厌氧污水处理

厌氧污水处理
厌氧污水处理

厌氧污水处理

原理

在厌氧处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨等。在此过程中,不同微生物的代谢过程相互影响,相互制约,形成了复杂的生态系统。对高分子有机物的厌氧过程的叙述,有助于我们了解这一过程的基本内容。高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。

水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。

高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用。它们在第一阶段被细菌胞外酶分解为小分子。例如,纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶分解为麦芽糖和葡萄糖,蛋白质被蛋白质酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。水解过程通常较缓慢,因此被认为是含高分子有机物或悬浮物废液厌氧降解的限速阶段。多种因素如温度、有机物的组成、水解产物的浓度等可能影响水解的速度与水解的程度。水解速度的可由以下动力学方程加以描述:ρ=ρo/(1+Kh.T)

ρ——可降解的非溶解性底物浓度(g/L);

ρo———非溶解性底物的初始浓度(g/L);

Kh——水解常数(d^-1);

T——停留时间(d)

发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。

600在这一阶段,上述小分子的化合物发酵细菌(即酸化菌)的细胞内转化为更为简单的化合物并分泌到细胞外。发酵细菌绝大多数是严格厌氧菌,但通常有约1%的兼性厌氧菌存在于厌氧环境中,这些兼性厌氧菌能够起到保护像甲烷菌这样的严格厌氧菌免受氧的损害与抑制。这一阶段的主要产物有挥发性脂肪酸、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等,产物的组成取决于厌氧降解的条件、底物种类和参与酸化的微生物种群。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此,未酸化废水厌氧处理时产生更多的剩余污泥。

在厌氧降解过程中,酸化细菌对酸的耐受力必须加以考虑。酸化过程pH下降到4时能可以进行。但是产甲烷过程pH值的范围在6.5~7.5之间,因此pH值的下降将会减少甲烷的生成和氢的消耗,并进一步引起酸化末端产物组成的改变。

在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。

其某些反应式如下:

CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG’0=-4.2KJ/MOL

CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG’0=9.6KJ/MOL

CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG’0=48.1KJ/MOL

CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG’0=76.1KJ/MOL

4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG’0=-2.9KJ/MOL

2HCO3-+4H2+H+->CH3COO-+4H2O ΔG’0=-70.3KJ/MOL

这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。

甲烷细菌将乙酸、乙酸盐、二氧化碳和氢气等转化为甲烷的过程有两种生理上不同的产甲烷菌完成,一组把氢和二氧化碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产生甲烷,前者约占总量的1/3,后者约占2/3。

最主要的产甲烷过程反应有:

CH3COO-+H2O->CH4+HCO3- ΔG’0=-31.0KJ/MOL

HCO3-+H++4H2->CH4+3H2O ΔG’0=-135.6KJ/MOL

4CH3OH->3CH4+CO2+2H2O ΔG’0=-312KJ/MOL

4HCOO-+2H+->CH4+CO2+2HCO3- ΔG’0=-32.9KJ/MOL

在甲烷的形成过程中,主要的中间产物是甲基辅酶M(CH3-S-CH2-SO3-)。

需要指出的是:一些书把厌氧消化过程分为三个阶段,把第一、第二阶段合成为一个阶段,称为水解酸化阶段。在这里我们则认为分为四个阶段能更清楚反应厌氧消化过程。

优势介绍

厌氧污水处理工艺的基建投资一般情况下比氧化沟和 SBR 工艺高,但随着规模的增大,氧化沟和 SBR 的基建费也成倍增加,而常规活性污泥法的投资则以较小的比例增加,两者的差距越来越小。当污水厂达到一定规模后,常规活性污泥法的投资比氧化沟与 SBR 还省,所以,污水厂规模越大,常规活性污泥法的优势就越大。常规活性污泥法、A/O和A2/O法的主要缺点是处理单元多,操作管理复杂,特别是污泥厌氧消化要求高水平的管理,消化过程产生的沼气是可燃易爆气体,更要求安全操作,这些都增加了管理的难度。但由于大型污水厂背靠大城市,技术力量强,管理水平较高,能满足这种要求,因而常规活性污泥法的缺点不会成为限制使用的因素。

与污水的好氧生物处理工艺相比,污水的厌氧生物处理工艺具有以下主要优点:

①大量降低能耗,而且还可以回收生物能(沼气);

厌氧生物处理工艺中没有为微生物提供氧气的鼓风曝气装置,可以降低大量的能耗。在大量去除有机物的同时,厌氧处理工艺还会伴有大量沼气产生。而沼气中的甲烷是一种可以燃烧的气体,具有很高的利用价值,可以直接用于锅炉燃烧或发电;

②污泥产量很低;

由于污水中大部分有机污染物在厌氧生物处理过程中被转化为沼气——甲烷和二氧化碳,而用于细胞合成的有机物相对较少;同时,微生物增殖速率好氧工艺要比厌氧高很多,产酸菌的产率Y为0.15~0.34kgVSS/kgCOD,产甲烷菌的产率Y为0.03kgVSS/kgCOD左右,而好氧微生物的产率约为0.25~0.6kgVSS/kgCOD。

③厌氧可以对好氧微生物不能降解的一些有机物进行降解或部分降解;因此,对于污水中含有难降解有机物质时,利用厌氧工艺进行处理后的效果更好一些,或者也可以将厌氧工艺作作为提高污水可生化性预处理工艺,为后续好氧处理工艺处理效果提供基础。

污水处理工艺

污水处理工艺 定义1 用各种方法将污水中所含的污染物分离出来或将其转化为无害物,从而使污水得到净 化的过程。应用学科:生态学(一级学科);污染生态学(二级学科) 定义2 采取物理的、化学的或生物的处理方法对污水进行净化的措施。应用学科:水利科技(一级学科);环境水利(二级学科);水污染防治(水利)(三级学科) 应用编辑 污水处理(sewage treatment,wastewater treatment):为使污水达到排入某一水体或 再次使用的水质要求,并对其进行净化的过程。污水处理被广泛应用于建筑、农业,交通、能源、石化、环保、城市景观、医疗、餐饮等各个领域,也越来越多地走进寻常百姓的日常生活。 工艺选择准则编辑 1)城市污水处理工艺应根据处理规模、水质特性、受纳水体的环境功能及当地的实际情况和要求,经全面技术经济比较后优选确定。 2)工艺选择的主要技术经济指标包括:处理单位水量投资、削减单位污染物投资、处 理单位水量电耗和成本、削减单位污染物电耗和成本、占地面积、运行性能可靠性、管理维 护难易程度、总体环境效益等。 3)应切合实际地确定污水进水水质,优化工艺设计参数。必须对污水的现状水质特性、 污染物构成进行详细调查或测定,作出合理的分析预测。在水质构成复杂或特殊时,应进行 污水处理工艺的动态试验,必要时应开展中试研究。 4)积极审慎地采用高效经济的新工艺。对在国内首次应用的新工艺,必须经过中试和生产性试验,提供可靠设计参数后再进行应用。 分类编辑 《水污染控制工程》分类

不溶态污染物的分离技术 1、重力沉降:沉砂池(平流、竖流、旋流、曝气)、沉淀池(平流、竖流、辐流、斜流); 2、混凝澄清; 3、浮力浮上法:隔油、气浮; 4、其他:阻力截留、离心力分离法、磁力分离法 污染物的生物化学转化技术: 1、活性污泥法:SBR、A/0、A/A/O、氧化沟等 2、生物膜法:生物滤池、生物转盘、生物接触氧化池等 3、厌氧生物处理法:厌氧消化、水解酸化池、UASB等 4、自然条件下的生物处理法:稳定塘、生态系统塘、土地处理法 污染物的化学转化技术: 1、中和法:酸碱中和 2、化学沉淀法:氢氧化物沉淀、铁氧体沉淀、其他化学沉淀 3、氧化还原法:药剂氧化法、药剂还原法、电化学法 4、化学物理消毒法:臭氧、紫外线、二氧化氯、氯气、次氯酸钠 溶解态污染物的物理化学分离技术: 1、吸附法 2、离子交换法 3、膜分离法:扩散渗析、电渗析、反渗透、超滤、纳滤、微滤 4、其他分离方法:吹脱和气提、萃取、蒸发、结晶、冷冻 根据常见污水处理方法分类 物理法:物理或机械的分离过程。过滤,沉淀,离心分离,上浮等 化学法:加入化学物质与污水中有害物质发生化学反应的转化过程。中和,氧化,还原, 分解,混凝,化学沉淀等 物理化学法:物理化学的分离过程。气提,吹脱,吸附,萃取,离子交换,电解电渗析,反渗透等 生物法:微生物在污水中对有机物进行氧化,分解的新陈代谢过程。活性污泥,生物滤池,生物转盘,氧化塘,厌气消化等 废水的化学方法分类 混凝 向胶状浑浊液中投加电解质,凝聚水中胶状物质,使之和水分开 混凝剂有硫酸铝,明矶,聚合氯化铝,硫酸亚铁,三氯化铁等

解析污水处理中的厌氧工艺

解析污水处理中的厌氧工艺 小众环保2018-01-03 10:39:35 厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。 高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。 (1)水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。 (2)发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。 (3)产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。 (4)甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。 酸化池中的反应是厌氧反应中的一段。 厌氧池是指没有溶解氧,也没有硝酸盐的反应池。缺氧池是指没有溶解氧但有硝酸盐的反应池。

酸化池---水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。工艺简单,易控制操作,可去除部分COD。目的提高可生化性; 厌氧池---水解、酸化、产乙酸、甲烷化同步进行。需要调节pH,不易操作控制,去除大部分COD。目的是去除COD。 缺氧池---有水解反应,在脱氮工艺中,其pH值升高。在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。也有水解反应提高可生化性的作用。 水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。一般不选用微孔曝气器作为池底的曝气器。

常见污水处理工艺对比

常见污水处理工艺对比 一、A/O工艺 1、基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。 2、A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1) 效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的

生活污水处理中的厌氧处理法6页

生活污水处理中的厌氧处理法目前,随着社会的发展,农村也早已不是数十年前的青山绿水,环境破坏严重,水污染泛滥,因此农村生活污水处理技术已经变得非常之重要。下面我们将对农村生活污水处理多级厌氧复合生态处理技术做详细讲解。该技术适用于分散户厨房、洗衣、洗澡等低浓度农村生活污水的处理,尤其适合有地势差异的分散户或2~5联户的农村生活污水处理。 一.基本原理 针对我国当前资金短缺、能源不足与污染日益严重的现状,厌氧处理技术是特别适合我国国情的一项技术。但因为单独的厌氧对氮、磷等营养元素基本上没有去除能力,污水中的氮、磷会使水体富营养化。同时单独的厌氧处理也不能很好地去除病菌,厌氧出水通常情况下不能达到国家的排放标准。因此,单独的厌氧处理还只能作为一种预处理,必须选择合适的后续处理单元。基于上述背景,针对独户或联户生活污水的处理,基本形成一套成熟的厌氧处理与生态床相结合的处理方法,简称无动力多级厌氧复合生态处理系统。 该系统主要由2~3格厌氧池和1格比表面积较大的砂砾石、细土等为基质的复合生态床组成,其中各池之间靠管道连通,污水在池内停留的时间为5~7天。生活污水经过厌氧处理,生活

污水中悬浮物可以沉淀,难降解有机污染物被厌氧微生物转化为小分子有机物。复合生态床表面可种植水生生物。 复合生态床除起到过滤作用外,有机物的床体还能够提高处理效果。一是植物的生长改变生态床的流态,生长的植物根系和茎杆对水流的阻碍作用有利于均匀布水,延长水力停留时间;二是植物的根系创造有利于各种微生物生长的微环境,植物根茎的延伸会在植物根系附近形成有利于硝化作用的好氧微区,同时在远离根系的厌氧区里含有大量可利用的碳源,这又提供了反硝化条件;三是植物生长对各种营养物尤其是硝酸盐氮具有吸收作用。 污水经厌氧“粗”处理后,后续“精”处理单元的负荷相对较小,这样可以节省生态床的占地面积,污水中的悬浮物经厌氧反应器处理后,大部分能被有效地去除,这样也可以防止生态床堵塞。因此,这种组合不但能有效地去除有机物,还能有效解决目前污水处理中难以做到的氮、磷皆能达标的难题。 二.技术流程 无动力多级厌氧复合生态处理系统工艺流程如下: 污水-污水收集系统(管道)-3格厌氧发酵处理池- 复合生态床工艺说明如下:

污水处理工艺及设备介绍

污水处理工艺及设备介 绍 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

常见的污水处理设备,大致可以分为污水预处理设备、污水生物处理设备、污泥处理设备。下面我们就污水处理设备在生活污水处理方面的工艺原理,给大家详细介绍下。 污水处理设备的工艺原理 YQZ-A0列一体化污水处理设备去除有机污染物及氨氮主要依赖于设备中的A0生物处理工艺。其中工作原理是在A级,由于污水有机物浓度很高,微生物处于缺气状态,此时微生物为兼性微生物,它们将污水中的有机氨转化分解为NH3-N,同时利用有机碳作为电子供体,将N0ˉ2-N、N0ˉ3-N转化为N2,而且还利用部分有机碳源和NH3-N合成新的细胞物质。所以A级池不仅具有一定的有机物去除功能,减轻后续好氧池的有机负荷,还有利于硝化作用的进行,而且依靠原水中存在的较高浓度有机物,完成反硝化作用,最终消除氮的富营养化污染。在0级,由于有机物浓度已大幅度降低,但仍有一定量的有机物及较高的NH3-N存在。为了使有机物得到进一步氧化分解,同时在碳化作用处于完成情况下硝化作用能顺利进行,在0级设置有机负荷较低的好氧生物接触氧化池。在0级池是主要存在好氧微生物及好氧型细菌(硝化菌)。其中好氧微生物将有机物分解成CO2和H2O;自养型细菌(硝化菌)利用有机物分解产生的无机碳或空气中的CO2作为营养源,将污水中的NHˉ3-N转化成Nˉ2-0N、Nˉ3-0N、0级池的出水部分回流到A级池,为A级池提供电子受体,通过反硝化作用最终消除氮污染。 污水处理设备的应用范围 1、处理水量:~h,大于(m3/h)时需另行设计。 2、适用范围:

污水处理厌氧部分

废水厌氧生物处理 生物处理原理 废水生物处理有“好氧生物”处理、“厌氧生物”处理或“好氧生物”加“厌氧生物”处理。“好氧生物处理”是指这类生物必须在有分子态氧气(02)的存在下,才能进行正常的 生理生化反应,主要包括大部分微生物、动物以及我们人类;“厌氧生物处理“是在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。 一、厌氧生物处理原理 废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件 下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH4 和C02 的过程。(一)厌氧生物处理中的基本生物过程——阶段性理论 1、两阶段理论: 20世纪30~60 年代,被普遍接受的是“两阶段理论” 第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、C02和H2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1)生长速率快,2)对环境条件的适应性(温度、pH 等)强。 第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段 的产物,并将其转化为CH4和C02;主要参与反应的微生物被统称为产甲烷菌 (Methane producing bacter);产甲烷细菌的主要特点是:1)生长速率慢,世代 时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。

不溶性有机物 2、三阶段理论 对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两 个过程,不能 真实反映厌氧反应过程的本质; 厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌( Archea ), 除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利 用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、 甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以 上的脂肪酸和甲醇以外的醇类; 上世纪70年代,Bryant 发现原来认为是一种被称为“奥氏产甲烷菌”的细 菌,实际上 是由两种细菌共同组成的,一种细菌首先把乙醇氧化为乙酸和 H2(— 种产氢产乙酸细菌),另一种细菌则利用H2和C02产生CH4 (—种真正意义上 的产甲烷细菌一一嗜氢产甲烷细菌);因而,Bryant 提出了厌氧消化过程的“三 阶段理论”: 水解胞外酶 酸性发 酵 阶 段 可溶性有机物 图1厌氧反应的两阶段理论图示 碱 性 发 酵 阶 段

常用生活污水处理工艺介绍及对比

几种常用生活污水处理工艺的比较 一、概述 生活污水处理工艺目前已相当成熟,其核心技术为活性污泥法和生物膜法,对活性污泥法(或生物膜法)的改进及发展形成了各种不同的生活污水处理工艺,传统的活性污泥法处理工艺在中小型生活污水处理已较少使用。根据污水的水量、水质和出水要求及当地的实际情况,选用合理的污水处理工艺,对污水处理的正常运行、处理费用具有决定性的作用。 本文主要对生活污水几种常用的处理工艺作简单介绍,包括氧化沟、序批式活性污泥法(SBR)、生物接触氧化法、曝气生物滤池(BAF)、A-0工艺、膜生物反应器(MBR)等。 二、中小型生活污水处理工艺简介 典型的生活污水处理完整工艺如下: 污水——前处理——生化法——二沉池——消毒——出水 | | ——-——污泥处理系统-- 前处理也称为预处理技术,常用的有格栅或格网、调节池、沉砂池、初沉池等。 由于生活污水处理的核心是生化部分,因此我们称污水处理工艺是特指这部分,如接触氧化法、SBR法、A/O法等。用生化法(包括厌氧和好氧)处理生活污水在目前是最经济、最适用的污水处理工艺,根据生活污水的水量、水质及现场的条件而选择不同的污水处理工艺对投资及运行成本具有决定性的影响。下面就目前常用的生活污水处理工艺作一简介。 1、氧化沟工艺 氧化沟是活性污泥法的一种变形,其池体狭长,故称为氧化沟。氧化沟有多种构造型式,典型的有:A:卡罗塞式;B:奥巴尔型;C:交替工作式氧化沟;D:曝气—沉淀一体化氧化沟 氧化沟技术已广泛应用于大中型城市污水处理厂,其规模从每日几百立方米至几万立方米,工艺日趋完善,其构造型式也越来越多。其主要特点是:进出水装置简单;污水的流态可看成是完全混合式,由于池体狭长,又类似于推流式;BOD负荷低,处理水质良好;污泥产率低,排泥量少;

污水处理知识:为您解析缺氧、厌氧、好氧(第三期)

污水处理知识:为您解析缺氧、厌氧、好氧(第三期) 厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。 高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。 (1)水解阶段水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。 (2)发酵(或酸化)阶段发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。 (3)产乙酸阶段在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。 (4)甲烷阶段这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。 酸化池中的反应是厌氧反应中的一段。 厌氧池是指没有溶解氧,也没有硝酸盐的反应池。缺氧池是指没有溶解氧但有硝酸盐的反应池。

酸化池---水解、酸化、产乙酸,限制甲烷化,有pH值降低现象。工艺简单,易控制操作,可去除部分COD。目的提高可生化性; 厌氧池---水解、酸化、产乙酸、甲烷化同步进行。需要调节pH,不易操作控制,去除大部分COD。目的是去除COD。 缺氧池---有水解反应,在脱氮工艺中,其pH值升高。在脱氮工艺中,主要起反硝化去除硝态氮的作用,同时去除部分BOD。也有水解反应提高可生化性的作用。 水解酸化池内部可以不设曝气装置,控制停留时间再水解、酸化阶段,不出现厌氧产气阶段,前两个阶段的COD去除率不是很高,因为他的目的只是将大分子的变成小分子有机物,一般去除率在20%左右,产气阶段的COD去除率一般在40%左右,但这是产生的硫化氢气体要进行除臭处理,且达到产气阶段的停留时间要较前两阶段长,也就是要出现厌氧状态。缺缺氧池内要设置曝气装置,控制溶解氧在0.3-0.8mg/l,利用兼氧微生物及生物膜来降解废水中的有机物,接触氧化池内的曝气器要慎重选择,既要保证供氧量,又要确保有利于生物膜的脱落、更新。一般不选用微孔曝气器作为池底的曝气器。 好氧池就是通过曝气等措施维持水中溶解氧含量在4mg/l左右,适宜好氧微生物生长繁殖,从而处理水中污染物质的构筑物; 厌氧池就是不做曝气,污染物浓度高,因为分解消耗溶解氧使得水体内几乎无溶解氧,适宜厌氧微生物活动从而处理水中污染物的构筑物; 缺氧池是曝气不足或者无曝气但污染物含量较低,适宜好氧和兼氧微生物生活的构筑物。 不同的氧环境有不同的微生物群,微生物也会在环境改变的时候改变行为,从而达到去除不同的污染物质的目的。

污水处理常用工艺方案

污水处理常用工艺方案 1 物理法 1、沉淀法:主要去除废水中无机颗粒及SS 2、过滤法:主要去除废水中SS与油类物质等 3、隔油:去除可浮油与分散油 4、气浮法:油水分离、有用物质的回收及相对密度接近于1(水的密度近似1)的悬浮固体 5、离心分离:微小SS的去除 6、磁力分离:去除沉淀法难以去除的SS与胶体等 2 化学法 1、混凝沉淀法:去除胶体及细微SS 2、中与法:酸碱废水的处理 3、氧化还原法:有毒物质、难生物降解物质的去除 4、化学沉淀法:重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除

3 物理化学法 1、吸附法:少量重金属离子、难生物降解有机物、脱色除臭等 2、离子交换法:回收贵重金属,放射性废水、有机废水等 3、萃取法:难生物降解有机物、重金属离子等 4、吹脱与汽提:溶解性与易挥发物质的去除。 4 生物法 1、活性污泥法:废水生物处理中微生物(micro-organism)悬浮在水中的各种方法的统称。 (1)SBR法 序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,就是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。 工艺流程图:

SBR技术的核心就是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。 优点: 1)工艺简单,节省费用 2)理想的推流过程使生化反应推力大、效率高 3)运行方式灵活,脱氮除磷效果好 4)防治污泥膨胀的最好工艺 5)耐冲击负荷、处理能力强 (2)CASS法 CASS法就是SBR法的改进型,特点就是占地小、运行费用低、技术成熟、工艺稳定。CASS法就是在CASS反应池前部设置生物选择区,后部设置可升降的自动滗水装置。 工艺流程图:

常见污水处理工艺介绍

常见污水处理工艺介绍 一.物理法: 1.沉淀法:首要去除废水中无机颗粒及SS 2.过滤法:首要去除废水中SS和油类物质等 3.隔油:去除可浮油和涣散油 4.气浮法:油水别离、有用物质的收回及相对密度接近于1(水的密度近似1)的悬浮固体 5.离心别离:细小SS的去除 6.磁力别离:去除沉淀法难以去除的SS和胶体等 二.化学法: 1.混凝沉淀法:去除胶体及纤细SS 2.中和法:酸碱废水的处理 3.氧化还原法:有毒物质、难生物降解物质的去除 4.化学沉淀法:重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除 三.生物法 1.活性污泥法:废水生物处理中微生物(micro-organism)悬浮在水中的各种办法的总称。 (1)SBR法 序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气办法来运转的活性污泥

污水处理技能,又称序批式活性污泥法。 工艺流程图: SBR技能的核心,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流体系。 长处: 1)工艺简略,节约费用 2)抱负的推流进程使生化反响推力大、效率高 3)运转办法灵敏,脱氮除磷效果好 4)防治污泥胀大的最好工艺 5)耐冲击负荷、处理才能强 (2)CASS法

CASS法法的改进型,特色是占地小、运转费用低、技能成熟、工艺安稳。 CASS法是在CASS反响池前部设置生物挑选区,后部设置可升降的主动滗水设备。 工艺流程图: (3)AO法 AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。 工艺流程图:

常见污水处理工艺介绍

常见污水处理工艺介绍 Prepared on 24 November 2020

常见污水处理工艺介绍 一.物理法: 1.沉淀法:主要去除废水中无机颗粒及SS 2.过滤法:主要去除废水中SS和油类物质等 3.隔油:去除可浮油和分散油 4.气浮法:油水分离、有用物质的回收及相对密度接近于1(水的密度近似1)的悬浮固体 5.离心分离:微小SS的去除 6.磁力分离:去除沉淀法难以去除的SS和胶体等 二.化学法: 1.混凝沉淀法:去除胶体及细 2.中和法:酸碱废水的处理 3.氧化还原法:有毒物质、难生物降解物质的去除 4.化学沉淀法:重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除 三.物理化学法: 1.吸附法:少量重金属离子、难生物降解有机物、脱色除臭等 2.离子交换法:回收贵重金属,放射性废水、有机废水等 3.萃取法:难生物降解有机物、重金属离子等 4.吹脱和汽提:溶解性和易挥发物质的去除。 重点介绍 (随着各种工艺不断改进,原有缺点不断被修正,因此只列出各种工艺的优 点)

四.生物法 1.活性污泥法:中微生物(micro-organism)悬浮在水中的各种方法的统称。(1)SBR法 序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气方式来运行的活性污泥污水处理技术,又称序批式活性污泥法。 工艺流程图: SBR技术的核心是SBR反应池,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流系统。 优点: 1)工艺简单,节省费用 2)理想的推流过程使生化反应推力大、效率高 3)运行方式灵活,脱氮除磷效果好 4)防治污泥膨胀的最好工艺 5)耐冲击负荷、处理能力强 (2)CASS法 CASS法是SBR法的改进型,特点是占地小、运行费用低、技术成熟、工艺稳定。 CASS法是在CASS反应池前部设置生物选择区,后部设置可升降的自动滗水装置。 工艺流程图: (3)AO法

几种常见污水处理基本工艺

几种常见污水处理基本工艺 污水处理厂工艺流程常用污水处理厂工艺流程 污水处理工程废水处理工程 污水废水处理工程工艺概述 污水废水加药中和调节PH值,进入调节池,又加助浊剂,进入沉淀池加助凝剂,再入沉淀池,进行砂过滤,最后通过EO膜过滤后即可排放或回收再用,均能达到国家排放标准。 1.日化一般化工厂COD含量较高污水 2.城市污水、高浓度有机废水生物转盘法处理工艺 工艺① 工艺②

3.重金属含量较高污水处理工艺 工程投资和处理成本(指中到大型污水废水处理的造价) 工程投资: 600-1500元/吨每天(一次性投资) 占地面积: 0.5-0.8平方米/吨每天,立体布局占地更少 运行电耗: 0.4-0.8度/吨废水 运行费用: 0.4-1.2元/吨废水(城市污水为0.1-0.4元/吨废水) 工艺流程文字讲解 张掖市城市污水处理工程于2001年4月经省计委批准立项,由中国市政西北设计研究院设计,项目总体建设规模按日处理8万吨规划,实施分期建设。一期建设规模为日处理量4万吨,规划配套污水管网30.5KM,尾水排放渠4KM,一期工程概算总投资为10626.25 万元。处理工艺采用改良型氧化沟生物处理工艺,处理后尾水水质达到国家二级排放标准,污泥处理采用浓缩脱水工艺。 本厂的处理工艺为改良型氧化沟生物处理工艺。污水通过城区管网汇流至污水处理厂,首先进入第一个环节粗格栅;粗格栅的主要作用是将污水中大块的渣物进行拦截,由输送设备运至储渣斗。然后污水被提升泵提升至细格栅;细格栅的主要作用是将中等及小块渣物进行过滤,并通过联带设备排除过滤渣物。经过以上两个环节的污水将进入第三个环节沉沙池;沉沙池利用离心作用将污水中的微小颗粒及杂质进行去除,然后砂粒及杂质通过砂水分离器输送至储砂斗。污水则进入整个处理过程的核心环节—氧化沟;此环节的主要作用是利用氧化沟中的活性污泥(微生物),将水中的有机污染物分解分解成为二氧化碳和水。从而有效去除污水中的有机污染物。最后经过氧化沟的泥水混合液流入终沉池;终沉池的主要功能是利用重力作用进行沉淀,从而达到泥水分离的目的。经过沉淀的污水再进入加氯消毒就可以排放至自然水体了。而剩余的污泥则通过浓缩、脱水然后进行填埋或作为农林肥料。

各种污水处理工艺流程特点

百度文库-让每个人平等地提升自我 、A/0工艺简介 由于我国小城镇居住点分散,污水源分布点多量少,城镇级污水厂的规模多 低于10000吨/日。目前国内大中型城市污水处理厂经常采用的处理技术有传统 活性污泥法、A2/O 、SBR 、氧化沟等,如果以这些技术建设小城镇污水处理厂 会造成由于居高不下的运行费用,无法正常运行。必须针对小城镇的特点采用投 资省,运行费用低,技术稳定可靠,操作与管理相对简单的工艺。 工艺流程 工艺特点 ① 采用SNP 特种悬浮型生物填料,系统污泥浓度高,停留时间短。 ② 厌氧生物滤池:能耗低,为活性污泥法的十分之一,产泥量很少。 ③ 好氧生物滤池:停留时间短,保证出水达标。 ④ 所有设备可以采用利浦罐或拼装钢结构,具有施工周期短,投资低,占 地 节约,外观美观的特点。 ⑤ 处理效果好,运行稳定,占地较小,操作管理简单,运行灵活性强。 ⑥ 低投资,低运行费,尤其适合于规模低于 2000?10000吨/日以下的小城 镇污水处理厂。 ⑦ 维修检修工作量低,需要运行操作人员的要求相对也较低。 应用范围 2000?10000吨/日以下的小城镇污水处理厂 二、A2/O 工艺 亦称A-A-0工艺,是英文Anaerobic-Anoxic-Oxic 第一个字母的简称(生物脱氮除磷) 按实质意义来说,本工艺称为厌氧 -缺氧-好氧法,生物脱氮除磷工艺的简称。 A2/O 工艺是流程最简单,应用最广泛的脱氮除磷工艺。污水首先进入厌氧池,兼性厌 氧菌将污水中的易降解有机物转化成 VFAs 。回流污泥带入的聚磷菌将体内的聚磷分解,此 为释磷,所释放的能量一部分可供好氧的聚磷菌在厌氧环境下维持生存, 另一部分供聚磷菌 主动吸收VFAs ,并在体内储存PHB 。进入缺氧区,反硝化细菌就利用混合液回流带入的硝 酸盐及进水中的有机物进行反硝化脱氮, 接着进入好氧区,聚磷菌除了吸收利用污水中残留 的易降解BOD 夕卜,主要分解体内储存的 PHB 产生能量供自身生长繁殖,并主动吸收环境 中的溶解磷,此为吸磷,以聚磷的形式在体内储存。污水经厌氧,缺氧区,有机物分别被聚 磷菌和反硝化细菌利用后浓度已很低,有利于自养的硝化菌的生长繁殖。最后,混合液进 入沉淀池,进行泥水分离,上清液作为处理水排放,沉淀污泥的一部风回流厌氧池,另一部 分作为剩余污泥排放。 本工艺在系统上可以称为最简单的同步脱氮除磷工艺, 总的水力停留时间少于其他同类 工艺。而且在厌氧-缺氧-好养交替运行条件下,不易发生污泥膨胀。 排放 好氧生物濾池 二沅池 T I ________ 歉京污泥 -細O 生物滤:池处理工艺泥程-

厌氧污水处理

厌氧污水处理 原理 在厌氧处理过程中,废水中的有机物经大量微生物的共同作用,被最终转化为甲烷、二氧化碳、水、硫化氢和氨等。在此过程中,不同微生物的代谢过程相互影响,相互制约,形成了复杂的生态系统。对高分子有机物的厌氧过程的叙述,有助于我们了解这一过程的基本内容。高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。 水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。 高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用。它们在第一阶段被细菌胞外酶分解为小分子。例如,纤维素被纤维素酶水解为纤维二糖与葡萄糖,淀粉被淀粉酶分解为麦芽糖和葡萄糖,蛋白质被蛋白质酶水解为短肽与氨基酸等。这些小分子的水解产物能够溶解于水并透过细胞膜为细菌所利用。水解过程通常较缓慢,因此被认为是含高分子有机物或悬浮物废液厌氧降解的限速阶段。多种因素如温度、有机物的组成、水解产物的浓度等可能影响水解的速度与水解的程度。水解速度的可由以下动力学方程加以描述:ρ=ρo/(1+Kh.T) ρ——可降解的非溶解性底物浓度(g/L); ρo———非溶解性底物的初始浓度(g/L); Kh——水解常数(d^-1); T——停留时间(d) 发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。

品 600在这一阶段,上述小分子的化合物发酵细菌(即酸化菌)的细胞内转化为更为简单的化合物并分泌到细胞外。发酵细菌绝大多数是严格厌氧菌,但通常有约1%的兼性厌氧菌存在于厌氧环境中,这些兼性厌氧菌能够起到保护像甲烷菌这样的严格厌氧菌免受氧的损害与抑制。这一阶段的主要产物有挥发性脂肪酸、醇类、乳酸、二氧化碳、氢气、氨、硫化氢等,产物的组成取决于厌氧降解的条件、底物种类和参与酸化的微生物种群。与此同时,酸化菌也利用部分物质合成新的细胞物质,因此,未酸化废水厌氧处理时产生更多的剩余污泥。 在厌氧降解过程中,酸化细菌对酸的耐受力必须加以考虑。酸化过程pH下降到4时能可以进行。但是产甲烷过程pH值的范围在6.5~7.5之间,因此pH值的下降将会减少甲烷的生成和氢的消耗,并进一步引起酸化末端产物组成的改变。 在产氢产乙酸菌的作用下,上一阶段的产物被进一步转化为乙酸、氢气、碳酸以及新的细胞物质。 其某些反应式如下: CH3CHOHCOO-+2H2O —> CH3COO-+HCO3-+H++2H2 ΔG’0=-4.2KJ/MOL CH3CH2OH+H2O-> CH3COO-+H++2H2O ΔG’0=9.6KJ/MOL CH3CH2CH2COO-+2H2O-> 2CH3COO-+H++2H2 ΔG’0=48.1KJ/MOL CH3CH2COO-+3H2O-> CH3COO-+HCO3-+H++3H2 ΔG’0=76.1KJ/MOL 4CH3OH+2CO2-> 3CH3COO-+2H2O ΔG’0=-2.9KJ/MOL 2HCO3-+4H2+H+->CH3COO-+4H2O ΔG’0=-70.3KJ/MOL 这一阶段,乙酸、氢气、碳酸、甲酸和甲醇被转化为甲烷、二氧化碳和新的细胞物质。

常见的几种污水处理工艺

常见的几种污水处理工艺 一、A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段溶解氧(DO)不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N (NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O 在生态中的循环,实现污水无害化处理。 2.A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,

可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2)流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5)缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。 3.A/O工艺的缺点 1、由于没有独立的污泥回流系统,从而不能培养出具有独特功能的污泥,难降解物质的降解率较低; 2、若要提高脱氮效率,必须加大内循环比,因而加大了运行费用。另外,内循环液来自曝气池,含有一定的DO,使A段难以保持

污水处理工艺及设备介绍

常见的污水处理设备,大致可以分为污水预处理设备、污水生物处理设备、污泥处理设备。下面我们就污水处理设备在生活污水处理方面的工艺原理,给大家详细介绍下。 污水处理设备的工艺原理 YQZ-A0列一体化污水处理设备去除有机污染物及氨氮主要依赖于设备中的A0生物处理工艺。其中工作原理是在A级,由于污水有机物浓度很高,微生物处于缺气状态,此时微生物为兼性微生物,它们将污水中的有机氨转化分解为NH3-N,同时利用有机碳作为电子供体,将N0ˉ2-N、N0ˉ3-N转化为N2,而且还利用部分有机碳源和NH3-N合成新的细胞物质。所以A级池不仅具有一定的有机物去除功能,减轻后续好氧池的有机负荷,还有利于硝化作用的进行,而且依靠原水中存在的较高浓度有机物,完成反硝化作用,最终消除氮的富营养化污染。在0级,由于有机物浓度已大幅度降低,但仍有一定量的有机物及较高的NH3-N存在。为了使有机物得到进一步氧化分解,同时在碳化作用处于完成情况下硝化作用能顺利进行,在0级设置有机负荷较低的好氧生物接触氧化池。

在0级池是主要存在好氧微生物及好氧型细菌(硝化菌)。其中好氧微生物将有机物分解成CO2和H2O;自养型细菌(硝化菌)利用有机物分解产生的无机碳或空气中的CO2作为营养源,将污水中的NHˉ3-N转化成Nˉ2-0N、Nˉ3-0N、0级池的出水部分回流到A级池,为A级池提供电子受体,通过反硝化作用最终消除氮污染。 污水处理设备的应用范围 1、处理水量:1.0 ~80.0m3/h,大于80.0(m3/h)时需另行设计。 2、适用范围: (1)宾馆、饭店、疗养院、医院; (2)住宅小区、村庄、集镇; (3)车站、飞机场、海港码头、船舶; (4)工厂、矿山、部队、旅游点、风景区; (5)与生活污水类似的各种工业有机废水 以上是关于污水处理工艺及设备的相关介绍。武汉玉泉净水设备有限公司采用国际先进的水处理技术和设备已为多家企事业单位设计安装了数千套的水处理系统,由于其技术先进、设计完善、造价合理、运行平稳、服务周到,深受广大用户和厂家的赞誉。公司还为客户朋友供应质优价廉的水处理设备耗材及零部件,并免费为广大客户朋友提供水处理技术和设备使用的咨询服务。

城镇污水处理厂中常用工艺介绍

城镇污水处理厂中常用工艺介绍 摘要:简要叙述现国内的污水厂常用的水处理工艺的优缺点及适合条件和现有多数污水厂存在的常见问题。从实际问题出发,根据本工程的具体条件,具体要求,根据处理水的出水水质要求,选择合适的污水处理工艺。 关键词:城镇;污水;设计; 前言:随着城市工业生产的发展,城市人口的递增,城市规模的扩大,工业废水和生活污水排出量日益增多,大量未经处理的污水直接排入周围河流,致使城市周围环境污染十分严重,不但直接污染了市区的地下饮用水,而且对河流下游地区的农业生产和人民生活造成了危害,人类和生物赖以生存的生态环境受到了日益严重的威胁[1]。同时,水生态系统体现了人与水的和谐共存与协调发展,是城市生态系统的主要组成部分和关键因素,与一个城市的可持续发展密切相关。因而,城市污水治理已成当前迫切需要解决的问题之一。 1国内污水厂常用工艺 1.1 AO法工艺 AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,是脱氮除磷阶段;O(Oxic)是好氧段,是去除水中的有机物的阶段。 A/O法脱氮工艺的特点: (1)流程简单,不需外加碳源和曝气池,以原污水作为碳源,建设和运行费用较低; (2)反硝化阶段在前,硝化阶段在后,设内循环,以原污水中的有机底物作为碳源,效果好,反硝化反应充分; (3)为使硝化残留物得以进一步去除,在后面设置曝气池,提高处理水水质; (4)A阶段搅拌,使污泥悬浮,避免DO增加。O阶段的前段采用强曝气,后阶段减少氧气量,使内循环液的DO降低,以保证A阶段的缺氧状态。 A/O法存在的问题: (1)A/O法由于没有独立的污泥回流系统,故不能培育出具有独特功能的污泥,所以降解难降解有

常用生活污水处理工艺介绍及对比

?几种常用生活污水处理工艺的比较 一、概述 生活污水处理工艺目前已相当成熟,其核心技术为活性污泥法和生物膜法,对活性污泥法(或生物膜法)的改进及发展形成了各种不同的生活污水处理工艺,传统的活性污泥法处理工艺在中小型生活污水处理已较少使用。根据污水的水量、水质和出水要求及当地的实际情况,选用合理的污水处理工艺,对污水处理的正常运行、处理费用具有决定性的作用。 本文主要对生活污水几种常用的处理工艺作简单介绍,包括氧化沟、序批式活性污泥法(SBR)、生物接触氧化法、曝气生物滤池(BAF)、A-0工艺、膜生物反应器(MBR)等。 二、中小型生活污水处理工艺简介 典型的生活污水处理完整工艺如下: 污水——前处理——生化法——二沉池——消毒——出水 | | ——-——污泥处理系统-- 前处理也称为预处理技术,常用的有格栅或格网、调节池、沉砂池、初沉池等。

由于生活污水处理的核心是生化部分,因此我们称污水处理工艺是特指这部分,如接触氧化法、SBR法、A/O法等。用生化法(包括厌氧和好氧)处理生活污水在目前是最经济、最适用的污水处理工艺,根据生活污水的水量、水质及现场的条件而选择不同的污水处理工艺对投资及运行成本具有决定性的影响。下面就目前常用的生活污水处理工艺作一简介。 1、氧化沟工艺 氧化沟是活性污泥法的一种变形,其池体狭长,故称为氧化沟。氧化沟有多种构造型式,典型的有:A:卡罗塞式;B:奥巴尔型;C:交替工作式氧化沟;D:曝气—沉淀一体化氧化沟 氧化沟技术已广泛应用于大中型城市污水处理厂,其规模从每日几百立方米至几万立方米,工艺日趋完善,其构造型式也越来越多。其主要特点是:进出水装置简单;污水的流态可看成是完全混合式,由于池体狭长,又类似于推流式;BOD负荷低,处理水质良好;污泥产率低,排泥量少;污泥龄长,具有脱氮的功能。 设计要点:混合液悬浮固体浓度5000mg/l;生物固体平均停留时间,去除BOD5时,取5~8天,当要求硝化反应时取10~30天;水力停留时间为20、24、36、48h,根据对处理水水质要求而定;BOD—SS负荷(Ns)为0.03~0.07kgBOD/(kgMLSS.d);BOD容积负荷(Nv)为0.1~0.2 kgBOD/(m3.d);污泥回流比为50~150%;混合液在渠内的流速为0.4~0.5m/s;沟底流速为0.3 m/s。 但氧化沟工艺与SBR和普通活性污泥工艺比较,能耗高,且占地面积较大。 2、A/O法 即厌氧—好氧污水处理工艺,流程如下:

污水处理工艺中的厌氧工艺

厌氧处理工艺的选择及介绍 1 厌氧处理工艺的选择 厌氧反应器既有传统的反应器又有现代高效反应器,这些工艺又可分为厌氧悬浮生长和厌氧接触生长工艺。 厌氧工艺经百余年的发展已从最初的第一代的厌氧消化池发展到第二代的厌氧滤器(AF)、厌氧流化床反应器(AFB)、上流式厌氧污泥床(UASB)以及第三代的膨胀颗粒污泥床反应器(EGSB和IC)这几种反应器形式。 在已开发的厌氧反应器中,第三代的EGSB和IC反应器是一种研究最为深入、技术最为先进的厌氧反应器。它是在第二代UASB反应器的基础上发展起来的高效反应器,尤其适用于中等浓度(COD在10000mg/l以下)的有机废水的处理,并成功地应用于各种废水的处理。相对于其它类型的反应器,EGSB/IC反应器具有一些突出的优点: ?具有较高的有机负荷,水力负荷能满足要求。 ?污泥颗粒化后使反应器耐不利条件的冲击能力增强。 ?具有较高的上升流速,尤其是颗粒污泥IC反应器,由于颗粒污泥的密度较小,在适度的水力负荷范围内,可以靠反应器内产生的气体来实现污泥与基质的充分混合及接触,大大提高反应器的效率。 ?在反应器上部设置了气—固—液三相分离器,对沉降良好的污泥或颗粒污泥可以自行分离沉降并返回反应器主体,不须附设沉淀分离装置、辅助脱气装置及回流污泥设备,简化了工艺,节约了投资和运行费用。 1.2 高强好氧处理工艺的选择 1.2.1复合式生物反应器 为了在原有活性污泥工艺基础上,提高曝气池内生物量,增强废水处理能力,克服活性污泥膨胀,提高运行稳定性,人们发明了在曝气池中投加载体的方法,即在曝气池中投加各种能提供微生物附着生长表面的载体,利用载体容易截留和附着生物量大的特点,使曝气池中同时存在附着相和悬浮相生物,充分发挥两者的优越性,使之扬长避短,相互补充,将这种反应器称为复合生物反应器HBR (Hybrid Biological Reactor)。复合式生物反应系统是将生物膜反应系统和活性污泥系统结合起来。虽然这种方法保留了原有工艺的主体构造,但是由于填料的加入,使污水处理机理和效能都大为改变[7]。在这个系统中,微生物生存的基础环境由原来的气、液两相转变成气、液、固三相,这种转变为微生物创造了更丰富的存在形式,形成一个更为复杂的复合式生态系统。 1.2.2好氧生物流化床 好氧生物流化床反应器是将普通活性污泥法和生物膜法的优点有机地结合,是七十年代开始应用于污水处理的一种高效的生物处理工艺,并引入流化技术处理有机废水的反应装置,因而具有容积负荷高、生物降解速度快、占地面积小、基建投资和运行费用低等优点。生物流化床处理技术是借助流体(液体、气体)使表面生长着微生物的固体颗粒(生物颗粒)呈流态化,同时进行去除和降解有机污染物的生物膜法处理技术。微生物生长在载体表面,载体则在反应器中流动,是悬浮生长型和附着生长型的复合。它可以保持高浓度的微生物量,传质效率高,体积负荷可以比传统活性污泥法高6-10倍。

相关文档
最新文档