液压传动基础知识

液压传动基础知识
液压传动基础知识

第一章液压传动基础

流体传动包括液体传动和气体传动,本章仅介绍液体传动的基本知识。为了分析液体的静力学、运动学和动力学规律,需了解液体的以下特性:

连续性假设:流体是一种连续介质,这样就可以把油液的运动参数看作是时间和空间的连续函数,并有可能利用解析数学来描述它的运动规律。.

不抗拉:由于油液分子与分子间的内聚力极小,几乎不能抵抗任何拉力而只能承受较大的压应力,不能抵抗剪切变形而只能对变形速度呈现阻力。

易流性:不管作用的剪力怎样微小,油液总会发生连续的变形,这就是油液的易流性,它使得油液本身不能保持一定的形状,只能呈现所处容器的形状。

均质性:其密度是均匀的,物理特性是相同的。

第一节液压传动工作介质

液压传动最常用的工作介质是液压油,此外,还有乳化型传动液和合成型传动液等,此处仅介绍几个常用的液压传动工作介质的性质。

一、液压传动工作介质的性质

1.密度

单位体积液体的质量称为液体的密度。体积为V,质量为m的液体的密度为

矿物油型液压油的密度随温度的上升而有所减小,随压力的提高而稍有增加,但变动值很小,可以认为是常值。我国采用摄氏20度时的密度作为油液的标准密度。

2.可压缩性

压力为p0、体积为V0的液体,如压力增大时,体积减小,则此液体的可压缩性可用体积压,即单位压力变化

下的体积相对变化量来表示缩系数

由于压力增大时液体的体积减小,因此上式右边须加一负号,以使成为正值。液体体积压缩系数的。1/=倒数,称为体积弹性模量K,简称体积模量。即K

3.粘性1)粘性的定义

时,分子间的内聚力要阻止分子相对运动而产生的一种内摩擦)或有流动趋势(液体在外力作用下流动

力,这种现象叫做液体的粘性。液体只有在流动(或有流动趋势)时才会呈现出粘性,静止液体是不呈现粘性的。

粘性使流动液体内部各处的速度不相等,以图1-2为例,若两平行平板间充满液体,下平板不动,而上平板以速度向右平动。由于液体的粘性作用,紧靠下平板和上平板的液体层速度分别为零和。通过实验测定得出,液体流动时

相邻液层间的内摩擦力Ft,与液层接触面积A、液层间的速度梯度成正比,即

为比例常数,称为粘性系数或粘度。如以表示切应力,即单位面积上的内摩擦力,则式中:

这就是牛顿的液体内摩擦定律。

2)粘性的度量

/),,以前沿用的单位为P(泊,dyne·s秒(1)动力粘度:又称绝对粘度,单位为Pa·s(帕·)厘泊)。1Pa·cP(s=10P=

;即运动粘度:液体的动力粘度与其密度的比值,称为液体的运动粘度(2)

=cSt(厘斯= St))单位为。以前沿用的单位为St(斯。液压传动工作介质,1

计)的中心值来划分的,如某一种牌号L-HL22以的粘度等级是以40时运动粘度(普通液40 时运动粘度的中心值为压油在22。

液体的粘度随液体的压力和温度而变。对液压传动工作介质来说,压力增大时,粘度增大。在一般液压系统使用的压力范围内,增大的数值很小,可以忽略不计。但液压传动工作介质的粘度对温度的变化十分敏感,温度升高,粘度下降。这个变化率的大小直接影响液压传动工作介质的使用,其重要性不亚于粘度本身。

4.其它性质

液压传动工作介质还有其它些性质,如稳定性(热稳定性、氧化稳定性、水解稳定性、剪切稳定性等)、抗泡沫性、抗乳化性、防锈性、润滑性以及相容性(对所接触的金属、密封材料、涂料等作用程度)等,它们对工作介质的选择和使用有重要影响。这些性质需要在精炼的矿物油中加入各种添加剂来获得,其含义较为明显,不多作解释,可参阅有关资料。

二、对液压传动工作介质的要求

不同的工作机械、不同的使用情况对液压传动工作介质的要求有很大的不同;为了很好地传递运动和动力,液压传动工作介质应具备如下性能:

1)合适的粘度,较好的粘温特性。

2)润滑性能好。

3)质地纯净,杂质少。

4)对金属和密封件有良好的相容性。

5)对热、氧化、水解和剪切都有良好的稳定性。

6)抗泡沫好,抗乳化性好,腐蚀性小,防锈性好。

7)体积膨胀系数小,比热容大。

8)流动点和凝固点低,闪点(明火能使油面上油蒸气闪燃,但油本身不燃烧时的温度)和燃点高。

9)对人体无害,成本低。

对轧钢机、压铸机、挤压机和飞机等液压系统则须突出耐高温、热稳定、不腐蚀、无毒、不挥发、防火等项要求。

三、工作介质的分类和选择

1.分类

液压系统工作介质的品种以其代号和后面的数字组成,代号为L是石油产品的总分类号,H表示液压系统用的工作介质,数字表示该工作介质的粘度等级。

2.工作介质的选用原则

选择液压系统的工作介质一般需考虑以下几点:

)液压系统的工作条件1(.

(2)液压系统的工作环境

(3)综合经济分析

四、液压系统的污染控制

工作介质的污染是液压系统发生故障的主要原因。它严重影响液压系统的可靠性及液压元件的寿命,因此工作介质的正确使用、管理以及污染控制,是提高液压系统的可靠性及延长液压元件使用寿命的重要手段。

1.污染的根源

进入工作介质的固体污染物有四个根源:已被污染的新油、残留污染、侵入污染和内部生成污染。

2.污染的的危害

液压系统的故障75%以上是由工作介质污染物造成的。

3.污染的测定

污染度测定方法有测重法和颗粒计数法两种。

4.污染度的等级

我国制定的国家标准GB/T14039-93《液压系统工作介质固体颗粒污染等级代号》和目前仍被采用的美国NASl638

油液污染度等级。

5.工作介质的污染控制

工作介质污染的原因很复杂,工作介质自身又在不断产生污染物,因此要彻底解决工作介质的污染问题是很困难的。为了延长液压元件的寿命,保证液压系统可靠地工作,将工作介质的污染度控制在某一限度内是较为切实可行的办法. 为了减少工作介质的污染,应采取如下一些措施:

(1)对元件和系统进行清洗,才能正式运转。

(2)防止污染物从外界侵入。

(3)在液压系统合适部位设置合适的过滤器。

(4)控制工作介质的温度,工作介质温度过高会加速其氧化变质,产生各种生成物,缩短它的使用期限。

(5)定期检查和更换工作介质,定期对液压系统的工作介质进行抽样检查,分析其污染度,如已不合要求,必须立即更换。更换新的工作介质前,必须对整个液压系统彻底清洗一遍。.第二液体静力

液体静力学主要是讨论液体静止时的平衡规律以及这些规律的应用。液体静止指的是液体内部质点间没有相对运动,不呈现粘性而言,至于盛装液体的容器,不论它是静止的或是匀速、匀加速运动都没有关系。

一、液体静压力及其特性

作用在液体上的力有两种,即质量力和表面力。单位质量液体受到的质量力称为单位质量力,在数值上就等于加速度。表面力是由与流体相接触的其它物体(如容器或其它液体)作用在液体上的力,这是外力;液体静止指的是液体内部质点间没有相对运动,不呈现粘性而言,至于盛装液体的容器,不论它是静止的或是匀速、匀加速运动都没有关系。也可以是一部分液体作用在另一部分液体上的力,这是内力。单位面积上作用的表面力称为应力,它有法向应力和切向应力之分。当液体静止时,液体质点间没有相对运动,不存在摩擦力,所以静止液体的表面力只有法向力。液体内某点处单位面积上所受到的法向力之比,,即 )叫做压力 (静压力

如果法向力F,均匀地作用于面积A上,则压力可表示为

液体的静压力具有两个重要特性:

1)液体静压力的方向总是作用面的内法线方向。

2)静止液体内任一点的液体静压力在各个方向上都相等。

二、液体静压力基本方程

1.静压力基本方程式

所示1-4a在重力作用下的静止液体,其受力情况如图

图1-4 重力作用下的静止液体

则A点所受的压力为

式中,g为重力加速度,此表达式即为液体静压力的基本方程,由此式可知:

静止液体内任一点处的压力由两部分组成,一部分是液面上的压力,另(1)一

部分是的乘积。与该点离液面深度(2)同一容器中同一液体内的静压力随液体深度的增加而线性地增加。

(3)连通器内同一液体中深度相同的各点压力都相等。由压力相等的点组成的面称为等压面。重力作用下静止液体中的等压面是一个水平面。

2.静压力基本方程式的物理意义

图1-5为盛有液体的密闭容器,液面压力为,选则一基本水平面ox,根据静压力基本方程式可以确定距液面深度h处A点的压力p,即

这是液体静压力基本方程式的另一种形式。其中表示A 点的单位质量液体的位能;表示A点的单位质量液体的压力能。

上述表达式说明了静止液体中单位质量液体的压力能和位能可以互相转换,但各点的总能量却保持不变,即能量守恒,这就是静压力基本方程式中包含的物理意义。

三、压力的表示方法及单位

1.压力的表示方法

压力的表示方法有两种:一种是以绝对真空作为基准所表示的压力,称为绝对压力;另一种是以大气压力作为基准所表示的压力,称为相对压力。由于大多数测压仪表所测得的压力都是相对压力,故相对压

力也称表压力。

绝对压力与相对压力的关系为:

绝对压力=相对压力+大气压力

绝对压力小于大气压时, 负相对压力数值部分叫做真空度。即

真空度=大气压-绝对压力=-(绝对压力-大气压)

由此可知,当以大气压为基准计算压力时,基准以上的正值是表压力,基准以下的负值就是真空度。绝对压力、相对压力和真空度的相互关系如图1-6所示。

2.压力的单位:

,符号为,工程上常用兆帕这个单位来表示压力,单位称为帕斯卡(帕)法定压力(ISO)

在工程上采用工程大气压,也采用水柱高或汞柱高度等,在液压技术中,目前还采用的压力单位有巴,符号为

压力的单位及其它非法定计量单位的换算关系为:

=) 工程大气压1at(

(米水柱)

(毫米汞柱)

四、帕斯卡原理

在密闭容器内,施加于静止液体上的压力将以等值同时传到各点。这就是静压传递原理或称帕斯卡原

理。液压系统中的压力是由外界负载决定的。

五、液体静压力对固体壁面的作用力

静止液体和固体壁面相接触时,固体壁面上各点在某一方向上所受静压作用力的总和,便是液体在该方向上作用于固体壁面上的力。在液压传动计算中质量力可以忽略,静压力处处相等,所以可认为作用于固体壁面上的压力是均匀分布的。

当固体壁面是曲面时,作用在曲面各点的液体静压力是不平行的,曲面上液压作用力在某一方向上的分力等于液体静

压力和曲面在该方向的垂直面内投影面积的乘积。

第三节液体动力学

本节主要讲授三个基本方程:流量连续性方程、伯努利方程和动量方程

一、基本概念

l.理想液体、定常流动和一维流动

理想液体:既无粘性又不可压缩的液体。

定常流动:液体流动时,若液体中任何一点的压力、速度和密度都不随时间而变化,则这种流动就称为定常流动(恒定流动或非时变流动)。

非定常流动:只要压力、速度和密度中有一个随时间而变化,液体就是作非定常流动(非恒定流动或时变流动)。

一维流动:当液体整个地作线形流动时,称为一维流动,当作平面或空间流动时,称为二维或三维

流动。

2.迹线、流线、流束和通流截面

迹线:是流动液体的某一质点在某一时间间隔内在空间的运动轨迹。

流线:是表示某一瞬时液流中各处质点运动状态的一条条曲线,在此瞬时,流线上各质点速度方向与该线相切。

在非定常流动时,由于各点速度可能随时间变化,因此流线形状也可能随时间而变化。在定常流动时,流线不随时间而变化,这样流线就与迹线重合。由于流动液体中任一质点在其一瞬时只能有一个速度,所以流线之间不可能相交,也不可能突然转折,流线只能是一条光滑的曲线。

流管:在液体的流动空间中任意画一不属流线的封闭曲线,沿经过此封闭曲线上的每一点作流线,由这些流线组合的表面称为流管。

液压传动基础知识

1章液压传动基础知识 1、液压油的密度随温度的上升而,随压力的提高而。 2、在液压系统中,通常认为液压油是不可被压缩的。() 3、液体只有在流动时才会呈现出,静止液体是粘性的。 4、液体的黏度是指它在单位速度梯度下流动时单位面积上产生的。 5、液压油压力增大时,粘度。温度升高,粘度。 6、进入工作介质的固体污染物有四个主要根源,分别 是、、和。 7、静止液体是指液体间没有相对运动,而与盛装液体的容器的运动状态无关。 8、液体的静压力具有哪两个重要的特性? 9、液体静压力的基本方程是p=p +ρgh,它说明了什么?(如何看待液体静压力基本 方程?) 10、液体静压力基本方程所包含的物理意义是:静止液体中单位质量液体的 和可以互相转换,但各点的总能量却保持不变,即。 11、液体中某点的绝对压力是,大气压为 Mpa,则该点的真空度为 Mpa,相对压力 Mpa 12、帕斯卡原理是在密闭容器中,施加于静止液体上的压力将同时传到各点。 13、液压系统中的压力是由决定的。 14、流量单位的换算关系:1m3/s=( )L/min A 60 B 600 C 6×104 D 1000 15、既无粘性又不可被压缩的液体称为。 16、液体流动时,若液体中任何一点的压力、速度和密度都不随时间而变化,则这 种流动称为。 A 二维流动 B 时变流动 C 非定常流动 D 恒定流动 17、单位时间内通过某通流截面的液体的体积称为。A 流量B 排量C 流速D 质量

18、在液压传动中,能量损失主要表现为损失。A 质量B 泄露C 速度 D 压力 19、压力损失主要有压力损失和压力损失两类。液体在等直径管中流动时, 产生压力损失;在变直径、弯管中流动时,产生压力损失。20、液体在管道中流动时有两种流动状态,即和,前者力 起主导作用;后者力起主导作用。液体的流动状态可用来判别。 21、当小孔的通流长度l与孔径d之比l/d≤时称之为小孔。 22、小孔的长径比l/d>4时称之为小孔。 23、在液体流动中,因某点处的压力低于空气分离压而产生气泡的现象,称之为。 25、在液压系统中,由于某种原因,液体压力在一瞬间突然升高,产生很高的压力 峰值,这种现象称为。 26、小孔的类型有三种:薄壁小孔、细长小孔、短孔,三种小孔的流量公式 为。 27、作用在液压缸活塞上的压力越大,活塞运动的速度越快。() 28、在液压传动中,工作液体不起作用。 A 升温 B传递动力 C 传递速度 D 润滑液压元件 29、如图所示圆管,管中液体有左向右流动,已知管中通流断面的直径分别为 d 1=200mm,d 2 =100mm,通过通流断面1的平均流速v 1 =1.5m/s,求流量是多少?通过 通流断面2的平均流速是多少?

(完整版)液压传动基础知识试题及答案

测试题(液压传动) 姓名:得分: 一、填空题(每空2分,共30分) 1.液压系统中的压力取决于(),执行元件的运动速度取决于()。 2.液压传动装置由()、()、()和()四部分组成,其中()和()为能量转换装置。 3.仅允许油液按一个方向流动而反方向截止的液压元件称为()。 4.溢流阀为()压力控制,阀口常(),先导阀弹簧腔的泄漏油与阀的出口相通。定值减压阀为()压力控制,阀口常(),先导阀弹簧腔的泄漏油必须单独引回油箱。 5.为了便于检修,蓄能器与管路之间应安装(),为了防止液压泵停车或泄载时蓄能器内的压力油倒流,蓄能器与液压泵之间应安装()。 二、选择题(每题2分,共10分) 1.将发动机输入的机械能转换为液体的压力能的液压元件是()。 A.液压泵 B.液压马达 C.液压缸 D.控制阀 2.溢流阀一般是安装在()的出口处,起稳压、安全等作用。 A.液压缸 B.液压泵 C.换向阀 D.油箱。 3.液压泵的实际流量是()。 A.泵的理论流量和损失流量之和 B.由排量和转速算出的流量 C.泵的理论流量和损失流量的差值 D.实际到达执行机构的流量 4.泵常用的压力中,()是随外负载变化而变化的。 A.泵的输出压力 B.泵的最高压力 C.泵的额定压力 5.流量控制阀使用来控制液压系统工作的流量,从而控制执行元件的()。 A.运动方向 B.运动速度 C.压力大小 三、判断题(共20分) 1.液压缸活塞运动速度只取决于输入流量的大小,与压力无关。()

2.流量可改变的液压泵称为变量泵。() 3.定量泵是指输出流量不随泵的输出压力改变的泵。() 4.当液压泵的进、出口压力差为零时,泵输出的流量即为理论流量。() 5.滑阀为间隙密封,锥阀为线密封,后者不仅密封性能好而且开启时无死区。()6.节流阀和调速阀都是用来调节流量及稳定流量的流量控制阀。() 7.单向阀可以用来作背压阀。() 8.同一规格的电磁换向阀机能不同,可靠换向的最大压力和最大流量不同。()9.因电磁吸力有限,对液动力较大的大流量换向阀则应选用液动换向阀或电液换向阀。() 10.因液控单向阀关闭时密封性能好,故常用在保压回路和锁紧回路中。() 四、问答题(共40分) 1、说明液压泵工作的必要条件?(15分) 2、在实际的维护检修工作中,应该注意些什么?(25分)

液压传动基本知识.(DOC)

第一讲 液压传动基础知识 一、 什么是液压传动? 定义:利用密闭系统中的压力液体实现能量传递和转换的传动叫液压传动。液压传动以液体为工作介质,在液压泵中将机械能转换为液压能,在液压缸(立柱、千斤顶)或液压马达中将液压能又转换为机械能。 二、液压传动系统由哪几部分组成? 液压传动系统由液压动力源、液压执行元件、液压控制元件、液压辅助元件和工作液体组成。 三、液压传动最基本的技术参数: 1、压力:也叫压强,沿用物理学静压力的定义。静压力:静止液体中单位承压面积上所受作用力的大小。 单位:工程单位 kgf/cm 2 法定单位:1 MPa (兆帕)= 106 Pa (帕) 1 MPa (兆帕)≈10 kgf/cm 2 2、流量:单位时间内流过管道某一截面的液体的体积。 单位:工程单位:L / min ( 升/ 分钟 ) 法定单位:m 3 / s 四、职能符号: 定义:在液压系统中,采用一定的图形符号来简便、清楚地表达各种元件和管道,这种图形符号称为职能符号。 作用:表达元件的作用、原理,用职能符号绘制的液压系统图简便直观;但不能反映元件的结构。如图: 操纵阀双向锁 YDF-42/200(G) 截止阀 过滤器 安全阀 千斤顶液控单向阀 五、常用密封件: 1.O 形圈: 常用标记方法: 公称外径(mm ) 截面直径 (mm ) 2.挡圈(O 形圈用): 3.常用标记方法: 挡圈 A D × d × a

A型(切口式); D外径(mm);d内径(mm);a厚度(mm) 第二讲控制阀;液控单向阀;单向锁 一、控制阀: 1.定义:在液压传动系统中,对传动液体的压力、流量或方向进行调节和控制的液压元件统称为控制阀。 2.分类:根据阀在液压系统中的作用不同分为三类: 压力控制阀:如安全阀、溢流阀 流量控制阀:如节流阀 方向控制阀:如操纵阀液控单向阀双向锁 3.对阀的基本要求: (1)工作压力和流量应与系统相适应; (2)动作准确,灵敏可靠,工作平稳,无冲击和振动现象; (3)密封性能好,泄漏量小; (4)结构简单,制作方便,通用性大。 二、液控单向阀结构与原理: 1.定义:在支架液压系统中用以闭锁液压缸中的液体,使之承载的控制元件为液控单向阀。一般单向阀只能使工作液一个方向流动,不能逆流,而液控单向阀可以由液压控制打开单向阀,使工作液逆流。 2. 3. 作用(以立柱液控单向阀为例): ①升柱:把操纵阀打到升柱位置,高压液打开液控单向阀阀芯向立柱下腔供液,立柱活塞杆伸出。 ②承载:升到要求高度时继续供液3~5s后停止供液,此时液控单向阀在立柱下腔高压液体的压力作用下,阀芯关闭,闭锁立柱下腔中的液体,阻止立柱下腔的液体回流,使立柱承载。 ③降柱:把操纵阀打向降柱位置,从操作阀过来的高压液一路通向立柱上腔,一路打开液控阀阀芯,沟通立柱下腔回路,立柱下降。 4. 规格型号:

液压传动基础知识含答案

一.填空题: 1.液压油的主要物理性质有(密度)、(闪火点)、(粘度)、(可压缩性),液压油选择时, 最主要考虑的是油液的(粘度)。 2.液体受压力作用而发生的性质称为液体的可压缩性,当液压油中混有空气时,其抗压缩 能力将(降低)。 3.液压油的常见粘性指标有(运动)粘度、(动力)粘度、和(相对)粘度,其中表示液 压油牌号的是(运动)粘度,其单位是(厘斯)。 4.我国油液牌号以( 40℃)时油液的平均(运动)黏度的(cSt)数表示。 5.我国采用的相对粘度是(恩氏粘度),它是用(恩氏粘度计)测量的。 6.油的粘性易受温度影响,温度上升,(粘度)降低,造成(泄漏)、磨损增加、效率降低 等问题;温度下降,(粘度)增加,造成(流动)困难及泵转动不易等问题。 7.液压传动对油温变化比较敏感,一般工作温度在(15)~(60)℃范围内比较合适。 8.液压油四个主要的污染根源是(已被污染的新油)、(残留)污染、(侵入性)污染和(内 部生成)污染。 9.流体动力学三大方程分别为(连续性方程)、(伯努利方程)和(动量方程)。 10.在研究流动液体时,把假设既(无粘性)又(不可压缩)的液体称为理想流体。 11.绝对压力等于大气压力+(相对压力),真空度等于大气压力-(绝对压力)。 12.根据液流连续性原理,同一管道中各个截面的平均流速与过流断面面积成反比,管子细 的地方流速(大),管子粗的地方流速(小)。 13.理想液体的伯努利方程的物理意义为:在管内作稳定流动的理想液体具有(比压能)、 (比位能)和(比动能)三种形式的能量,在任意截面上这三种能量都可以(相互转化),但总和为一定值。 14.在横截面不等的管道中,横截面小的部分液体的流速(大),液体的压力(小)。 15.液体的流态分为(层流)和(紊流),判别流态的准则是(雷诺数)。 16.由于流体具有(粘性),液流在管道中流动需要损耗一部分能量,它由(沿程压力)损 失和(局部压力)损失两部分组成。 17.孔口流动可分为(薄壁)小孔流动和(细长)小孔流动,其中(细长)小孔流动的流量受 (温度)影响明显。 18.液流流经薄壁小孔的流量与(小孔通流面积)的一次方成正比,与(压力差)的1/2 次方成正比。通过小孔的流量对(温度)不敏感,因此薄壁小孔常用作可调节流阀。19.通过固定平行平板缝隙的流量与(压力差)一次方成正比,与(缝隙值)的三次方成正 比,这说明液压元件内的(间隙)的大小对其泄漏量的影响非常大。 20.为防止产生(空穴),液压泵距离油箱液面不能太高。 21.在液压系统中,由于某些原因使液体压力突然急剧上升,形成很高的压力峰值,这种现 象称为(液压冲击)。 二.判断题: 1.液压油具有粘性,用粘度作为衡量流体粘性的指标。(√) 2.标号为N32的液压油是指这种油在温度为40℃时,其运动粘度的平均值为32mm2/s。(√) 3.空气的粘度主要受温度变化的影响,温度增高,粘度变小。(√) 4.液压油的密度随压力增加而加大,随温度升高而减小,但一般情况下,由压力和温度引起的这种变化较小,可以忽略不计。(√) 5.液压系统对液压油粘性和粘温特性的要求不高。(×) 6.粘度指数越高,说明粘度随温度变化越小。(√)

液压传动基础知识

第一章液压传动基础 流体传动包括液体传动和气体传动,本章仅介绍液体传动的基本知识。为了分析液体的静力学、运动学和动力学规律,需了解液体的以下特性:

连续性假设:流体是一种连续介质,这样就可以把油液的运动参数看作是时间和空间的连续函数,并有可能利用解析数学来描述它的运动规律。. 不抗拉:由于油液分子与分子间的内聚力极小,几乎不能抵抗任何拉力而只能承受较大的压应力,不能抵抗剪切变形而只能对变形速度呈现阻力。 易流性:不管作用的剪力怎样微小,油液总会发生连续的变形,这就是油液的易流性,它使得油液本身不能保持一定的形状,只能呈现所处容器的形状。 均质性:其密度是均匀的,物理特性是相同的。 第一节液压传动工作介质 液压传动最常用的工作介质是液压油,此外,还有乳化型传动液和合成型传动液等,此处仅介绍几个常用的液压传动工作介质的性质。 一、液压传动工作介质的性质 1.密度 单位体积液体的质量称为液体的密度。体积为V,质量为m的液体的密度为 矿物油型液压油的密度随温度的上升而有所减小,随压力的提高而稍有增加,但变动值很小,可以认为是常值。我国采用摄氏20度时的密度作为油液的标准密度。 2.可压缩性 压力为p0、体积为V0的液体,如压力增大时,体积减小,则此液体的可压缩性可用体积压,即单位压力变化 下的体积相对变化量来表示缩系数 由于压力增大时液体的体积减小,因此上式右边须加一负号,以使成为正值。液体体积压缩系数的。1/=倒数,称为体积弹性模量K,简称体积模量。即K 3.粘性1)粘性的定义 时,分子间的内聚力要阻止分子相对运动而产生的一种内摩擦)或有流动趋势(液体在外力作用下流动 力,这种现象叫做液体的粘性。液体只有在流动(或有流动趋势)时才会呈现出粘性,静止液体是不呈现粘性的。 粘性使流动液体内部各处的速度不相等,以图1-2为例,若两平行平板间充满液体,下平板不动,而上平板以速度向右平动。由于液体的粘性作用,紧靠下平板和上平板的液体层速度分别为零和。通过实验测定得出,液体流动时 相邻液层间的内摩擦力Ft,与液层接触面积A、液层间的速度梯度成正比,即 为比例常数,称为粘性系数或粘度。如以表示切应力,即单位面积上的内摩擦力,则式中: 这就是牛顿的液体内摩擦定律。 2)粘性的度量

第二章 液压传动基础知识

第二章液压传动基础知识 本章介绍有关液压传动的流体力学基础,重点为液体静压方程、连续性方程、伯努力方程的应用,压力损失、小孔流量的计算。要求学生理解基本概念、牢记公式并会应用。 第一节第一节液压油 液压油是液压传动系统中的传动介质,而且还对液压装置的机构、零件起这润滑、冷却和防锈作用。液压传动系统的压力、温度和流速在很大的范围内变化,因此液压油的质量优劣直接影响液压系统的工作性能。故此,合理的选用液压油也是很重要的。 1.1液压油的分类: 普通液压油 专用液压油 1、石油基液压油 抗磨液压油 高粘度指数液压油 石油基液压油是以石油地精炼物未基础,加入抗氧化或抗磨剂等混合而成的液压油,不同性能、不同品种、不同精度则加入不同的添加剂。 合成液压油——磷酸酯液压油 2、难燃液压油水——乙二醇液压油 含水液压油油包税乳化液 乳化液 水包油乳化油 1)石油基液压油这种液压油是以石油的精炼物为基础,加入各种为改进性 能的添加剂而成。添加剂有抗氧添加剂、油性添加剂、抗磨添加剂等。不同工作条件要求具有不同性能的液压油,不同品种的液压油是由于精制程度不同和加入不同的添加剂而成。 2)成添加剂磷酸脂液压油是难燃液压油之一。它的使用范围宽,可达-54~135℃。抗燃性好,氧化安定性和润滑性都很好。缺点是与多种密封材料的相容性很差,有一定的毒性。 3)—乙二醇液压油这种液体由水、乙二醇和添加剂组成,而蒸馏水占35%~55%,因而抗燃性好。这种液体的凝固点低,达-50℃,粘度指数高(130~170),为牛顿流体。缺点是能使油漆涂料变软。但对一般密封材料无影响。 4)乳化液乳化液属抗燃液压油,它由水、基础油和各种添加剂组成。分水包油乳化液和油包水乳化液,前者含水量达90%~95%,后者含水量大40%。 1.2液压油的物理特性 1、1、密度ρ ρ = m/V [kg/ m3] 一般矿物油的密度为850~950kg/m3 2、重度γ γ= G/V [N/ m3] 一般矿物油的重度为8400~9500N/m3 因G = mg 所以γ= G/V=ρg 3、液体的可压缩性 当液体受压力作用二体积减小的特性称为液体的可压缩性。 体积压缩系数β= - ▽V/▽pV0 ▽体积弹性模量K = 1 /β 4、4、流体的粘性 液体在外力作用下流动时,由于液体分子间的内聚力而产生一种阻碍液体分子之间进行相对运动的内摩擦力,液体的这种产生内摩擦力的性质称为液体的粘性。由于液体具有

液压传动基础知识.

第一章液压传动基础知识 一、填空题 1.液压传动是利用系统中的液体作为工作介质传递运动和动力的一种传动方式。 2.液压泵是利用密闭容积由小变大时,其内压力,密闭容积由大变小时,其内压力的原理而吸油和压油的。 3.液压系统由、、、和五部分组成。 4.液压泵是将原动机输入的转变为液体的的能量转换装置。它的功用是向液压系统。 5.液压缸是将液体的压力能转变为的能量转换装置;液压马达是将液体的压力能转变为的能量转换装置。 6.各种液压阀用以控制液压系统中液体的、和等,以保证执行机构完成预定的工作运动。 7.辅助装置包括油箱、油管、管接头、过滤器、压力表和流量计等,它们分别起、、、和 等作用。 8.目前液压技术正向着、、、、、 及液压与相结合的方向发展。 9.液体流动时,的性质,称为液体的粘性。 10.液体粘性用粘度表示。常用的粘度有、和。 11.液体的动力粘度μ与其密度ρ的比值称为,用符号表示,其国际单位为,常用单位为,两种单位之间的关系是。 12.将mL被测液体在θ°C时由恩氏粘度计小孔中流出所用的时间t1与mL 蒸馏水在°C时由同一小孔中流出所用的时间t2之比,称为该被测液体在 θ°C时的,用t2表示。 13.矿物油在15°C时的密度约为,水的密度为。 14.液体受压力作用而发生体积变化的性质,称为液体的。在或时,应考虑液体的可压缩性。 15.当液压系统的工作压力高,环境温度高或运动件速度较慢时,为了减少泄漏,宜选用粘度较的液压油;当工作压力低,环境温度低或运动件速度较快时,为了减小功率损失,宜采用粘度较的液压油。 16.液体为相对静止状态时,其单位面积上所受的法向压力,称为,用符号表示。其国际单位为,常用单位为,工程单位为,它们之间的关系为。

液压传动知识点复习总结

液压与气压传动知识点复习总结(很全) 一,基本慨念 1,液压传动装置由动力元件,控制元件,执行元件,辅助元件和工作介质(液 压油)组成 2,液压系统的压力取决于负载,而执行元件的速度取决于流量,压力和流量是 液压系统的两个重要参数 其功率N=PQ 3, 液体静压力的两个基本特性是:静压力沿作用面内法线方向且垂直于受压面; 液体中任一点压力大小与方位无关. 4,流体在金属圆管道中流动时有层流和紊流两种流态,可由临界雷诺数 (Re=2000~2200)判别,雷诺数(Re )其公式为Re=VD/υ,(其中D 为水力 直径), 圆管的水力直径为圆管的内经。 5,液体粘度随工作压力增加而增大,随温度增加减少;气体的粘度随温度上升而变 大, 而受压力影响小;运动粘度与动力粘度的关系式为ρ μν=, 6,流体在等直径管道中流动时有沿程压力损失和局部压力损失,其与流动速度 的平方成正比.22ρλv l d p =?, 2 2 v p ρξ=?. 层流时的损失可通过理论求得λ=64e R ;湍流时沿程损失其λ与Re 及管壁的粗糙度有关;局部阻力系数ξ由试 验确定。 7,忽略粘性和压缩性的流体称理想流体, 在重力场中理想流体定常流动的伯努利方程为γρυ++22 P h=C(常数),即液流任意截面的压力水头,速度水头和位置 水头的总和为定值,但可以相互转化。它是能量守恒定律在流体中的应用;小孔 流量公式q=C d A t ρp ?2,其与粘度基本无关;细长孔流量q=?l d μπ1284P 。平板缝隙流量q=p l bh ?μ123 ,其与间隙的 三次方成正比,与压力的一次与方成正比. 8,流体在管道流动时符合连续性原理,即2111V A V A =,其速度与管道过流面积成 反比.流体连续性原理是质量守衡定律在流体中的应用. 9,在重力场中,静压力基本方程为P=P gh O ρ+; 压力表示:.绝对压力=大气压力+表 压力; 真空度=大气压力-绝对压力. 1Mp=10pa 6,1bar=105pa. 10,流体动量定理是研究流体控制体积在外力作用下的动量改变,通常用来求流体

液压传动的基础知识的同步练习答案

液压传动的基础知识的同步练习答案(答案) 一、判断 1.液压传动装置本质上是一种能量转换装 置。(√) 2.液压传动具有承载能力大,可实现大围无级变速和获得恒定的传动比。(×)3.液压泵输出的压力和流量应等于液压缸等执行元件的工作压力和流量。(×) 4.液压传动中,作用在活塞上的推力越大,活塞运动的速度越快。 (×) 5.油液在无分支管路中稳定流动时,管路截面积大的地方流量大,截面积小的地方流量小。(×) 6.液压系统中某处有几个负载并联时,压力的大小取决于克服负载的各个压力值中的最小 值 (√) 7.习题图1-1所示的充满油液的固定密封装置中,甲、乙两个用大小相等的力分别从两端去推原来静止的光滑活塞,那么两活塞将向右运动。(√)

a)b) 习题图1-1 习题图1-2 8.习题图1-2两系统油缸尺寸相同,活塞匀速运动,不计损失,试判断下列概念: (1)图b活塞上的推力是图a活塞上推力的两倍; (√ ) (2)图b活塞上的运动速度是图a活塞运动速度的两倍;(×) (3)图b缸输出的功率是图a缸输出功率的两倍; (√ ) (4)若考虑损失,图b缸压力油的泄漏量大于a缸压力油的泄漏量。(√ ) 9.实际的液压传动系统中的压力损失以局部损失为主。 (√ )

10.驱动液泵的电动机所需功率应比液压泵的输出功率大。 (√ ) 11.液压传动系统的泄漏必然引起压力损失。 (√) 12.油液的粘度随温度而变化。低温时油液粘度增大,液阻增大,压力损失增大;高温时粘度减小,油液变稀,泄漏增加,流量损失增加。(√) 二、选择 1.液压系统的执行元件是(C )。 A.电动机B.液压泵 C.液压缸或液压马达D.液压阀 2.液压系统中液压泵属( A )。 A.动力部分B.执行部分 C.控制部分D.辅助部分 3.液压传动的特点有( B ) A.可与其他传动方式联用,但不易实现远距离操纵和自动控制B.可以在较大的速度围实现无级变速

液压传动基础知识

液压传动基础知识 Revised by Jack on December 14,2020

1章液压传动基础知识 1、液压油的密度随温度的上升而,随压力的提高而。 2、在液压系统中,通常认为液压油是不可被压缩的。() 3、液体只有在流动时才会呈现出,静止液体是粘性的。 4、液体的黏度是指它在单位速度梯度下流动时单位面积上产生的。 5、液压油压力增大时,粘度。温度升高,粘度。 6、进入工作介质的固体污染物有四个主要根源,分别是、、 和。 7、静止液体是指液体间没有相对运动,而与盛装液体的容器的运动状态无关。 8、液体的静压力具有哪两个重要的特性 9、液体静压力的基本方程是p=p0+ρgh,它说明了什么(如何看待液体静压力基本方程) 10、液体静压力基本方程所包含的物理意义是:静止液体中单位质量液体的和 可以互相转换,但各点的总能量却保持不变,即。 11、液体中某点的绝对压力是,大气压为 Mpa,则该点的真空度为 Mpa,相对压力Mpa 12、帕斯卡原理是在密闭容器中,施加于静止液体上的压力将同时传到各点。 13、液压系统中的压力是由决定的。 14、流量单位的换算关系:1m3/s=( )L/min A 60 B 600 C 6×104 D 1000 15、既无粘性又不可被压缩的液体称为。 16、液体流动时,若液体中任何一点的压力、速度和密度都不随时间而变化,则这种流 动称为。 A 二维流动 B 时变流动 C 非定常流动 D 恒定流动 17、单位时间内通过某通流截面的液体的体积称为。A 流量B 排量C 流速D 质量 18、在液压传动中,能量损失主要表现为损失。A 质量B 泄露C 速度 D 压力 19、压力损失主要有压力损失和压力损失两类。液体在等直径管中流动时, 产生压力损失;在变直径、弯管中流动时,产生压力损失。

第二章 液压传动基础知识.

第2章液压流体力学基础 本章介绍有关液压传动的流体力学基础知识,包括液体静力学方程、连续性方程、伯努利方程、动量方程的应用,压力损失、小孔流量的计算以及压力冲击现象等。 2.1 液体静力学 液压传动是以液体作为工作介质进行能量传递的,因此要研究液体处于相对平衡状态下的力学规律及其实际应用。所谓相对平衡是指液体内部各质点间没有相对运动,至于液体本身完全可以和容器一起如同刚体一样做各种运动。因此,液体在相对平衡状态下不呈现粘性,不存在切应力,只有法向的压应力,即静压力。本节主要讨论液体的平衡规律和压强分布规律以及液体对物体壁面的作用力。 2.1.1 液体静压力及其特性 作用在液体上的力有两种类型:一种是质量力,另一种是表面力。 质量力作用在液体所有质点上,它的大小与质量成正比,属于这种力的有重力、惯性力等。单位质量液体受到的质量力称为单位质量力,在数值上等于重力加速度。 表面力作用于所研究液体的表面上,如法向力、切向力。表面力可以是其他物体(例如活塞、大气层)作用在液体上的力;也可以是一部分液体间作用在另一部分液体上的力。对于液体整体来说,其他物体作用在液体上的力属于外力,而液体间作用力属于内力。由于理想液体质点间的内聚力很小,液体不能抵抗拉力或切向力,即使是微小的拉力或切向力都会使液体发生流动。因为静止液体不存在质点间的相对运动,也就不存在拉力或切向力,所以静止液体只能承受压力。 所谓静压力是指静止液体单位面积上所受的法向力,用p表示。 液体内某质点处的法向力ΔF对其微小面积ΔA的极限称为压力p,即: p=limΔF/ΔA (2-1) ΔA→0 若法向力均匀地作用在面积A上,则压力表示为: p=F/A (2-2) 式中:A为液体有效作用面积;F为液体有效作用面积A上所受的法向力。 静压力具有下述两个重要特征: (1)液体静压力垂直于作用面,其方向与该面的内法线方向一致。 (2)静止液体中,任何一点所受到的各方向的静压力都相等。 2.1.2 液体静力学方程 图2-1静压力的分布规律 静止液体内部受力情况可用图2-1来说明。设容器中装满液体,在任意一点A处取一微小面积dA,该点距液面深度为h,距坐标原点高度为Z,容器液平面距坐标原点为Z0。为了

相关文档
最新文档