad /101=ω,试确定连杆2和滑块3的位移、速度和加速度,并绘制出运动线图。 图1 曲柄滑块机构 二、数学模型的建立 1、位置分析 为了对机构进行运动分析,将各构件表示为矢量,可写出各杆矢所构成的封闭矢量方程。 将各矢量分别向X 轴和Y 轴进行投影,得 0sin sin cos cos 22112211=+=+θθθθl l S l l C (1) 由式(1)得 2、速度分析 将式(1)对时间t 求导,得速度关系 C v l l l l =--=+222111222111sin sin 0 cos cos θωθωθωθω (2) 将(2)式用矩阵形式来表示,如下所示 ??? ???-=??? ?????? ???-1111122222cos sin . 0 cos 1 sin θθωωθθl l v l l C (3) 3、加速度分析 将(2)对时间t 求导,得加速度关系 三、计算程序 1、主程序 %1.输入已知数据 clear; l1=; l2=; e=0; hd=pi/180; du=180/pi; omega1=10; alpha1=0;

%2.曲柄滑块机构运动计算 for n1=1:721 theta1(n1)=(n1-1)*hd; %调用函数slider_crank计算曲柄滑块机构位移、速度、加速度 [theta2(n1),s3(n1),omega2(n1),v3(n1),alpha2(n1),a3(n1)]=slider_crank(theta1(n1),omega1,alpha1,l1,l2,e); end figure(1); n1=0:720; subplot(2,3,1) plot(n1,theta2*du); title('连杆转角位移线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角位移/\circ'); grid on subplot(2,3,2) plot(n1,omega2); title('连杆角速度运动线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角速度/rad\cdots^{-1}'); grid on subplot(2,3,3) plot(n1,alpha2); title('连杆角加速度运动线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角加速度/rad\cdots^{-2}'); grid on subplot(2,3,4) plot(n1,s3); title('滑块位移线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('滑块位移/\m'); grid on

偏置曲柄滑块机构

具有最优传力性能的曲柄滑块机构的设计 宁海霞1董萍 摘要:在曲柄滑块机构的设计中,将x作为设计变量,求出已知滑块行程H,行程速比系数K时机构传力性能最优的x值,使得最小传动角γ 为最大,从 min 而设计出此机构。 关键词:最优传力性能;曲柄滑块机构;行程速比系数;最小传动角机器种类很多,但它们都是由各种机构组成的,曲柄滑块机构就是常用机构之一。它有一个重要特点是具有急回特性。故按行程速比系数K设计具有最优传力性能的曲柄滑块机构是设计中常遇到的问题。本文将x作为设计变量,给出了解决问题的方法。

在曲柄与滑块导路垂直的位置,其值为: )(cos 1min b e a +=-γ (1) 2.X 和最小传动角γmin 的关系 设计一曲柄滑块机构,已知:滑块行程H ,行程速比系数K ,待定设计参数 为a 、b 和e 。 e 也就确定。下 在△AC 1C 2中 θcos ))((2)()(222a b a b a b a b H +--++-= 因为 x a b =- 所以 θcos )2(2)2(222a x x a x x H +-++=

2sin )1(cos 222θ θx H x a -+-= (2) 又因为 x e a x C AC b a H /2)sin(sin 21+= ∠+=θ 所以 H a x e /)2(sin 22+=θ (3) 将 a x b += 代入 (1) )( cos 1min a x a e ++=-γ (4) 将式(2)、(3)代入式(4),γmin 仅为 x 的函数,则可求得γ min 的值。 二、设计最优传力性能的曲柄滑块机构 设计变量 x 的取值范围。 寻优区间起点在C 1处: x min =0 寻优区间终点在M 点: θ tg H x = max 在 x 的取值范围内根据式(2)、(3)和(4)可求得x 一一对应的γmin 值。 利用一维寻优最优化技术黄金分割法,来求γmin 取极大值时的x 值。 将γ min 最大时的x 值代入(2)、(3)求出a 、e ,由b=x+a 求出b 值。 三、设计实例 试设计一曲柄滑块机构,已知滑块行程H=50mm ,行程速比系数K=1.5。求传力性能最优的曲柄滑块机构。 x 的取值范围为0~68.819mm ,x=19.104mm 时,γmin 的最大值为 27.458°。 曲柄a=22.537mm 连杆 b=41.641mm 偏心距 e=14.413 四、结论 本文结合图解法和解析法把x 作为设计变量,给出了根据行程速比系数K

可调行程的曲柄滑块机构的设计与制作

东南大学 机械工程院 “机械设计与制造综合实践”工作报告可调行程的曲柄滑块机构的设计与制作 项目组成员: 02007635 陈逸民 02007620 龚威豪 日期:2011年1月18日

第1章选题分析 (4) 1.1应用背景: (4) 1.2 预期实现功能: (4) 第2章实现的原理与方案 (4) 2.1 驱动部分 (4) 2.2. 曲柄滑块机构 (4) 2.3 后续分工 (5) 第3章执行系统设计 (5) 3.1 功能要求 (6) 3.2 执行机构的形式设计 (6) 3.3机构的尺度设计 (6) 第5章加工工艺设计与数控加工编程 (7) 5.1加工工艺设计 (7) 5.2对加工的零件进行分类 (8) 5.2.1 连杆的加工路线 (8) 5.2.2 导槽的加工路线 (8) 5.2.3 连接件的加工路线 (8) 5.2.4 底座的加工路线 (8) 5.3 数控加工编程 (8) 5.3.1 数控车床部分 (8) 5.3.2 数控铣床部分 (9) 第6章装配与调试 (10) 参考文献 (14) 附录C:数控加工程序 (24)

摘要:曲柄滑块机构是一种应用非常广泛的机械结构。我们所设计可调行程的曲柄滑块机构在原来的基础上给它增加了一个可调导槽,通过改变该导槽的安装角度,间接地改变连杆的实际长度,从而达到改变滑块行程的目的。我们通过对普通的曲柄滑块机构的分析,了解了其滑块行程的算法,但是由于可变行程的该机构的极限位置是变化的,且我们能力有限,因此须在制造出实物后运行方能给出。在设计的过程中,我们体会到了连杆机构的设计方法,并对制造学有了稍微的了解。 关键字:曲柄滑块机构可调行程 Abstract:Slider-crank mechanism is a very extensive mechanical structure. We are design adjustable trip slider-crank mechanism in the original basis to give it adds an adjustable guide groove, changes in this guide groove installation Angle indirectly change the actual length o f the connecting rod, so as to achieve the purpose of changing the slider trip. We through for ordinary slider-crank mechanism analysis, understand the slider trip, but due to the algorithm of the agency's variable travel limit position is changed and our ability is limited, so must create real after operation can give. In the design process, we realized the linkage mechanism design methods, and learn to have a slightly to manufacture of understanding. Keywords:Slider-crank mechanism,adjustable itinerary

曲柄滑块机构的运动分析及应用修订版

曲柄滑块机构的运动分析及应用修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

机械原理课程机构设计 实验报告 题目:曲柄滑块机构的运动分析及应用 小组成员与学号:刘泽陆(11071182) 陈柯宇 (11071177) 熊宇飞(11071174) 张保开 (11071183) 班级: 110717 2013年6月10日 摘要 (3) 曲柄滑块机构简介 (4) 曲柄滑块机构定义 (4) 曲柄滑块机构的特性及应用 (4) 曲柄滑块机构的分类 (8) 偏心轮机构简介 (9)

曲柄滑块的动力学特性 (10) 曲柄滑块的运动学特性 (11) 曲柄滑块机构运行中的振动与平衡 (14) 参考文献 (15) 组员分工 (15) 摘要 本文着重介绍了曲柄滑块机构的结构,分类,用途,并进行了曲柄滑块机构的动力学和运动学分析,曲柄滑块机构的运动学特性分析,得出了机构压力表达式,曲柄滑块机构的运动特性分析,得出了滑块的位移、速度和加速度的运动表达式。最后,对曲柄滑块机构运动中振动、平衡稳定性等进行了总结。 关键字:曲柄滑块动力与运动分析振动与平稳性 ABSTRACT The paper describes the composition of planar linkage, focusing on the structure, classification, use of a slider-crank mechanism and making the dynamic and kinematic analysis, kinematics characteristics of the crank slider mechanism analysis for a slider-crank mechanism, on one hand , we obtain the drive pressure of the slider-crank mechanism ,on the other hand,we obtain the expression of displacement, velocity and acceleration of movement. Finally, the movement of the vibration and balance stability of the crank slider mechanism are summarized.

曲柄滑块机构的设计页完整版

曲柄滑块机构的设计页 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

本篇再考察一道曲柄滑块机构的设计。同样是给定行程速比系数来确定杆长。 设计一偏置曲柄滑块机构,已知滑块的行程速比系数为,滑块的行程50 ,导路的偏距20 ,求曲柄和连杆长度,并求其最大压力角。 问题分析 首先设计机构,然后再求最大压力角。 机构的设计。先计算出行程速比系数如下 那么根据题意,最后的结果应当如下图。滑块的两个极位之间距离是50mm,而固定铰链A在与CD平行20mm的直线上,而且A点到C,D的夹角是36度。 图解总是从已知条件开始,然后逐步确定未知因素。本问题中知道三个数字:50mm,20mm,36度。而这个36度时与DC的距离相关的,所以图解时先画出滑块的两个极限位置,然后确定铰链A 所在的水平线,接着就是根据36度这个条件最终确定A的位置。 (1)确定滑块的极位及固定铰链A所在的直线 先绘制水平线段C2C1,使得其距离为50mm. 然后在其上方20mm的地方绘制一条水平直线I.那么铰链A就应该在这条直线上。 (2)根据极位夹角确定铰链A所在的圆 下面要根据极位夹角来确定A所在的曲线,这样,该曲线与上述曲线相交就可以唯一确定A点的位置。 A点到C1,C2形成的夹角是36度。那么所有与C1,C2形成夹角为36度的点有什么特征呢?---圆周角具有这种特征。

从几何知道,在一个圆上面,对应于同一个圆弧的圆周角都相等。基于这一点,过C2做直线垂直于C2C1,而作射线C1E与C2C1夹角为90-36=54度,二者交于点E,则C2EC1这个角度就是36度。 现在以C1E为直径做一个圆,则在该圆上任意取一点,该点与C2C1连线的夹角就都是36度,从而A点必然在该圆上面。 根据上述规则做出的上图发现,该圆与水平线I并不相交。这意味着作图有问题。实际上,刚才作的C1E在C2C1之下,所以导致不相交。因此改变策略,在C2C1之上作C1E,使得它与C2C1的夹角为54度。 然后以C1E为直径作出一个圆。该圆与直线I有两个交点:A1和A2。这样,该问题有两组解。但是观察下图可以发现,取A1或者A2,实际上结果是一样的,只是关于C2C1的中垂线对称而已。所以这里只取A1这个点,它就是固定铰支座A。 (3)测量曲柄和连杆的尺寸 量取A1C1,A1C2如下图。 则可以推知曲柄和连杆的长度 到此为止,连杆机构设计完毕。 (4)得到最大的压力角 从图中可以发现,当滑块在最左边时,有最大的压力角(滑块受到的推力与滑块速度方向的夹角),测量得到角度为53度。 至此,该曲柄滑块机构的设计和分析结束。

曲柄滑块机构运动分析

曲柄滑块机构运动分析 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

曲柄滑块机构运动分析 一、相关参数 在图1所示的曲柄滑块机构中,已知各构件的尺寸分别为 mm l 1001=,mm l 3002=,s rad /101=ω,试确定连杆2和滑块3的位移、速度和加速度,并绘制出运动线图。 图1 曲柄滑块机构 二、数学模型的建立 1、位置分析 为了对机构进行运动分析,将各构件表示为矢量,可写出各杆矢所构成的封闭矢量方程。 将各矢量分别向X 轴和Y 轴进行投影,得 0sin sin cos cos 22112211=+=+θθθθl l S l l C (1) 由式(1)得 2、速度分析 将式(1)对时间t 求导,得速度关系 C v l l l l =--=+222111222111sin sin 0 cos cos θωθωθωθω (2) 将(2)式用矩阵形式来表示,如下所示 ??????-=????????????-11 11122222cos sin . 0 cos 1 sin θθωωθθl l v l l C (3) 3、加速度分析 将(2)对时间t 求导,得加速度关系 三、计算程序 1、主程序 %1.输入已知数据 clear;

l1=; l2=; e=0; hd=pi/180; du=180/pi; omega1=10; alpha1=0; %2.曲柄滑块机构运动计算 for n1=1:721 theta1(n1)=(n1-1)*hd; %调用函数slider_crank计算曲柄滑块机构位移、速度、加速度 [theta2(n1),s3(n1),omega2(n1),v3(n1),alpha2(n1),a3(n1)]=slider_crank(theta1(n1),omega1,alpha1 ,l1,l2,e); end figure(1); n1=0:720; subplot(2,3,1) plot(n1,theta2*du); title('连杆转角位移线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角位移/\circ'); grid on subplot(2,3,2) plot(n1,omega2); title('连杆角速度运动线图'); xlabel('曲柄转角\theta_1/\circ'); ylabel('连杆角速度/rad\cdots^{-1}'); grid on

偏置曲柄滑块机构的运动学分析

研究生课程论文科目: 是否进修生?是□ 否■

偏置曲柄滑块机构的运动学分析 摘要:综合利用函数法和矢量法,在ADAMS软件中对偏置式曲柄滑块机构进 行了仿真和运动分析。首先,通过函数法对偏置式曲柄滑块机构的运动特性进行分析,根据矢量法建立机构的运动学矩阵方程。然后,介绍了ADAMS在偏置 曲柄滑块机构运动学及动力学分析中的应用。通过对偏置曲柄滑块进行仿真和分析,得到其运动曲线。该方法的仿真形象直观,测量方便,在机械系统运动学特性分析中具有一定的应用价值。 关键词:偏置曲柄滑块;ADAMS;仿真;运动学 Abstract: The article analyzes the simulation and kinetic characteristic of deflection slider-crank mechanism by the function and the vector method in ADAMS.The kinematic equation of the deflection slider-crank mechanism is established by vector method. The application of ADAMS in kinematics analysis of slider-crank mechanism is presented. The motion and dynamic curves of offset slider-crank by ADAMS/View is obtained. In the method, simulation is authentic, visualized and convenient in measurement. The result shows that the method is efficient and useful in the kinematic characteristics analysis of mechanism. Keyword: offset slider-crank mechanism ; ADAMS; simulation ; kinematic 0.引言 平面连杆机构是由若干个构件用低副(转动副、移动副)连接组成的平而机构,它不仅在众多工农业机械和工程机械中得到广泛应用,还应用于人造卫星太阳能板的展开机构、机械手的传动机构等。曲柄滑块机构是铰链四杆机构的演化形式,对曲柄滑块机构进行运动学仿真意义重大[1]。 机构运动分析是根据给定的原动件运动规律,求出机构中其它构件的运动。通过分析可以确定某些构件运动所需的空间,校验其运动是否干涉;速度分析可以确定机构从动件的速度是否合乎要求;加速度分析为惯性力计算提供加速度数据。运动分析是综合分析和力分析的基础。一般而言,机构设计的目标之一是能够实现某一预先设定的运动轨迹,因此在研究机构的运动特性时,利用运动学方程来获取一些重要的特定参数,并用数值方法进行计算机仿真求解是十分有益的。本文将采用三维仿真软件ADAMS对曲柄滑块机构进行运动学仿真,建立矢量方程表达式,进行数值求解,从而得到偏置曲柄滑块机构的运动曲线。该方法较手工计算或作图法效率高、精确,应用非常广泛。ADAMS软件的仿真可用于预测机械系统的性能、运动范围、碰撞检测、峰值载荷以及计算有限元的输入载荷等[2]。现主要研究ADAMS/View对机构的建模分析,从而得到偏置曲柄滑块机构的运动学曲线和动力学曲线。 1函数法分析偏置式曲柄滑块机构的运动特性 偏置式曲柄滑块机构见图1,为了研究方便,建立如图 1 所示的坐标系。曲柄长度为r2,连杆长度为r3,偏距为r,曲柄转角为θ2,连杆转角为θ3。

曲柄滑块机构的运动分析及应用精编WORD版

曲柄滑块机构的运动分析及应用精编W O R D 版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

机械原理课程机构设计 实验报告 题目:曲柄滑块机构的运动分析及应用 小组成员与学号:刘泽陆(11071182) 陈柯宇 (11071177) 熊宇飞(11071174) 张保开 (11071183) 班级: 110717 2013年6月10日 摘要 (3) 曲柄滑块机构简介 (4) 曲柄滑块机构定义 (4) 曲柄滑块机构的特性及应用 (4) 曲柄滑块机构的分类 (8) 偏心轮机构简介 (9) 曲柄滑块的动力学特性 (10)

曲柄滑块的运动学特性 (11) 曲柄滑块机构运行中的振动与平衡 (14) 参考文献 (15) 组员分工 (15) 摘要 本文着重介绍了曲柄滑块机构的结构,分类,用途,并进行了曲柄滑块机构的动力学和运动学分析,曲柄滑块机构的运动学特性分析,得出了机构压力表达式,曲柄滑块机构的运动特性分析,得出了滑块的位移、速度和加速度的运动表达式。最后,对曲柄滑块机构运动中振动、平衡稳定性等进行了总结。 关键字:曲柄滑块动力与运动分析振动与平稳性 ABSTRACT The paper describes the composition of planar linkage, focusing on the structure, classification, use of a slider-crank mechanism and making the dynamic and kinematic analysis, kinematics characteristics of the crank slider mechanism analysis for a slider-crank mechanism, on one hand , we obtain the drive pressure of the slider-crank mechanism ,on the other hand,we obtain the expression of displacement, velocity and acceleration of movement. Finally, the movement of the vibration and balance stability of the crank slider mechanism are summarized.

曲柄滑块机构的定义

曲柄滑块机构的定义 曲柄滑块机构是铰链四杆机构的演化形式,由若干刚性构件用低副(回转副、移动副)联接而成的一种机构。是由曲柄(或曲轴、偏心轮)、连杆滑块通过移动副和转动副组成的机构。 曲柄滑块的特点及应用 常用于将曲柄的回转运动变换为滑块的往复直线运动;或者将滑块的往复直线运动转换为曲柄的回转运动。对曲柄滑块机构进行运动特性分析是当已知各构件尺寸参数、位置参数和原动件运动规律时,研究机构其余构件上各点的轨迹、位移、速度、加速度等,从而评价机构是否满足工作性能要求,机构是否发生运动干涉等。曲柄滑块机构具有运动副为低副,各元件间为面接触,构成低副两元件的几何形状比较简单,加工方便,易于得到较高的制造精度等优点,因而在包括煤矿机械在内的各类机械中得到了广泛的应用,如自动送料机构、冲床、内燃机空气压缩机等。 优点: 1.面接触低副,压强小,便于润滑,磨损轻,寿命长,传递动力大; 2.低副易于加工,可获得较高精度,成本低; 3.杆可较长,可用作实现远距离的操纵控制; 4.可利用连杆实现较复杂的运动规律和运动轨迹。 缺点: 1.低副中存在间隙,精度低; 2.不容易实现精确复杂的运动规律。 凸轮滑块机构的定义 凸轮机构是由凸轮,从动件和机架三个基本构件组成高副结构。凸轮是一个具有曲线轮廓或凹槽的构件,一般为主动件,作等速回转运动或往复直线运动。 与凸轮轮廓接触,并传递动力和实现预定的运动规律的构件,一般做往复直线运动或摆动,称为从动件。

凸轮滑块的特点及应用 .优点: 1.能够实现精确的运动规律; 2.设计较简单。 缺点:1.承载能力低,行程短; 2.凸轮轮廓加工困难。 丝杠螺母机构的定义 丝杠螺母机构又称螺旋传动机构。它主要用来将旋转运动变换为直线运动或将直线运动变换为旋转运动。有以传递能量为主的(如螺旋压力机、千斤顶等);也有以传递运动为主的如机床工作台的进给丝杠);还有调整零件之问相对位置的螺旋传动机构等。 丝杠螺母的特点及应用 优点: 1.结构简单,支撑稳定。 2.制动装置由于滚珠丝杠副的传动效率高,又无自锁能力。 缺点: 1.传动形式需要限制螺母的转动,故需导向装置 2.但其轴向尺寸不宜太长,否则刚性较差。因此只适用于行程较小的场合。 齿轮 齿轮齿条机构的定义 齿轮齿条传动是将齿轮的回转运动转变为往复直线运动,或将齿条的往复直线运动转变为齿轮的回转运动。

偏置滑块机构的设计

偏置滑块机构的设计 由题目给定的数据L=100mm 行程速比系数K在1.2-1.5范围内选取 可由曲柄滑块机构的极位夹角公式二“180 k+1 / k=1.2-1.5 .其极位夹角的取值范围为16.36:?36 在这范围内取极位夹角为 25 。 滑块的行程题目给出S=100mm 偏置距离e选取40mm 用图解法求出各杆的长度如下: 由已知滑块的工作行程为100mm,作BB '为100mm,过点B作BB '所在水平面的垂线BP,过点B'作直线作直线B'P交于点P,并使N BPB' = 25。然后过 B、B'、P三点作圆。因为已知偏距e=40mm所以作直线平行于直线BB向下平移40mm,与圆0'交于一点O,则O点为曲柄的支点,连接OB、OB', 则 OB-OB '2a OB+OB '2b 从图中量取得:AB=151.32mm AB '61.86mm 则可知曲柄滑块机构的:曲柄a=44.73mm 连杆b=106.59mm 由已知滑块的工作行程为100mm,作BB '为100mm,过点B作BB '所在水平面的垂线BP,过点B'作直线作直线B'交于点P,并使N BPB' = 25。然后过 B、B'、P三点作圆。因为已知偏距e=40mm所以作直线平行于直线BB向下平移40mm,与圆O'交于一点O,则O点为曲柄的支点,连接OB、OB', 则 OB-OB '2a OB+OB '2b

从图中量取得:AB=151.32mm AB '61.86mm 则可知曲柄滑块机构的:曲柄a=44.73mm连杆b=106.59mm因为题目要求推头 回程向下的距离为30mm,因此从动件的行程h=30mm。 127H7H19TT 由选定条件近休止角为s' 推程角为o 回程角s 远休止角 90 18 90 o' ,h=30mm ,基圆半径r0 = 50 mm,从动杆长度为40mm,滚子半径r r = 5mm。 9 电动机的选定及传动系统方案的设计 1、电动机转速、功率的确定 题目要求5-6s包装一个件,即要求曲柄和凸轮的转速为12r/min考虑到转速比较低,因此可选用低转速的电动机,查常用电动机规格,选用丫160L-8型电动机,其转速为720r/min,功率为7.5kW。 2、传动系统的设计 720 系统的输入输出传动比i=h i2 =5 12=60i 60,即要求设计出一 12 个传动比i =60的减速器,使输出能达到要求的转速。 其传动系统设计如下图:电动机连接一个直径为10的皮带轮2,经过皮带的传动传到安装在二级减速器的输入段,这段皮带传动的传动比为h 二50=5,此时转速为-144r / min 。 10 5 从皮带轮1输入到一个二级减速器,为了带到要求的传动比,设计齿轮齿数 为,乙=15,Z2 =60,Z3=15,Z4 =45。 验算二级减速器其传动比i2二互厶二■6^岀=12 ZMZ3 1515 整个传动系统的传动比i* i^5 12=60 则电动机转速经过此传动系统减速后能满足题目要求推包机构主动件的转速。

QTD-III型 曲柄滑块、导杆、凸轮组合实验指导书实验一、机构运动参数的测试和分析实验教学提纲

实验一、机构运动参数的测试和分析实验 一、实验目的 1.掌握机构运动的周期性变化规律,并学会机构运动参数如位移、速度和加速度等的测试原理和方法; 2. 学会运用多通道通用实验仪器、传感器等先进实验技术手段开展实验研究的方法; 3. 利用计算机对平面机构动态参数进行采集、处理,作出实测的动态参数曲线,并通过计算机对该平面机构的运动进行数值仿真,作出相应的动态参数曲线,从而实现理论与实际的紧密结合。 二、实验内容 1.测试曲柄导杆机构、曲柄滑块机构、凸轮机构等机构的构件转角、移动位移等运动参数; 2.比较实测参数曲线与理论仿真曲线的差异。 三、实验仪器 QTD-III型曲柄、导杆、凸轮组合实验台 该组合实验装置,只需拆装少量零部件,即可分别构成四种典型的传动系统。他们分别是曲柄滑块机构、曲柄导杆机构、平底直动从动杆凸轮机构和滚子直动从动杆凸轮机构。具体结构示意图如下图所示。 (a)曲柄滑块机构

(b)曲柄导杆机构 (c)平底直动从动件凸轮机构 (d)滚子直动从动件凸轮机构 1、同步脉冲发生器 2、涡轮减速器 3、曲柄 4、连杆 5、电机 6、滑块 7、齿轮8、光电编码器9、导块 10、导杆11、凸轮12、平底直动从动件 13、回复弹簧14、滚子直动从动件15、光栅盘 四、实验原理 本实验仪由单片机最小系统组成。外扩 16 位计数器,接有 3 位 LED 数码显示器可实时显示机构运动时曲柄轴的转速,同时可与 P C 机进行异步串行通讯。在实验机构动态运动过程中,滑块的往复移动通过光电脉冲编码器转换输出具有一定频率(频率与滑块往复速度成正比),0-5伏电平的两路脉冲,接

曲柄滑块机构设计

本篇再考察一道曲柄滑块机构的设计。同样是给定行程速比系数来确定杆长。 设计一偏置曲柄滑块机构,已知滑块的行程速比系数为1.5,滑块的行程50 ,导路的偏距20 ,求曲柄和连杆长度,并求其最大压力角。 问题分析 首先设计机构,然后再求最大压力角。 机构的设计。先计算出行程速比系数如下 那么根据题意,最后的结果应当如下图。滑块的两个极位之间距离是50mm,而固定铰链A 在与CD平行20mm的直线上,而且A点到C,D的夹角是36度。 图解总是从已知条件开始,然后逐步确定未知因素。本问题中知道三个数字:50mm,20mm,36度。而这个36度时与DC的距离相关的,所以图解时先画出滑块的两个极限位置,然后确定铰链A所在的水平线,接着就是根据36度这个条件最终确定A的位置。 (1)确定滑块的极位及固定铰链A所在的直线

先绘制水平线段C2C1,使得其距离为50mm. 然后在其上方20mm的地方绘制一条水平直线I.那么铰链A就应该在这条直线上。(2)根据极位夹角确定铰链A所在的圆 下面要根据极位夹角来确定A所在的曲线,这样,该曲线与上述曲线相交就可以唯一确定A点的位置。 A点到C1,C2形成的夹角是36度。那么所有与C1,C2形成夹角为36度的点有什么特征呢?---圆周角具有这种特征。 从几何知道,在一个圆上面,对应于同一个圆弧的圆周角都相等。基于这一点,过C2做直线垂直于C2C1,而作射线C1E与C2C1夹角为90-36=54度,二者交于点E,则C2EC1这个角度就是36度。 现在以C1E为直径做一个圆,则在该圆上任意取一点,该点与C2C1连线的夹角就都是36度,从而A点必然在该圆上面。 根据上述规则做出的上图发现,该圆与水平线I并不相交。这意味着作图有问题。实际上,刚才作的C1E在C2C1之下,所以导致不相交。因此改变策略,在C2C1之上作C1E,使得它与C2C1的夹角为54度。 然后以C1E为直径作出一个圆。该圆与直线I有两个交点:A1和A2。这样,该问题有两组解。但是观察下图可以发现,取A1或者A2,实际上结果是一样的,只是关于C2C1的中垂线对称而已。所以这里只取A1这个点,它就是固定铰支座A。 (3)测量曲柄和连杆的尺寸 量取A1C1,A1C2如下图。 则可以推知曲柄和连杆的长度 到此为止,连杆机构设计完毕。 (4)得到最大的压力角 从图中可以发现,当滑块在最左边时,有最大的压力角(滑块受到的推力与滑块速度方向的夹角),测量得到角度为53度。 至此,该曲柄滑块机构的设计和分析结束。

matlab曲柄滑块机构的运动学仿真

《系统仿真与matlab》综合试题 题目:曲柄滑块机构的运动学仿真 编号:______________ 21 _____________ 难度系数:___________________________ 姓名______________________ 班级_________________ 学号__________________ 联系方式______________ 成绩________________________________

《系统仿真与matlab 》综合试题 (1) 一、引言........................................................ 3. 二、运动学分析 (3) 1、实例题目 (3) 2、运动分析 (3) 三、M ATLAB程序编写 (5) 四、使用指南和实例仿真 (8) 五、结语 10

亠、引言 曲柄滑块机构是指用曲柄和滑块来实现转动和移动相互转换的平面连杆机构,也称曲柄连杆机构。曲柄滑块机构广泛应用于往复活塞式发动机、压缩机、冲床等的主机构中,把往复移动转换为不整周或整周的回转运动;压缩机、冲床以曲柄为主动件,把整周转动转换为往复移动。这里使用运动学知识,对其运动进行解析,并用MATL AE为其设计仿真模块。 1、运动学分析 1、实例题目 对图示单缸四冲程发动机中常见的曲柄滑块机构进行运动学仿真。已知连杆长度:D 0.1m , r3 0.4m,连杆的转速:2 2 , 3 3 , 设曲柄r2以匀速旋转,2 50r/s。初始条件:2 3 0。仿真以2为 输入,计算3和A,仿真时间0.5 s。 2、运动分析 建立封闭矢量方程: r2+r3=r1 (9)

平面连杆机构及其方案与分析

第二章平面连杆机构及其设计与分析 §2-1 概述 平面连杆机构<全低副机构):若干刚性构件由平面低副联结而成的机构。 优点: (1)低副,面接触,压强小,磨损少。 (2)结构简单,易加工制造。 (3)运动多样性,应用广泛。 曲柄滑块机构:转动-移动 曲柄摇杆机构:转动-摆动 双曲柄机构:转动-转动 双摇杆机构:摆动-摆动 (4)杆状构件可延伸到较远的地方工作<机械手) (5)能起增力作用<压力机) 缺点: <1)主动件匀速,从动件速度变化大,加速度大,惯性力大,运动副动反力增加,机械振动,宜于低速。 <2)在某些条件下,设计困难。 §2-2平面连杆机构的基本结构与分类 一、平面连杆机构的基本运动学结构 铰链四杆机构的基本结构 1.铰链四杆机构 所有运动副全为回转副的四杆机构。 BC-连杆 AB、CD-连架杆 连架杆:整周回转-曲柄 往复摆动-摇杆 2.三种基本型式

(1)曲柄摇杆机构 定义:两连架杆一为曲柄,另一为摇杆的铰链四杆机构。 特点:、 0~360°, 、<360° 应用:鳄式破碎机缝纫机踏板机构揉面机 (2)双曲柄机构 定义:两连架杆均作整周转动的铰链四杆机构。 由来:将曲柄摇杆机构中曲柄固定为机架而得。 应用特例:双平行四边形机构

曲柄滑块机构的运动学分析

****** 曲柄滑块机构的运动学分析 *******' SC=input(' 输入滑块行程的均值(mm) SC = '); P=input(' 输入曲柄轴心至滑销最远距离(mm) P = '); E=input(' 输入机构偏心距的均值(mm) E = '); RL=input(' 输入曲柄与连杆长度比的均值 RL = '); DR=input(' 输入曲柄长度偏差(mm) DR = '); DL=input(' 输入连杆长度偏差(mm) DL = '); DE=input(' 输入机构偏心距偏差(mm) DE = '); N=input(' 输入曲柄转速(r/min) N = '); L=sqrt((P-SC)^2-E^2)/(1-RL); fprintf(1,' 连杆长度的均值(mm) L = %3.6f \n',L) R=RL*L; fprintf(1,' 曲柄长度的均值(mm) R = %3.6f \n',R) CR=DR/3;CL=DL/3;CE=DE/3; EL=E/L; fprintf(1,' 偏心距与连杆长度比的均值(mm) EL = %3.6f \n',EL) fprintf(1,' 曲柄长度的标准离差(mm) CR = %3.6f \n',CR) fprintf(1,' 连杆长度的标准离差(mm) CR = %3.6f \n',CL) fprintf(1,' 偏心距的标准离差(mm) CE = %3.6f \n',CE) W=pi*N/30; fprintf(1,' 曲柄的角速度(mm) W = %3.6f \n',W) CRL=sqrt((R*CL)^2+(L*CR)^2)/L^2; fprintf(1,' 曲柄与连杆长度比的标准离差 CRL = %3.6f \n',CRL) CEL=sqrt((E*CL)^2+(L*CE)^2)/L^2; fprintf(1,' 偏心距与连杆长度比的标准离差 CEL = %3.6f \n',CEL) theta=0:10:360; hd=theta.*pi/180; % 计算滑块位移、速度、加速度的均值 S=R.*(1-cos(hd)-EL.*sin(hd)+0.5.*RL.*sin(hd).^2); V=R.*W.*(sin(hd)-EL.*cos(hd)+0.5.*RL.*sin(2.*hd)); A=R.*W^2.*(cos(hd)+EL.*sin(hd)+RL.*cos(2.*hd)); figure(1); subplot(1,3,1); plot(theta,S,'r') title('\bf \mus 线图')

matlab曲柄连杆机构分析讲课讲稿

m a t l a b曲柄连杆机构 分析

clear;clc; n=750;l=0.975;R=0.0381;h=0.2;omiga=n.*pi/30;tmax=2.*pi/omiga; t=0:0.001:tmax; %计算曲柄转一圈的总t值 alpha1=atan((h+R.*sin(omiga.*t))./sqrt(l.*l-(h+R.*sin(omiga.*t))))+pi; alpha1p=-(R.*omiga.*cos(omiga.*t))./(l.*cos(alpha1)); vb=-R.*omiga.*sin(omiga.*t)+R.*omiga.*cos(omiga.*t).*tan(alpha1); ab=-R.*omiga.^2.*cos(omiga.*t)- (R.*omiga.*cos(omiga.*t)).^2./(l.*(cos(alpha1)).^3) -R.*omiga.^2.*sin(omiga.*t).*tan(alpha1); subplot(1,2,1);plot(t,vb);title('曲柄滑块机构的滑块v-t图'); xlabel('时间t(曲柄旋转一周)');ylabel('滑块速度v');grid on; subplot(1,2,2);plot(t,ab);title('曲柄滑块机构的滑块a-t图'); xlabel('时间t(曲柄旋转一周)');ylabel('滑块加速度a');grid on; %下面黄金分割法求滑块的速度与加速度最大值 epsilon=input('根据曲线初始区间已确定,请输入计算精度epsilon(如输入 0.001):'); a=0;b=0.04; %初始区间 n1=0; %n1用于计算次数 a1=b-0.618*(b-a);y1=-R.*omiga.*sin(omiga.*a1) +R.*omiga.*cos(omiga.*a1).*tan(alpha1); a2=a+0.618*(b-a);y2=-R.*omiga.*sin(omiga.*a2) +R.*omiga.*cos(omiga.*a2).*tan(alpha1); while abs(a-b)>=epsilon if y1<=y2

相关文档
最新文档