海洋油气勘探新技术

海洋油气勘探新技术
海洋油气勘探新技术

海洋油气勘探新技术

摘要:近些年来,陆地油气资源逐渐面临枯竭,大家都将目光转向海洋。而海洋油气资源的开发的第一步就是海洋油气资源的勘探,本文通过对几种海洋油气资源勘探技术的描述,介绍一下海洋油气资源勘探技术的发展历程,以及目前的技术水平。

关键词:海洋油气勘探技术新发展

1.引言

我国是海洋大国,传统海域辖区总面积近3×106km2[3,4]。以300 m水深为界,浅水区面积约1.46×106km2、深水区面积约1.54×106km2{2]。南海我国传统疆界内石油地质储量为1.6439×1010t、天然气地质资源量为1.4029×1013 m3,油当量资源量约占我国总资源量的23 %,油气资源潜力巨大;其中300 m以下深水区盆地面积为5.818×105km2,石油地质储量为8.304×109t、天然气地质资源量为7.493×1012m3。目前我国在南海的油气勘探主要集中在北部4个盆地,面积约3.64×105km2[3,4]。

陆地油田经过长期的勘探开发,大部分已进入勘探开发的后期,受勘探资源枯竭以及油田开发规律的影响,陆地油田产量增长难度较大,不仅如此,大庆油田、胜利油田等陆地典型老油田的产量已进入递减阶段。图1给出了1971年到2013年全国石油产量构成柱状图,全国石油产量整体上呈稳步增长的趋势,但中国石油天然气股份有限公司、中国石油化工集团公司等以陆地油田为主的公司年产油增长缓慢,自1990年以来,全国石油增长总量的60 %来自中国海洋石油总公司。我国近海油气资源丰富,勘探开发的程度远低于陆地,尚处于蓬勃发展期,近海油气田将是我国油气产量主要的增长点。当前中国海洋石油总公司年产油气当量规模在5×107t,根据中国海洋石油总公司的发展规划,到2030年国内海上将建成1×108t油气当量年产规模,未来17年将增加一倍的产能,届时近海油气产量在我国石油产量构成中的比重将更加突出,近海油气对我国国民经济的支撑作用将更加凸显[1]。

图1 全国石油产量构成柱状图[1]

中国共产党第十八次全国代表大会也作出的“海洋大开发”的重大决策,我国必须拓展经济发展的战略空间,“大力发展深海技术,努力提高深海资源勘探和开发技术的能力,维护我国在国际海底的权益”[1]。

因此,加大对海洋油气资源的开发是我国石油与天然气资源开发的主要方向。通过对海洋油气资源的开发,弥补我国陆地油气资源储备不足,地层条件恶劣,开采困难的短板;降低我国石油对外依存程度;缓解我国石油天然气过度依赖进口的尴尬局面;保证我国能源安全。

然而,海洋油气勘探是保证我国海洋石油开发的前提,是进行海洋油气开采的第一步。因此,我们需要通过对海洋油气勘探新技术的研究,提升我国海洋油气资源勘探水平,为下一步开发奠定结实的基础。

2.海洋油气资源勘探技术发展历程

2.1国外海洋油气资源勘探技术发展历程[5,6]

1887年,在美国加利福尼亚海岸数米深的海域钻探了世界上第一口海上探井,拉开了海洋石油工业序幕。

20世纪30~40年代的海洋油气勘探首先集中在墨西哥湾、马拉开波湖等地区;

20世纪50~60年代油气勘探则在波斯湾、里海等海区初具规模;

20世纪70年代是海洋油气勘探最为活跃的时期,成果最显著的地区是北海含油气区,陆续发现了一系列油气田,其中有许多都属于大型油气田,如格罗宁根气田。目前在海洋进行油气勘探的国家越来越多,海洋钻井遍布世界各个海区。

2.2国内海洋油气资源勘探技术发展历程[7]

2.2.1引进国外先进技术装备消化吸收阶段(20 世纪70 年代初—80 年代初)

1973 年4月,原国务院燃料化学工业部海洋石油勘探指挥部经中央政府的批准,从日本引进自升式钻进平台“渤海 2 号”(富士丸),从而打开了我国海洋石油技术引进的大门。从20 世纪70 年代初到80 年代初,我国先后共花费了14亿美元引进一批海上石油装备,包括9座海上钻进平台、21艘三用工作船、10艘工程船、10台数字地震仪、6套地震数据处理计算机、10套可控震源成套和数字测井仪等。这些先进技术装备的引进奠定了我国海洋石油工业的技术基础。在这一时期,中国海洋石油工业主要通过引进国外先进技术装备,在应用中消化吸收并逐步掌握操作工艺。

2.2.2合资合作,集成创新(20世纪80年代初—20世纪末)

早在20世纪80年代中期,时任国务院副总理的康世恩就先后4次到中国海油湛江的南海西部公司进行调研并明确指出:“你们不仅要对外合作,也要考虑自己干。只搞

对外合作是单线吊葫芦——不

保险。必须是对外合作与自营勘探同时并举,两腿齐步走。”中国海油的历届决策者们始终不移地贯

彻了这一战略思想。1984年,中国海油的渤海石油公司开始进行自营勘探。为此成立了战略组,对海上非合作区的石油地质进行系统研究,对一批有利构造展开钻探,发现了一批油气田,并由自己担当作业者组织开发,从而拉开了自营与合作并举的帷幕。

在一些自营勘探、开发项目陆续取得成功的基础上,中国海油于1997年明确提出要实现海洋石油的跨越式发展科技工作必须先行的战略指导思想。在引进、消化、吸收国外适用的先进技术的同时更要依靠自身的技术力量,进行勘探、开发下游技术和管理技术等方面的研究和创新。中国海油提出,

要努力实现“三新(新思想、新技术、新方法) 三化(标准化、简易化、国产化)”技术创新发展战略。这一战略的提出和实施极大地调动了广大科技人员的积极性,有力地推进了生产建设中的技术创新。

在自营油气田开发过程中进行的技术攻关和创新有效地锻炼了中国海油的科技队伍,极大地提高了公司的技术研发水平,实现了装备的现代化,积累了油气田开发和执行作业者的宝贵经验,形成了一支能自主完成研究、设计、开发、建造和生产的专业配套队伍和一套常规油气田开发的配套技术。

2.2.3自主高速高效发展,形成自主创新技术体系(21世纪初至今)

2004年,中国海油提出“建设国际一流的综合型能源公司”的发展目标,并将科技领先作为发展战略之一。中国海油深深地意识到,科技是第一生产力,是对公司长远发展起长效作用的基础性因素。

因此在抓生产建设的同时更要抓科技进步,要保证有足够的科技投入,不断夯实公司的科技基础,提高科研水平,要使科技成为公司发展的核心竞争力。

在这一阶段,总公司及所属单位通过建立健全科技管理机构,完善了科技管理体系,强化了科技管理职能。通过修订完善一系列的规章制度,加强了制度化建设,保证了科技工作的规范运行。建立新的科技创新平台,建设了中国海洋石油天然气勘探开发科技创新体系。

3.海洋油气资源勘探技术的新发展

3.1海上地震勘探

3.1.1海上地震勘探的特点[8]

海上地震工作是把地震仪器安装在船上,使用海上专用的电缆和检波器,在观测船航行中连续进行地震波的激发和接收。海上地震工作方法发展到现阶段,具有几方面的特点:

一是成本低,海上三维地震每平方千米约5000~8000美元;

二是速度快,一天可采集80km的地震记录;广泛使用非炸药震源,炸药震源已很少用;使用等浮组合电缆;

三是单船作业,记录仪器和震源在同一条船上,不需要采用松放电缆的措施就能保证连续工作;

四是全部采用多次覆盖技术,并且覆盖次数较高,为了适应高覆盖次数的需要,等浮电缆的道数不断增加;

五是由于采集量大,而且速度快,所以许多船上都配备了功能很强的处理设备和人员,还有的是通过卫星及时向陆地传输数据。这些措施保证了大量数据的及时处理,并及时提交用户进行解释。

由于海上地震具有这些特点,所以一般情况下海上地震勘探一次施工的面积都比较大,而且主要以三维资料采集为主,一次施工面积大部分都在1000km2以上。二维资料采集量比较少。

3.1.2海上地震勘探的新技术

(1)四维地震(4D 地震)技术

它已经成为海上油气田开发的一种成熟方法。四维地震勘探技术的成功应用,对优化开发方案,提高采收率和油气产量,获得更好的经济效益具有重要价值,因而已经在生产中广泛应用[8,9]。

(2)海上多分量勘探(4C)技术

海上多分量(又称海上多波)地震勘探(multicomponent sea-bottom seismics)早期称为海底地震记录法(SUMIC——SUbseaseis MICs)。最初是挪威国家石油公司于20世纪80年代开发的技术专利,它利用置于海底的4分量检波器(压力检波器及3分量速度检波器),通过数传电缆,将由海水中激发、海底接收的纵波和转换波等传输到海面接收船的记录仪上。目前,正使用的一些方法包括使用一种电缆和把检波器放置在海底的拖运器。另一种方法是使用机器人以一种特定的方式来安装的海底检波器。对海上数据来说,除了用检波器记录三个方向的波动外,再加上传统的压力检波器所记录的波动,就得到了第四个分量[8,9]。

(3)等离子体震源技术[10,11]

等离子体震源是一种水下短脉冲声源,其基本过程是电容储能通过水中高压脉冲放电的机械效应产生强脉冲声波。其系统一般由3部分组成:脉冲电源、传输线、发射电极(阵)。脉冲电源是其中最为关键的部分,其工作原理是采用电容储能,通过触发放电开关瞬间释放能量,输出高功率电脉冲从而实现在水体中进行等离子体放电。

(4)立体与多层气枪阵震源技术

立体震源是将不同的枪阵组合或每一个子阵列沉放到不同的深度,使之所有的气枪

不在同一水平面内,使得立体阵列的排列形式变化多样。

李绪宣等[12],通过对不同组合方式的立体震源模型子波数值模拟效果对比分析,证明了立体震源可行性和优越性

2000年,Moldovneau[12]提出了垂直震源的概念,将两个枪阵分别沉放在同一垂直平面内的和的深度上,两个枪阵以炮间距的距离沿测线水平布置,采集中两个枪阵交互激发这样就会在同一激发位置上产生两个不同激发深度的单炮记录处理中采用波场分离方法,剔除两个连续炮点记录的上行震源波场,这样就减弱了地震震源附近产生的虚反射和混波,提高地震分辨率

(5)海底双检电缆、双检波器拖缆采集技术[14,15]

双检电缆除常规的压力检波器之外,还配置了速度检波器,得到的数据包括压力分量和垂直分量的信息、垂直分量是由速度检波器接收到铅垂方向上的质点振动速度息,压力分量是由压力检波器接收到由质点振动引起的水压变化由于全方位的压力检波器和垂直方向的速度检波器产生相同极性的上行波(有效反射信号)和相反极性的下行波(海水鸣震信号),因此可以综合利用垂直分量与压力分量数据特征差异来消除水层鸣震和多次波反射,避免了海面虚反射等因素引起的陷波作用,提高了信号的信噪比。特别指出的是,由于海底双检电缆(OBC)是放置在海底接收地震反射数据,与常规拖缆地震相比,减少了海底与海水界面对地震波的反射作用,可以有效地提高深层弱反射地震信号能量,是改善原始数据品质的有效手段。

3.2海上电磁法勘探

海洋电磁方法可以分为天然场源(Marine MT———海洋大地电磁法)和人工场源(Marine CSEM———海洋可控源电磁法)两类,在油气直接检测中发挥关键作用而进入勘探阶段的是后者。海洋可控源电磁法,根据施工方法差异又可以分为浅海拖曳施工和深海固定施工。

3.2.1浅海拖曳施工方法

这种施工方法发源于俄罗斯,在欧洲也开展过不少类似的工作[16,17],在国内,桂林冶金学院和长春地质学院都开展过试验工作,不过主要是针对水底或浅层目标,以用于工程勘探。其施工方法一般采用回线-回线方式[18]。近年来,俄罗斯深入研究了该方法,其形式类似于地震拖缆施工,激发场源采用长导线源和铠装电缆,接收电极铠装在拖缆中,拖缆具有一定的浮力被牵引在定深器的后面,电极出露端与海水直接接触,每个电极通过无线电定位与定深器的信号源联系。

3.2.2深海固定施工方法

这是目前西方列入油气勘探阶段的海洋可控源电磁施工方法[19],它的发射偶极由两个沉放于靠近海底位置的电极组成,水平发射偶极由两个独立的电缆分别置于靠近海底

的位置,如果是垂直发射偶极则一个置于靠近海底的位置,另一个置于水面。发射极的移动需要拖曳,使之在一定深度匀速移动,激发频率一般在0.1~10 Hz之间,每次激发的时间相对于发射极的移动速度来说很短,可以认为它是固定的,实际工作中拖曳50~200 m激发一次,对于缓慢移动的激发系统来说,每次激发3~4个频率可以看作是连续激发。而接收系统则为独立的四分量、五分量甚至六分量采集站,由水泥块固定在海底,连续记录。所有激发完成后,即可结束采集工作。采集站回收时要发射一个声频释放信号,使水泥块与采集站脱开,采集站借助浮体自动浮出水面即可人工回收。

3.3海洋化学勘探

近年,国内外一些石油公司在众多海域进行了大量的油气化探研究,测区几乎遍及世界各大洲大陆边缘的近海区域。研究内容包括海水溶解烃、游离烃及海底沉积物存留烃,还对海面油膜进行了航空测量[20]。

4.总结

(1)新技术不断涌现,其共同特点是与互联网、大数据、人工智能等新兴科技结合越来越紧密,计算机技术发展,给勘探技术的发展注入新的活力;

(2)我国在勘探技术方面与外国相比存在较大差距,尤其是装备制造。而海洋可控源电磁勘探技术的研究在国内还是空白,在装备制造研发方面已远远落后于国外。

(3)勘探技术的研发以及试验需要投入的人力和物力都是巨大的,设计的部门和学科也是非常多的,故而需要大量的协调配合;

(4)勘探技术的进步需要长时间持之以恒的投入,因为在很多方面我们还是空白。地质大学曾在国家“863”项目支持下,进行过天然场海洋电磁勘探技术的研究,并自主开发了几套海洋大地电磁采集站,由于投入有限,可持续研究不够,并没有形成稳定规模性应用的影响。

(5)我国的勘探技术的研究需要扩散思维,因为许多研究还局限在地球物理方法,尤其是地震方法上,对其他种类方法研究比较缺失;

(6)我国勘探技术应用经验还不是很丰富,对研究的反馈效果还不明显。

参考文献:

[1] 周守为李清平朱海山等.海洋能源勘探开发技术现状与展望[J].中国工程科学.2016(2):19-25

[2] 朱伟林米立军.中国海域含油气盆地图集[M].北京:石油工业出版社, 2011.

[3] 周守为曾恒一李清平等.海洋能源科技发展战略研究报告[R].北京, 2015.

[4] 马文宏何家雄姚永坚等.南海北部边缘盆地第三系沉积及主要烃源岩发育特征[J]. 天然气地球科学, 2008, 19(1): 41–48.

[5] 江怀友.世界海洋油气资源勘探模式研究[J].世界石油工业,2007(6): 14-16

[6] 乔卫杰黄文辉江怀友.国外海洋油气勘探方法浅述[J].资源与产业.2009(2):19

[7] 傅成玉.中国海洋石油勘探开发科技创新体系建设[J].中国工程科学.2011:16

[8] 赵政璋赵贤正.国外海洋深水油气勘探发展趋势及启示[J].勘探论坛.2005(3):72-74

[9] 朱江.海洋钻井设备综述[J].中国海上油气(工程),2000, 12(6): 44~46

[10] 严辉黄逸凡裴彦良等.等离子体震源及在海洋勘探中的应用[J].高电压技术.2012(7):1712

[11] Cannelli G B D’Ottavi E SantoboniS.Electroacousticpluse source for high-resolution seismic exploration [J].Review of Scientific Instruments,1987,58(7):1254-1261.

[12] 李绪宣温书亮顾汉明等.海上气枪阵列震源子波数值模拟研究[J].中国海上油气.2009.21(4):215-220

[13] MoldovneauN.Vertical source array in marine seismic exploration [J].70th Annual International Meeting, SEG, Expanded Abstracts.2000:53-56.

[14] 全海燕,韩立强海底电缆双检接收技术压制水柱混响[J].石油地球物理勘探,2005,40(1):7-12.

[15] Long A Mellors D Allen T et al.A calibrated dual-sensor steamer investigation of deep target signal resolution and penetration on the NW of Australia[C].70th Annual International Meeting, SEG, Expanded Abstracts.2008:428-432.

[16] Francis T J G.Electrical prospecting on the continental shelf[M].London:HMSO,1977.1~48

[17] Teleki P G,Dobson M R,Moore J R,etal.Electmical methods in the exploration of seafloon mineral deposits[M].Germany: Springer Pub Co Inc,1979.413-420

[18] MittetR,LosethL,EllingsrudS.Inversion of SBL data acquired in shallow waters[J]. Expanded Abstracts of 66th EAGE Annual Conference,2004,11-13

[19] EidesmoT,EllingsrudS.Sea Bed Logging(SBL),anew methods for remote and direct identification of hy-drocarbon filled layers in deepwater areas[ J].FirstBreak,2002,20,144-152

[20] 庞维奇.油气田勘探[M].北京:石油工业出版社, 2006: 5-100

全球海洋油气勘探开发前景大揭底

全球海洋油气勘探开发前景大揭底 发布时间:2011-11-14信息来源: 海洋石油资源量约占全球石油资源总量的34%,世界对海上石油寄予厚望。由于浅水油气产量的下降、勘探开发技术的进步及深水油气田平均储量规模巨大,吸引着许多油公司都竞相涉足深海豪赌,展示了世界海洋石油工业良好的发展前景。2030年99.72亿吨油当量的油气需求要得以满足,再加上陆上石油资源危机问题日渐突出,因此急需寻找储量的接替区域。而未来石油界的希望应该在海上。而且对于石油公司来说,海上油气的基础设施不易遭到恐怖袭击的破坏,这点使海上油气的勘探开发更有吸引力。研究世界海洋石油工业的现状特别是发展趋势,无论对于整个世界石油工业,还是对于未来世界经济的发展,都有非常重要的意义。 世界海洋石油资源量占全球石油资源总量的34%,全球海洋石油蕴藏量约1000多亿吨,其中已探明的储量约为380亿吨。目前全球已有100多个国家在进行海上石油勘探,其中对深海进行勘探的有50多个国家。 2003年世界海洋石油生产量达12.57亿吨,约占世界石油总生产量的34.1%;2003年世界海洋天然气生产量达6856亿立方米,占世界天然气总生产量约25.8%.1992年世界海洋石油生产量所占份额为26.5%,2002年提高到34%.1992年世界海洋天然气生产量所占份额为18.9%,2002年提高到近25.4%.2003年,世界海洋石油生产量比上年增长3.7%,稍高于世界石油生产量3.5%的增长率。1992-2002年世界石油生产量年均增长率为1.1%.在3.7%的增长速度下,世界海洋石油产量的增长速度是世界石油生产总量增速的3倍多,预计今后几年海洋石油生产仍将以更高的速率增长。2003年,海洋石油生产增速最快的地区依次是:中东11%、北美和中美7.3%、南美 深海石油的勘探开发是石油工业的一个重要的前沿阵地,是风险极高的产业。虽然国际上诸如北海、墨西哥湾、巴西以及西非等地深海石油开发已经有了极大的发展,但代价是极高的。与大陆架和陆上勘探钻井作业相比,深水作业的施工风险高、技术要求高、成本非常昂贵,因而资金风险也极高。 世界海洋油气产量将从2004年的3900万桶油当量/天增加到2015年的5500万桶油当量/日。2004年海洋油气产量分别占全球总产量的34%和28%,到2015年将分别达到39%和34%.而且该报告指出,世界海上石油产量从1960年开始,一直在稳步上升,大约在2010年左右将达到一个峰值。从各大区域来看,北美海上石油产量仍将有小幅度的增加,而西欧海上石油产量自2000年达到峰值后,将一直保持下降的势头。到2015年,非洲、中东和拉丁美洲将占世界海洋石油产量的50%以上。

海洋石油开采工程课程设计.

海洋石油开采工程课程设计

目录 一、设计概要 (1) 二、基础数据 (1) 三、采油参数计算 (5) 四、注入水水源选择与水质要求 (7) 五、注入系统压力分析 (10) 六、注水井投(转)注措施及要求 (15) 七、注水井增注及调剖措施 (16) 八、注水井的日常管理要求 (16) 九、注水工艺方案总结及实施建议 (17) 十、参考文献 (17)

一、设计概要 注水在我国的大多数油田开发中是一项十分重要的开采方式,对于补充地层能量,维持油田较长期高产稳产,是一种有效、易行的方法,对我国原油生产具有举足轻重的作用。在多油层、小断块、低渗透和稠油油藏注水开发方面,形成了适合油藏特点的配套技术。 如何实现有效注水,确保注水水质合格,减少注水过程中的油层损害,减少注水系统的腐蚀及降低注水能耗,是衡量注水技术水平的尺度。油田注水在注水开发方案确定之后,首先要依据油层物理性质和注水来确定注水水质标准,根据注水水质选定足量的水源、水处理技术、预测注水系统压力、进行注水水管柱优化设计、注水井投(转)注措施要求以及增效将耗措施和系统的生产管理要求等。 本设计针对MD碎屑岩油藏低孔低渗等储层特性,采用注水开发,并着重对注水水质,注水系统压力分析和注水管柱进行设计。 通过这次课程设计,了解开采工程基本设计思路、设计内容,掌握设计的基本方法、步骤以及设计中所涉及的基本计算,加强系统的工程训练,培养分析和解决实际工程问题的能力。 二、基础数据 1、井深:2670m油层静压:26.7MPa 套管内径:0.124m 油层温度:90℃ 恒温层温度:16℃地面脱气油粘度:30mPa.s 油相对密度:0.84气相对密度:0.76 水相对密度:1.0油饱和压力:10MPa 含水率:0.4套压:0.5MPa油压:1MPa生产气油比:50m3/m3 原产液量(测试点):30t/d原井底流压(测试点):15.35MPa 抽油机型号:CYJ10353HB电机额定功率:37KW 配产量:50t/d泵径:44mm 冲程:3m冲次;6rpm

海洋探测与调查课程教学大纲

海洋探测与调查课程教学大纲 课程代码:69121070 课程中文名称:海洋探测与调查 课程英文名称:Ocean Exploration and Survey 学分:3.0 周学时:2.5-1.0 面向对象: 预修要求:大学物理、高等数学、海洋技术导论、海洋实验技术 一、课程介绍 (一)中文简介 本课程旨在介绍在海洋探测与调查中常用仪器及方法。课程内容主要由四部分组成:(1)传感与测量基础知识和基本概念,(2)多种传感器的原理、信号转换及应用,(3)海洋调查的主要原理方法、仪器设备,(4)海洋调查数据的处理和分析方法。 (二)英文简介 The purpose of this course is to introduce knowledge on target detection and survey in ocean. The curriculum mainly consists of four parts: (1) basic knowledge and basic concepts on sensors and measurement, (2) working principles of different sensors, signal conversion and the applications, (3) main principles, apparatus, equipment for ocean hydrographic survey, (4) marine survey data processing and analysis. 二、教学目标 (一)学习目标 海洋探测与调查技术是海洋技术的重要组成部分,主要包括传感与检测技术、海洋调查方法两大方面内容。 传感与检测技术是自动化学科的重要组成部分。通过相关内容的学习,学生应该掌握工程检测中常用的传感器、以及运用这些传感器测量诸如压力、温度、位移、物位、转速和振动等参数的方法。在传感器技术方面具有一定的知识,了解工程检测中常用传感器的结构、

海洋油气田开发审批稿

海洋油气田开发 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

中国海洋油气田开发 中国海洋油气资源现状 中国近海大陆架面积130多万平方公里,目前已发现7个大型含油气沉积盆地,60多个含油、气构造,已评价证实的油、气田30个,石油资源量8亿多吨,天然气1300多亿立方米。其中,石油储量上亿吨的有绥中36—1(2亿吨),埕岛(1.4亿吨),流花11—1(1.2亿吨),崖城13—1气田储量800—1000亿立方米。按照2008年公布的第三次全国石油资源评价结果,中国海洋石油资源量为246亿吨,占全国石油资源总量的23%;海洋天然气资源量为16万亿立方米,占总量的30%。而当时中国海洋石油探明程度为12%,海洋天然气探明程度为11%,远低于世界平均水平。在上述中国海洋的油气资源中,70%又蕴藏于深海区域。 近海油气勘探开发 自2005年来,我国近海油气开采勘探进入高速高效发展时期。尽管勘探工作一度遭遇了挫折,但长期的研究和勘探实践均表明中国近海盆地仍具有丰富的油气资源潜力。因此,我们转变了勘探思路, 首先鼓励全体人员坚定在中国近海寻找大中型油气田的信心,并以此为指导思想, 加大了勘探的投入, 狠抓了基础研究和区域评价, 通过科学策和合理部署, 依靠认识创新和技术进步, 勘探工作迅速扭转了被动局面,并取得了显着成效。 2005 年以来, 共发现了 20余个大中型气田, 储量发现迅速走出了低谷, 并自2007年以来达到并屡创历史新高, 步入了高速、高效发展的历史时期, 实现了中国近海勘探的再次腾飞。其中, 渤海海域以大面积精细三维地震资料为基础, 通过区域研究, 对渤海海域油气成藏特征的全面再认识促成了储量发现的新高峰; 南海东部的自营原油勘探获得了恩平凹陷和白云东洼的历史性突破, 有望首次建立自营的独立生产装置; 南海西部的天然气

地震勘探在海洋石油勘探中的基本原理

地震勘探在海洋石油勘探中的基本原理

————————————————————————————————作者: ————————————————————————————————日期:

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。能

国内外海洋石油开发现状与发展趋势

一、海洋石油开发现状 世界石油开发已有200 多年的历史,但直到19 世纪61 年代末期,才真正进入近代石油工业时代。1869 年是近代石油工业纪元年,从此,世界石油产量开始迅速增长。尽管在19 世纪末,美国已在西海岸水中打井,开始了海洋石抽生产,但真正成为现代化海洋石油工业,还是在第二次世界大战以后。海洋石袖是以1947 年美国成功地制造出第一座钢质平台为标志,逐步进人现代化生产。 1990-1995 年期间全世界除美国外有718 个海上新拙气田进行开发。最活跃的地区在欧洲,有265个油气田进行开发,其配是亚洲,有l88个,非洲102 个,拉丁美洲94 个,澳大利亚41 个,中东21 个。 1990 -1995 年期间开发的海上新油气目中,储量、天然气田生产能力、油田生产能力排在~ 前 5 位的国家如下图所示。在此期间,全世界18个国家开发的海上油气田数见表 发展最快的是北美,从1989 年的410 口上升到1993 年的500口。全世界有242 个海上油气田投入生产,其中油田139个,气田103个。从分布上看,西北欧居第一位,共投产67个油、气田,其中油田40个,气田27个。在此期间全球海洋石油总投资额为3379亿美元。 1990-1995年期间,全世界(不含美国)共安装了7113座平台,其中有83座不采用常规固定式平台,而采用半潜式、张力腿式和可移式生产平台。巴西建造了300~1400m深的采油平台,挪威建造的张力腿平台水深达350m,中国南海陆丰22I生产储

油船和浮式生产系统工作水深约为355m。有41个国家大约安装370多座水深不超过60m的浅水采油平台。 总之,世界平台市场需求量增加,利用率在提高。 二、海洋石油开发技术与发展趋势 石油是重要战略物资各国都很重视。21世纪,石油和天然气仍将是世界主要能源。世界油气资源潜力还相当大,有待发展先进技术,进一步加强勘探和开发,以提高发现成功率和采收率,降低勘探开发成本。 海洋石油的开发已为全世界所瞩目,世界海洋石油的日产量也在逐年增长。随着陆上石油逐渐枯竭,海上油气的开采将会越来越重要。同时,由于开采技术的不断提高,海洋石油的开发也将不断向南、深、难的方向发展,其总的趋势如下。 (一)石油地质勘探技术 今后的世界石油勘探业将是希望与困难井存。一方面,还有许多远景盆地有待勘探,成熟盆地还有很大的勘探潜力。油气新远景区可能是深海水域、深地层和北极盆地。另一方面,20世纪四年代的油气勘探己向广度和深度发展。世界范围内寻找新油气田,增加油气勘探储量,提高最终采收率的难度越来越大,油气田勘探开发成本直线上升。石油地质工作者将面临降低勘探成本、提高探井成功率,增加探明储量的挑战。在这种严峻的形势下,今后的石油地质科技将向三个方面发展. ①加强盆地数字模拟技术的研究,以深入解剖盆地,揭示油气分布规律, ②加强综合勘探技术的研究,以提高探井成功率,降低勘探成本; ③加强开发地质研究,探明石油储量,帮助油藏工程师优化石油开采,最大限度地提高采收率。 (二)地质勘探技术 海上地震勘探技术的发展趋势是:海上数据采集将越来越多地采用多缆、多震源及多船的作业方式,这样可大大提高效率,降低费用,研究和应用适于海上各种开发区的观测方法,实现海上真三维地震数据来集;研究大容量空气枪减少复杂的气枪组合;开发海上可控震源;不断增大计算机容量,提高三维处理技术,计算机辅助解释系统的发展将进一步满足人机交互解释的需要,并向小型、多功能、综合解释方向发展。对未来交互解释站计算机能力的期望是100 MB的随机存取存储器;2000万条指令∕s,高分辨率荧光屏,软件可移植性。新一代交互解释站将具有交互处理能力,具备叠前、叠后、反演、模拟等处理功能,能作地质、测井、VSP横波资料的综合分析和解释,将物理的定量分析和地质信息结合起来,进行地层和岩性解释。 (三)钻井工艺技术 钻井在油气勘探、开发中占有重要的地位。钻井技术水平不仅直接影响勘探的效果和油气的产量,而且由于钻井成本占勘探开发成本的大部分,因此,它直接关系到油田勘探开发所需要的投资额。基于这一点,提高钻井技本水平和钻井效率、降低钻井戚本对油气田勘报开发具再重要意义。 过去的10年是钻井技术发展的10年,钻井技术的各个领域都取得了明显的进步。随钻测量系统可以把井眼位置、钻井妻数和地层参数及时传送到地面,从而能够实时了解井下情况和监测钻进过程,随锚测量还大大提高了钻井的安全性相钻井效率,地面数据采集与处理计算机系统和计算机信息网络,提高了钻井过程的实时控制和预测能力,实现钻井过程的系统优化、连续控制井眼轨迹技术提高了定向钻井水平;基础研究的加强,促进了钻头设计、钻头性能预测等方面的改善;聚晶金刚石钻头的发展和新型的聚晶金刚石钻头的出现,不仅显著提高了钻头机械钻速,而且成功地解决了非均质破裂研磨性地层的经济钻进问题;优质泥浆和固控技术解决了复杂地层的钻井问题,提高了钻

海洋调查实验报告

实习报告 课程名称:海洋调查与资料分析方法 实验名称:出海观测及海洋技术中心参观学院: 专业: 学号: 姓名: 指导教师: 2015年 7 月17日

一、实习地点和实习时间: 地点:渤海湾和塘沽中心站 时间:2015年7月12日至7月17日 二、实习目的: (1)掌握各种海洋调查仪器使用的方法; (2)掌握处理数据的流程,学习数据处理的方法; (3)能够熟练使用matlab、seabird等软件,并能应用该软件进行简单的数据处理和绘制所需图像; (4)了解海洋调查工作的各个流程,掌握海上安全的要求; (5)了解海洋生物化学实验室分析的基本步骤和流程; (6)了解数值预报系统的基本原理,业务流程及灾害出现的操作流程。 三、实验主要仪器 (1)软件准备:Ruskin(RBR CTD)、INFINITY Series Acquisition Tools、INFINITY Data Processing Software、 seabird软件; (2)仪器准备:RBR-CTD、OBS浊度计、电磁海流计、GPS、便携式测风仪、绳子、铅垂等; (3)资料准备:滨海新区岸线图,用于画站位图; 四、实习的主要容: 本次实习主要包含两部分:出海实习和塘沽中心站的参观实习 (1)7月10日出海进行海洋要素观测。分为水文组、气象组、海流组,使用RBR CTD 测水文要素;风速风向仪和GPS测得风温湿压等一些气象观测要素和站位经纬度信息;利用OBS浊度计,测得浊度剖面;ADCP声学多普勒流速剖面仪测得流速剖面; (2)7月15日参观塘沽海洋环境监测预报中心。参观容分为两部分:实验分析和数值预报。 五、海洋调查实习过程: (1)准备工作:出海前进行仪器准备,主要包括:仪器(硬件&软件)检查,工具准备,收集天气信息,仪器装箱打包放入船;其中,仪器检查和准备包括:电池电量检查,仪器的完整程度,仪器配套的相应软件的下载安装调试,绞车数量(由于本次调查无大型仪器,故不需要进行该项准备),铅鱼绳子电缆的数量和规格,劳保用品,药品饮水等

海洋油气技术及装备现状

海洋油气技术及装备现状 文/江怀友中国石油经济技术研究院 一、概述。 发达国家海洋勘探开发技术与装备日渐成熟,海上油气产量继续增长,开采作业的范围和水深不断扩大,墨西哥湾、西非、巴西等海域将继续引领全球海洋油气勘探开发的潮流。 二、世界海洋油气资源的现状。 海洋油气的储量占全球总资源量的34%,目前探明率为30%,尚处于勘探早期阶段。 油气资源分布,主要分布在大陆架,占60%,深水和超深水占30%。目前国际上流行的浅海和深海的划分标准,水深小于500米为浅海,大于500米为深海,1500米以上为超深海。目前从全球来看,形成的是“三湾两海两湖”的格局。海洋油气产量,海洋油气产量在迅速增长,以上是第二部分。

三、世界海洋油气资源勘探开发的历程。 海洋油气的勘探开发是陆上石油的延续,经历了从浅水深海、从简单到复杂的发展过程,1887年在美国的加利福尼亚海岸钻探了世界上第一口海上探井,拉开了世界海洋石油工业的序幕。 四、海洋油气勘探开发的特点。 1.工作环境的特点。与陆上相比,海洋有狂风巨浪,另外平台空间也比较狭窄,这是美国墨西哥湾在05年因为飓风的平台遭到了损坏。 2.勘探方法的特点。陆上的油气勘探方法和技术,原理上来讲,陆上和海洋是一样的,但是如果我们把陆上的地质调查到海上就很难大规模开展,主要是要受海水的物理化学性质的影响。 3.就是钻井工程的特点。无论是勘探还是采油都要钻井,但是在海上,要比陆上复杂得多,因为海上我们要到平台上进行钻井,根据不同的水深,有不同的钻井平台。 4.投资风险特点。因为海上特殊的环境,因此它的勘探投资是陆上的3-5倍,这张图,随着深度的增加,成本在增加。但是海洋勘探开发也有优势,比如说在海洋的地震,地震船是边前进边测量,效率比陆上要高。以上是第四部分。 五、世界海洋工程装备的概况。 我们讲一下世界海洋的格局,找到我们自己的发展方向,海洋工程装备指海洋工程的勘探、开采加工、储运管理及后勤服务等大型工程装备和辅助性的装备,但是目前把开发装备认为是主体,世界海洋油气工程装备设计与制造的格局,目前

海洋水文气象调查与观测实习

海洋水文气象调查与观测实习 一、实习时间和具体安排 2015年7月6号:召开实习动员大会 2015年7月9号:校内实验 2015年7月10:号芦潮港海洋监测站观测实习 2015年7月14号:海上实习 二、实习目的 理论和实践相结合,掌握各海洋要素观测前的准备、观测操作以及样品(数据)处理等阶段的具体要求和注意事项;培养吃苦耐劳的精神,增强动手能力和知识运用能力;培养海上安全意识;认识海洋调查与观测的重要意义。海洋调查与观测实习有助于培养自我分析、概括、欣赏的能力;培养语言表达能力及公众场合发言的能力;培养同学之间相互沟通相互交流,团结合作的能力;培养学生具有扎实的对试验资料进行统计分析处理的能力和初步的生物学试验设计的能力。 三、实习项目: 2.1、芦潮港海洋检测站观测实习 1、观测内容 在专业人员的带领和讲解下,参观了用于监测海洋水文气象要素的仪器(浮标、CTD、ADCP、潮位仪等)和监测自动化系统(海洋水文气象自动监测系统、卫星接收系统等),了解监测站的工作内容,并去码头参观,实地参观码头上设置观测取样点(验潮井、温盐井、水尺)。了解和学习监测站的基本监测要素所用的仪器、设备。 2、观测仪器简介 浮标:海洋浮标是一种投放在海洋中的现代化的海洋观测设施。有锚定类型浮标和漂流类型浮标。它具有全天候、全天时稳定可靠地收集海洋环境资料的能力,并能实现数据的自动采集、自动标示和自动发送。海洋浮标与卫星、飞机、调查船、潜水器及声波探测设备一起,组成了现代海洋环境立体监测系统。海洋浮标,一般分为水上和水下两部分,水上部分装有多种气象要素传感器,分别测量风速、风向、气温、气压和温度等气象要素;水下部分有多种水文要素传感器,分别测量波浪、海流、潮位、海温和盐度等海洋水文要素。 CTD:它是特指一种用于探测海水温度,盐度,深度等信息的探测仪器,名为:温盐深仪ADCP:超声多普勒流速仪是应用声学多普勒效应原理制成的测流仪,采用超声换能器,用超声波探测流速。测量点在探头的前方,不破坏流场,具有测量精度高,量程宽;可测弱流也可测强流;分辨率高,响应速度快;可测瞬时流速也可测平均流速;测量线性,流速检定曲线不易变化;无机械转动部件,不存在泥沙堵塞和水草缠绕问题;探头坚固耐用,不易损坏,操作简便等优点。 潮位仪:潮位仪(验潮仪,水位计,波潮仪)可测潮位、水位、波浪环境要素 加拿大RBR公司的有4款小巧的潮位仪: 1,TGR-2050 自记式潮位仪,适合近岸海洋工程勘察,深度精度精度0.05%。 2,TGR-1050 HT 实时遥报潮位仪,自动去除大气压影响,适合港口实时潮位监测,深度精度0.1%。 3,XR-420 SBR 深海水位计,适合深海水位测量,深度精度0.01%。 4, TWR-2050 波潮仪,即可测潮位,又可测波浪,深度精度精度0.05%。 验潮井:验潮井是为安装验潮仪而专设的建筑物。验潮井按其建筑结构形式可分为岛式和岸式两种。 温盐井:为获取温、盐实时连续数据而建立的观测设施,并安装温、盐自动监测设备。

我国海洋深水油气资源的开发面临挑战和机遇

我国海洋深水油气资源的开发面临挑战和机遇 发布时间:2011-11-14信息来源: 深水区域蕴藏着丰富的油气资源。全球范围内,海上油气资源有44%分布在300 m以深的水域,已于深水区发现了33个储量超过8 000万m3的大型油气田;此外,深水区域具有丰富的天然气水合物资源,全球天然气水合物的资源总量(含碳量)相当于全世界已知煤炭、石油和天然气等总含碳量的2倍,其中海洋天然气水合物的资源量是陆地冻土带的100倍以上。到2004年末,全世界已有124个地区直接或间接发现了天然气水合物,其中海洋有84处,通过海底钻探已成功地在20多处取得天然气水合物岩心;同时,在陆上天然气水合物试采已获得成功。 我国南海具有丰富的油气资源和天然气水合物资源,石油地质储量约为230亿~300亿吨,占我国油气总资源量的三分之一,其中70%蕴藏于深海区域。在我国南海海域已经发现了天然气水合物存在的地球物理及生物等标志,但我国目前油气开发还主要集中在陆上和近海。随着全球能源消耗需求的增长,在加大现有资源开发力度的同时,开辟深海油气勘探开发领域以寻求新的资源是当前面临的主要任务。 1世界海洋石油工业技术现状 随着海上油气开发的不断发展,海洋石油工程技术发生着日新月异的变化,在深水油气田开发中,传统的导管架平台和重力式平台正逐步被深水浮式平台和水下生产系统所代替(图2),各种类型深水平台的设计、建造技术不断完善。目前,全世界已有2 300多套水下生产设施、204座深水平台运行在全世界各大海域,最大工作水深张力腿平台( TLP)已达到1 434 m、SPAR为2 073 m、浮式生产储油装置( FPSO)为1 900 m、多功能半潜式平台达到1 920 m以上、水下作业机器人(ROV)超过3 000 m,采用水下生产技术开发的油气田最大水深为2 192 m,最大钻探水深为3 095 m。与此同时,深水钻井装备和铺管作业技术也得到迅速发展,全世界已有14艘在役钻探设施具备进行3000 m水深钻探作业能力,第5代、第6代深水半潜式钻井平台和钻井船已在建造中(图3)。第6代深水钻井船的工作水深将达到3 658 m,钻井深度可达到11 000 m;深水起重铺管船的起重能力达到14000吨,水下焊接深度为400 m,水下维修深度为2000 m,深水铺管长度达到12 000 km1)。 2我国海洋石油工业技术现状 若从1956年莺歌海油苗调查算起,我国海洋石油工业已经走过了近50年的发展历程。特别是1982年中国海洋石油总公司成立后,我国海洋石油工业实现了从合作开发到自主开发的技术突破,已经具备了自主开发水深200 m以内海上油气田的技术能力,建成投产了45个海上油气田,建造了93座固定平台,共有13艘FPSO (其中8艘为自主研制)、1艘FPS(浮式生产装置)、4套水下生产设施,形成了3 900万吨的生产能力。

海洋油气勘探开发工程环境影响评价技术规范

海洋油气勘探开发工程环境影响评价 技术规范

目次 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 总则 (2) 5 工程概况与工程分析 (8) 6 环境现状调查与评价 (9) 7 环境影响预测与评价 (14) 8 环境风险分析与评价 (19) 9 清洁生产、总量控制与环保措施 (22) 10 环境经济损益分析 (23) 11 公众参与 (23) 12 环境管理与监测计划 (25) 13 环境影响综合评价结论及对策建议 (26) 附录A (规范性附录)海洋油气开发工程环境影响报告书格式与内容 (28) 附录B (规范性附录)海洋油气开发工程环境影响报告表格式与内容 (32) 附录C (规范性附录)海洋油气勘探工程环境影响登记表格式与内容 (42) 附录D (规范性附录)海洋油气开发工程环境影响报告书简本格式与内容 (45) 附录E (资料性附录)潮流数值模拟方法 (47) 附录F (资料性附录)床面泥沙冲淤数值模拟方法 (52) 附录G (资料性附录)泥沙输移扩散数值模拟方法 (55) 附录H (资料性附录)污染物输运数值模拟方法 (59) 附录I (资料性附录)溢油漂移扩散数值模拟方法 (63)

1 范围 本规范规定了海洋油气勘探开发工程环境影响评价的程序、主要内容、技术方法和技术要求。适用于在中华人民共和国内海、领海以及中华人民共和国管辖的一切其它海域内从事海洋油气勘探开发工程的环境影响评价工作。 2 规范性引用文件 本规范引用了下列文件和规范,其最终版本适用本规范。 GB 3097 海水水质标准 GB 3552 船舶污染物排放标准 GB 4914 海洋石油勘探开发污染物排放浓度限值 GB 8978 污水综合排放标准 GB 11607 渔业水质标准 GB 17378 海洋监测规范 GB 18421 海洋生物质量 GB 18486 污水海洋处置工程污染控制标准 GB 18668 海洋沉积物质量 GB/T 12763 海洋调查规范 GB/T 19485 海洋工程环境影响评价技术导则 HJ/T 169 建设项目环境风险评价技术导则 SC/T 9110 建设项目对海洋生物资源影响评价技术规程 3 术语和定义 下列术语和定义适用于本规范。 3.1 海洋油气勘探工程offshore petroleum exploration project 为了寻找和查明海上油气资源,而利用各种勘探手段了解地下的地质状况,认识生油、储油、油气运移、聚集、保存等条件,综合评价含油气远景,确定油气聚集的有利地区,找到储油气的圈闭,并探明油气面积、油气储量、油气层情况及其产出能力的过程。 3.2 海洋油气开发工程offshore petroleum development project 为了将海洋中的地层石油和天然气资源转化为油气产品所进行的新建和调整工程作业活动。主要包括建设海上平台、海上人工岛(通岛路)、浮式钻井设施和海底油气井口设施、浮式生产储油装置、海底管线、陆上终端等设施,并进行的钻完井作业、油气开采、井流物的分离和处理、水和岩屑的回注等过程,以及其它改变海水、海岸线、滩涂、海床和地层等自然环境现状的油气开发工程。 3.3 环境风险environmental risk 环境风险是指突发性事故对环境的危害程度,用风险值表征,为事故发生概率与事故造成的环境后果的乘积。 3.4 油气田oil and gas field

海洋油气资源开发的战略分析

海洋油气资源开发的战略分析 石油是重要的能源之一,支撑着世界工业、经济和军事的发展,成为经济的重要来源。我国是重要的石油消费大国,人口多,地域广阔,工业化规模广等,使得国家对石油的需求量在逐渐增大。但是,现阶段的石油资源处于高度紧张的状态,为满足国内需求需要从国外进口,对于中国来说是一项重大的经济支出。为缓解当前状况,应加强对海洋油气资源的合理性开发,针对此项问题,文章就海洋油气资源开发模式的战略性构建予以分析。 标签:海洋油气资源;开发;战略 海洋中蕴含有丰富的能源,矿产资源丰富,存在着固态、液态、气态等多种形式。然而,我国现代经济的发展,各个领域对油气资源的需求量大,陆地资源状况严峻,部分区域出现了枯竭的状态。为了支撑我国的全面发展,必须着眼于海洋资源,注重对海洋油气资源的合理化开发,运用深水处油气开采技术对海洋内的相关资源进行开采,能及时获取新能源,进而替代原有的能源供社会各个领域的使用。 1 海洋油气资源开发的现状分析 1.1 缺乏先进性的勘查与开采技术 通过对现阶段海洋油气资源开发现状的有效分析,了解到由于受到国家实力、人为素质和设备等因素的影响,使得勘查与开采技术相对落后,致使油气资源开采质量与效率不高。我国地产丰富,海域面积相对较广,在管辖范围内的海域面积达到300万平方公里,为油气开采提供优质的开采平台[1]。但是,尤其勘查与开采技术不过关,是制约油气资源开采的一个现实性问题。与发达国家相比,我国在油气资源开采方面相对落后,科学技术含量低,缺乏先进的海洋勘查设备与探测设备,制约着油气开采的质量,是当前海洋油气资源开发工作中面临的重要问题之一。 1.2 社会对油气资源的需求量过大 社会的发展与进步,使得各个领域对油气资源的需求量在不断增大,油气资源常常是供不应求,由于技术的约束,导致油气开采效率不高,开采量很难满足社会的需求,能源紧张的状态始终未得到有效的缓解。为了维持我国各个行业的发展,我国不得不采取能源进口措施,2012年,我国进口原油达到约2.8亿吨,越来越依赖于石油进口方式,致使资金费用大量流失海外,对中国自身的发展会产生一定的抑制性。来自国土资源局的消息,中国的陆海天然气沉积量为600万km2,但是三大石油公司在相关数据登记时,其所登记的数据为435km2[2],真实的开采情况要远远低于登记的数据,使得天然气开采问题变得尤为突出。 1.3 油气开采导致的环境问题恶劣

中国海洋石油总公司的发展现状

中国海洋石油总公司 一、总公司简介: 中国海洋石油总公司(China National Offshore Oil Corporation,CNOOC,以下简称中国海油)是中国最大的国家石油公司之一,是中国最大的海上油气生产商。公司成立于1982年,注册资本949亿元人民币,总部位于北京,现有员工6.85万人。涉及业务包括油气勘探开发、专业技术服务、化工化肥炼化、天然气及发电、金融服务、综合服务与新能源等六产业板块。2010年,公司全年完成油气产量6494万吨油当量,实现营业收入3548亿元人民币,利润总额977亿元人民币,年末总资产达到6172亿元人民币。 二、组织结构概览: 上游业务中上游业务 中国海洋石油有限公司:(下辖)中海石油气电集团有限责任公司 中海石油(中国)有限公司天津分公司中海石油炼化有限责任公司 中海石油(中国)有限公司湛江分公司中国海洋石油总公司销售分公司 中海石油(中国)有限公司深圳分公司中海油气开发利用公司 中海石油(中国)有限公司上海分公司中国化工供销(集团)总公司 中海石油研究中心中海石油化学股份有限公司 专业技术金融服务 中海油田服务有限公司中海石油财务有限责任公司 海洋石油工程股份有限责任公司中海信托股份有限公司 中海油能源发展股份有限公司中海石油保险有限公司 中国近海石油服务(香港)有限公司中海石油投资控股有限公司 其他 中海油新能源投资有限责任公司中海油基建管理有限责任公司 中国海洋石油渤海公司中化建国际招标有限公司 中国海洋石油南海西部公司中海油信息技术(北京)有限责任公司 中国海洋石油南海东部公司中国海洋石油报社 中国海洋石油东海公司中海实业公司 公司文化以人为本,担当责任,和合双赢,诚实守信,变革创新;及对社会要节能减排,公益事业的责任。 二、进入外国市场的方式及公司的经营策略 进入外国市场的方式 (1)出口进入方式。 (2)合同进入方式。 (3)投资进入方式。 开展海外投资应主要采取以下几种途径[1]: 1 与东道国的石油公司联合 2 与有经验的大型跨国石油公司联合 3 无风险服务合同 4 购买储量 5 获得勘探开发股份的转让

海洋油气勘探新技术

海洋油气勘探新技术 摘要:近些年来,陆地油气资源逐渐面临枯竭,大家都将目光转向海洋。而海洋油气资源的开发的第一步就是海洋油气资源的勘探,本文通过对几种海洋油气资源勘探技术的描述,介绍一下海洋油气资源勘探技术的发展历程,以及目前的技术水平。 关键词:海洋油气勘探技术新发展 1.引言 我国是海洋大国,传统海域辖区总面积近3×106km2[3,4]。以300 m水深为界,浅水区面积约1.46×106km2、深水区面积约1.54×106km2{2]。南海我国传统疆界内石油地质储量为1.6439×1010t、天然气地质资源量为1.4029×1013 m3,油当量资源量约占我国总资源量的23 %,油气资源潜力巨大;其中300 m以下深水区盆地面积为5.818×105km2,石油地质储量为8.304×109t、天然气地质资源量为7.493×1012m3。目前我国在南海的油气勘探主要集中在北部4个盆地,面积约3.64×105km2[3,4]。 陆地油田经过长期的勘探开发,大部分已进入勘探开发的后期,受勘探资源枯竭以及油田开发规律的影响,陆地油田产量增长难度较大,不仅如此,大庆油田、胜利油田等陆地典型老油田的产量已进入递减阶段。图1给出了1971年到2013年全国石油产量构成柱状图,全国石油产量整体上呈稳步增长的趋势,但中国石油天然气股份有限公司、中国石油化工集团公司等以陆地油田为主的公司年产油增长缓慢,自1990年以来,全国石油增长总量的60 %来自中国海洋石油总公司。我国近海油气资源丰富,勘探开发的程度远低于陆地,尚处于蓬勃发展期,近海油气田将是我国油气产量主要的增长点。当前中国海洋石油总公司年产油气当量规模在5×107t,根据中国海洋石油总公司的发展规划,到2030年国内海上将建成1×108t油气当量年产规模,未来17年将增加一倍的产能,届时近海油气产量在我国石油产量构成中的比重将更加突出,近海油气对我国国民经济的支撑作用将更加凸显[1]。

海洋油气资源分布、储量及开发

世界及我国海洋油气资源分布、储量及开发现状据预测,全球陆上的油气可采年限约为30-80年。随着对石油需求的快速增加,进入21世纪,世界随之步入了石油匮乏的时代,也就是所谓的“后石油时代”。 业内专家表示,海洋油气的储量占全球总资源量的34%,目前探明率为30%,尚处于勘探早期阶段。丰富的资源现状让全世界再次将目光瞄准了海洋这座石油宝库。 据统计,2009年海洋石油产量已经占世界石油总产量的33%,预计到2020年这个比例将会提高到35%。2009年海洋天然气产量占世界天然气总产量的31%,预计2020年,这个比例会提高到41%。 目前,深水和超深水的油气资源的勘探开发已经成为世界油气开采的重点领域。TSC海洋集团董事长蒋秉华在接受《中国能源报》记者采访时说:“在海洋石油方面,过去十几年世界上新增的石油后备储量、新发现的大型油田,有60%多来自海上,其中大部分是来自于深海。” 中国的沿海大陆是环太平洋油气带的主要聚集区,蕴藏着丰富的石油储量,据预测,中国海洋油气的资源量达数百亿吨。作为全球石油消费第二大国,2009年我国的原油对外依存度已超过50%,因此,加快中国海洋石油工程业务的发展已势在必行。 一、世界海洋油气资源分布及储量 据美国地质调查局(USGS)评估,世界(不含美国)海洋待发现石油资源量(含凝析油)548亿吨,待发现天然气资源量78.5万亿立方米,分别占世界待发现油气资源量的47%和46%。因此,全球海洋油气资源潜力巨大,勘测前景良好。 世界海洋油气与陆上油气资源一样,分布极不均衡。在四大洋及数十处近海海域中油气含量最丰富的数波斯湾海域,约占总储量的一半左右;其余依次为:委内瑞拉的马拉开波湖海域、北海海域、墨西哥湾海域、中国南海以及西非等海域。海洋油气资源主要分布在大陆架,约占全球海洋油气资源的60%,但大陆坡的深水、超深水域的油气资源潜力可观,约占30%。两极大陆架也蕴藏着丰富的

海洋资源的开发和利用(一).doc

海洋资源的开发和利用(一) 教学目标 1.了解海洋资源的类型和特征,以及各类海洋资源的开发利用。 2.了解世界海洋渔业资源的分布和海洋渔业生产状况;了解世界海洋油气资源的开发过程。 3.了解在海洋资源的开发利用过程中,可能出现的问题以及应采取的措施。树立人类对海洋资源的合理利用和保护的观点。 教学建议 关于海洋油、气开发的教学建议 在教学中,教师可首先向学生介绍海洋油、气资源的勘探和开发过程。教师利用课本插图《海上钻井平台》,从海洋油、气资源的勘探、开采、运输、对生产设备和技术的要求、对工作人员素质的要求等方面进行讲述。这里,也可以将海洋油气资源的生产与陆地油气资源的生产过程做一个对比,突出海底石油和天然气勘探、开采的高投资、高技术难度、高风险的特点。最后,向学生介绍我国在海底石油和天然气勘探、开采过程中,采取的国际合作和工程招标方式。 关于海洋渔业生产的教学建议 在教学中,教师可引导学生读《大陆架剖面示意》图,了解大陆架海域的范围和自然条件,讲解海洋渔业资源主要集中在

沿海大陆架海域的原因。在讲解渔场形成原因时,可结合已学过的有关洋流的知识进行分析,为什么有寒暖流交汇的地方或有冷海水上泛的地方会形成大渔场。接下来,教师可引导学生读《世界主要渔业地区的分布》图,并说明在温带海区由于饵料丰富,世界大渔场多在温带海区,使很多温带的沿海国家成为世界的主要渔业国。如中国和日本是世界海洋渔获量较多的国家,对国民的食品结构影响很大。特别是日本可耕地有限,人口密度又大,海洋食品占有很大比重,如日本人喜欢吃的生鱼片、寿司等。如有条件,可向学生播放有关日本饮食文化的录像。 关于海洋资源类型的教学建 在教学中,教师可搜集一些有关陆地自然资源和能源短缺或枯竭的具体事例,向学生进行介绍,使之认识到海洋资源开发利用的意义和必要性。然后,让学生说出所知道的海洋资源的种类。在此基础上,教师归纳出目前人类开发利用的海洋资源的种类。接下来,对海水资源(包括海洋化学资源、水资源)、海洋生物资源、海洋矿产资源、海洋能源资源的特点和利用潜力进行讲述。 --示例 〖引入新课〗 1.讲述:开发海洋资源的必要性和重要性。 2.提问:你所了解的人类可开发利用的海洋资源有哪些类型? 〖关于海洋资源类型的教学〗 1.讲解:人类开发利用的海洋资源,主要有海洋化学资源、海洋生物资源、海底矿产资源和

海上油气开采工程与生产系统教程

海上油气开采工程与生产系统 中海工业有限公司 第一章海上油气开采工程概述 海底油气资源的存在是海洋石油工业得以进展的前提。海洋石油资源量约占全球石油资源总量的34%,全球海洋石油蕴藏量约1000多亿吨,其中已探明的储量约为380亿吨。世界对海上石油寄予厚望,目前全球已有100多个国家在进行海上石油勘探,其中对深海进行勘探的有50多个国家。 一、海上油气开采历史进程、现状和今后 一个多世纪以来,世界海洋油气开发经历如下几个时期: 早期时期:1887年~1947年。1887年在墨西哥湾架起了第一个木质采油井架,揭开了人类开发海洋石油的序幕。到1947年的60年间,全世界只有少数几个滩海油田,大多是结构简单的木质平台,技术落后和成本高昂困扰着海洋石油的开发。 起步时期:1947年~1973年。1947年是海洋石油开发的划时代开端,美国在墨西哥湾成功地建筑了世界上第一个钢制固定平台。此后钢平台专门快就取代了木结构平台,并在钻井设备上取得突破性进展。到20世纪70年代初,海上石油开采已遍及世界各大洋。 进展时期:1973年~至今。1973年全球石油价格猛涨,进一步推进了海洋石油开发的历史进程,特不是为了应对恶劣环境的北海和深水油气开发的需要,人们不断采纳更先进的海工技术,建筑能够抵御更大风浪并适用于深水的海洋平台,如张力腿平台(TLP)、浮式圆柱型平台(SPAR)等。海洋石油开发从此进入大规模开发时

期,近20年中,海洋原油产量的比重在世界总产油量中增加了1倍。进军深海是近年来世界海洋石油开发的要紧技术趋势之一。 二、海上油气开采流程 海上油气田开采可划分为勘探评价、前期研究、工程建设、油气生产和设施弃置五个时期: 勘探评价时期:在第一口探井有油气发觉后,油气田就进入勘探评价时期,这时开发方面的人员就开始了解该油气田情况,开展预可行性研究,将今后开发所需要的资料要求,包括销售对油气样品的要求,提交勘探人员。 前期研究时期:一般情况,在勘探部门提交储量报告后,才进人前期研究时期。前期研究时期要紧完成预可行性研究、可行性研究和总体开发方案(ODP)。前期研究时期也将决定油气田开发基础,方案的优化是最能提高油气田经济效益的手段。因此,在可行性研究和总体开发方案 ( ODP )上都要组织专家进行审查,并得到石油公司高级治理层的批准。 工程建设时期:在工程建设时期,油藏、钻完井和海洋工程方面的要紧工作是成立各自的项目组,建立有效的组织结构和治理体系,组织差不多设计编写并实施,对工程质量、进度、费用、安全进行全过程的治理和操纵,使之达到方案的要求。油藏项目组要紧进行随钻分析和井位、井数等方面调整;钻完井项目组紧密与油藏项目组配合进行钻井、完井方案的实施;海洋工程项目组负海上生产设施的建筑;生产方面的人员也会提早介入,并进行投产方面的预备。

相关文档
最新文档