二次函数对称轴经典问题

二次函数对称轴经典问题
二次函数对称轴经典问题

高中数学二次函数对称轴典型问题练习题

二次函数在闭区间上一定存在最大值和最小值,此类问题与区间和对称轴有关,一般分为三类:

①定区间,定轴; ②定区间,动轴,

③动区间,动轴.要认真分析对称轴与区间的关系,合理地进行分类讨论,特别要注意二次项系数是否为0.

第一类问题 二次函数中的动轴定区间 例一已知函数2142+-+-=

a ax x y 在区间[0,1]上的最大值是2,求实数a 的值。 〖解答〗.3

106,310,2)1(,]1,0[,2,12/;,20,32,2)2

(,20,120;6,2)0(,]1,0[,0,02

,2,42)2(max max max 22或综上上单调递增函数在即时当故舍去矛盾与或得有即时当得有上单调递减函数在即时当对称轴为-==∴==∴>>≤≤-===≤≤≤≤-===<<=+-+--=a a f y a a a a a f y a a a f y a a a x a a a x y 第二类问题 二次函数中的定轴动区间

例二 函数f (x )=142-+-x x 在区间[t ,t +1](t ∈R)上的最大值记为g (t ).

(1)求g (t )的解析式;(2)求g (t )的最大值

(1)对区间[t ,t +1](t ∈R)与对称轴x =2的位置关系进行讨论: ①当t +1<2,即t <1时,函数f (x )在区间[t ,t +1]上递增,

此时g (t )=f (t +1)=-t 2+2t +2;

②当t ≤2≤t +1,即1≤t ≤2时,函数f (x )在区间[t ,t +1]上先增后减, 此时g (t )=f (2)=3;

例三

已知f (x )=)(2)34(2R a a x x a ∈+--a ∈R),求f (x )在[0,1]上的最大 值

()()()()()()2222[1]4122(1)3(12)241(2) 3.

t f x t t g t f t t t t t t g t t t t t g t >?-++?

③当时,函数在区间,+上递减,此时==-+-,综上,=利用图象解得的最大值是()()()[]()()()()[]()()max max 4430342.30,140.34430341()43003430,10.12a a f x x f x f x f a a a a x a f x f x f a ????≠≠

<><-????若-=,则=,所以=-+由于在上是减函数,所以==若-,即,分两种情况讨论:ⅰ若-,即,因为对称轴=,所以在上是减函数,所以=【】=解析()()()()()[]max max 4

1()43003

43112043231221124<<<0.243330,1222()a a x a a a f x f a a f x f a a f x a a ><>-<≤≤-????????-?-≤ⅱ若-,即,因为对称轴=,故又分两种情况讨论:①当,即时,==-;②当,即时,==综上所述,在上的最大值是关

第三类 动轴动区间

例二 求函数)(a x x y --=在区间],1[a -上的最大值。 〖解答〗.4

,0,2;0)(,01,2.,4)2()(,12,12max max 2

2a y a a a a f y a a a a a x a x x y a a =><==≤<-≥+--=--=->∴->时即当时即当图象开口向下由已知 练习 已知函数f (x )=862+-x x , x ∈[1,a ]的最小值为f (a ),则实数a 的取值范围是

补充练习作业

1已知二次函数f(x)=ax2 – 6ax+a2 – 6在[0,4]上有最大值4,求函数最小值?

2已知二次函数f(x)=4x2 – 4ax+a2 – 2a+2在[0,2]上的最小值为3,求a.

3 求函数322+-=x x y 在[]1,+∈t t t 的最大值和最小值

4若函数1)(2-+=ax x x f 在[]3,0上的最小值为2-求实数a 的值

5关于x 的不等式0122>--ax x 在[]3,1∈x 上恒成立,求a 的取值范围

6设()222+-=ax x x f 当[)+∞-∈,1x 时,a x f ≥)(恒成立,求a 的取值范围

7已知函数[]1,1,)1(23)(22-∈+-+=x a x a x x f

(1) 写出函数最小值)(a g 的解析式

(2) 若)(x f 的最小值为13求a 的值

8函数3)(2++=ax x x f 在区间[]2,2-的最大值为)(a g ,求)(a g 的表达式还可以求最小值

二次函数的对称轴(学练结合)

二次函数的对称轴 二次函数的图像是关于某条直线对称的抛物线,这条直线就叫做对称轴。我们用公式这样表示对称轴,直线x=-b/2a,有图像可知,当二次函数图像上两点的纵坐标相等时,那么这两点必然关于对称轴对称,且对称轴为这两点横坐标之和的一半。形如:点 A(x1,y1)、B(x2,y2)在二次函数的图像上,若y1=y2,那么图像的对称轴为 (x1+x2)/2。抛物线的顶点必然通过对称轴。所以可以根据顶点坐标直接求出对称轴。例如已知二次函数的顶点坐标为(x1,y1),那么二次函数的对称轴为直线x=x1。 在平面直角坐标坐标系中,已知两点坐标便可求其连线的中点坐标,例如:已知点 A(x1,y1)、B(x2,y2),则两点连线的中点为 C((x1+x2)/2,(Y1+Y2)/2),一般情况,出题者会结合一次函数,中垂线,三角形,二次函数进行综合考查。

例题演练 1、已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴() A.只能是x=﹣1 B.可能是y轴 C.在y轴右侧且在直线x=2的左侧D.在y轴左侧且在直线x=﹣2的右侧 2、已知二次函数y=a(x﹣h)2+k(a>0)的图象过点A(0,1)、B(8,2),则h的值可以是() A. 3 B. 4 C. 5 D. 6 3、如图,已知二次函数y1=﹣x2+x+c的图象与x轴的一个交点为A(4,0),与y轴的交点为B,过A、B的直线为y2=kx+b. (1)求二次函数y1的解析式及点B的坐标; (2)由图象写出满足y1<y2的自变量x的取值范围; (3)在两坐标轴上是否存在点P,使得△ABP是以AB为底边的等腰三角形?若存在,求出P的坐标;若不存在,说明理由.

初中数学二次函数题型-对称轴、顶点、最值

1 二次函数题型-对称轴、顶点、最值测试 教学目标: 二次函数的对称轴、顶点、最值 二次函数的对称轴、顶点、最值 (技法:如果解析式为顶点式y=a(x -h)2+k ,则最值为k ;如果解析式为一般式y=ax 2+bx+c 则最值为4ac-b 2 4a 1.抛物线y=2x 2+4x+m 2 -m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) A.13 B.10 C.15 D.14 5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2+bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线y =x 2+(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 7.抛物线y=x 2+2x -3的对称轴是 。 8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口________. 10.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0. 11.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。 12.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。

二次函数的对称性

(一)、教学内容 1.二次函数得解析式六种形式 ①一般式y=ax2 +bx+c(a≠0) ②顶点式(a≠0已知顶点) ③交点式(a≠0已知二次函数与X轴得交点) ④y=ax2(a≠0)(顶点在原点) ⑤y=ax2+c(a≠0) (顶点在y轴上) ⑥y=ax2 +bx (a≠0) (图象过原点) 2.二次函数图像与性质 对称轴: 顶点坐标: 与y轴交点坐标(0,c) 增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大 ?当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小 ☆二次函数得对称性 二次函数就是轴对称图形,有这样一个结论:当横坐标为x1, x2 其对应得纵坐标相等那么对称轴: 与抛物线y=ax2 +bx+c(a≠0)关于y轴对称得函数解析式:y=ax2-bx+c(a≠0) 与抛物线y=ax2 +bx+c(a≠0)关于x轴对称得函数解析式:y=-ax2–bx-c(a≠0) 当a>0时,离对称轴越近函数值越小,离对称轴越远函数值越大; 当a<0时,离对称轴越远函数值越小,离对称轴越近函数值越大; 【典型例题】 题型 1 求二次函数得对称轴 1、二次函数y=-mx+3得对称轴为直线x=3,则m=________。 2、二次函数得图像上有两点(3,-8)与(-5,-8),则此拋物线得对称轴就是( ) (A) (B) (C) (D) 3、y=2x-4得顶点坐标为___ _____,对称轴为__________。 4、如图就是二次函数y=ax2+bx+c图象得一部分,图象过点A(-3,0),对称轴为x=-1.求 它与x轴得另一个交点得坐标( , ) 5、抛物线得部分图象如图所示,若,则x得取值范围就是( ) A、 B、 C、或 D、或 6、如图,抛物线得对称轴就是直线,且经过点(3,0),则得值为 ( ) A、0 B、-1 C、 1 D、2 题型2 比较二次函数得函数值大小 1、、若二次函数,当x取,(≠)时,函数值相等,则当x取+时,函数值为 ( ) (A)a+c (B)a-c (C)-c (D)c 2、若二次函数得图像开口向上,与x轴得交点为(4,0),(-2,0)知,此抛物 线得对称轴为直线x=1,此时时,对应得y 1 与y 2 得大小关系就是( ) A.y 1 <y 2 B、 y 1 =y 2 C、 y 1 >y 2 D、不确定 点拨:本题可用两种解法y x O –1 1 3 O –1 3 3 1

二次函数对称轴经典问题

高中数学二次函数对称轴典型问题练习题 二次函数在闭区间上一定存在最大值和最小值,此类问题与区间和对称轴有关,一般分为三类: ①定区间,定轴; ②定区间,动轴, ③动区间,动轴.要认真分析对称轴与区间的关系,合理地进行分类讨论,特别要注意二次项系数是否为0. 第一类问题 二次函数中的动轴定区间 例一已知函数2 142+-+-=a ax x y 在区间[0,1]上的最大值是2,求实数a 的值。 〖解答〗.3 106,310,2)1(,]1,0[,2,12/;,20,32,2)2 (,20,120;6,2)0(,]1,0[,0,02 ,2,42)2(max max max 22或综上上单调递增函数在即时当故舍去矛盾与或得有即时当得有上单调递减函数在即时当对称轴为-==∴==∴>>≤≤-===≤≤≤≤-===<<=+-+--=a a f y a a a a a f y a a a f y a a a x a a a x y 第二类问题 二次函数中的定轴动区间 例二 函数f (x )=142-+-x x 在区间[t ,t +1](t ∈R)上的最大值记为g (t ). (1)求g (t )的解析式;(2)求g (t )的最大值 (1)对区间[t ,t +1](t ∈R)与对称轴x =2的位置关系进行讨论: ①当t +1<2,即t <1时,函数f (x )在区间[t ,t +1]上递增,

此时g (t )=f (t +1)=-t 2+2t +2; ②当t ≤2≤t +1,即1≤t ≤2时,函数f (x )在区间[t ,t +1]上先增后减, 此时g (t )=f (2)=3; 例三 已知f (x )=)(2)34(2R a a x x a ∈+--a ∈R),求f (x )在[0,1]上的最大 值 ()()()()()()2222[1]4122(1)3(12)241(2) 3. t f x t t g t f t t t t t t g t t t t t g t >?-++? ③当时,函数在区间,+上递减,此时==-+-,综上,=利用图象解得的最大值是()()()[]()()()()[]()()max max 4430342.30,140.34430341()43003430,10.12a a f x x f x f x f a a a a x a f x f x f a ????≠≠ <><-????若-=,则=,所以=-+由于在上是减函数,所以==若-,即,分两种情况讨论:ⅰ若-,即,因为对称轴=,所以在上是减函数,所以=【】=解析()()()()()[]max max 41()4300343112043231221124<<<0.243330,12a a x a a a f x f a a f x f a a f x ><>-<≤≤-????????-?ⅱ若-,即,因为对称轴= ,故又分两种情况讨论: ①当,即时,==-;②当,即时,==综上所述,在上的最大值是关

二次函数顶点对称轴,解析式

《二次函数的图象》教案 一、教学目标 (一)知识目标 1.使学生会用描点法画出二次函数的图象; 2.使学生会用配方法确定抛物线的顶点和对称轴(对于不升学的学生,只要求会用公式确定抛物线的顶点和对称轴); 3.使学生进一步理解二次函数与抛物线的有关概念; 4.使学生会用待定系数法由已知图像上三点的坐标求二次函数的解析式. (二)能力目标 1.培养学生分析问题、解决问题的能力; 2.向学生进行配方法和待定系数法的渗透,使学生能初步掌握; (三)情感目标 1.向学生进行事物间是互相联系及互相转化的辩证唯物主义观点教育.2.通过二次函数的进一步研究,让学生认识到二次函数的对称轴、顶点坐标与二次项系数、一次项系数及常数项之间的内在联系的数学美及和谐的数学美. 二、教学方法 教师采用比较法、观察法、归纳总结法 本节重点是求二次函数解析式及将二次函数的解析式配方,确定抛物线的顶点、对称轴等特征,进而画出这条抛物线,在学习中,学生不要死记硬背,要运用数形结合思想,熟练画出抛物线草图,结合图像研究函数的性质以及不同图像之间的相互关系. 三、重点·难点·疑点及解决办法 1.教学重点:用配方法确定抛物线的顶点坐标求对称轴及用待定系数法由已知图像上三点的坐标求二次函数的解析式.因为它们是画出二次函数的图像的基础. 2.教学难点:配方法的推导过程,因为虽然这种方法在前面学习一元二次方程时介绍过,但是在配方的过程中需要考虑加、减的数,对学生有一定的难度. 3.教学疑点:顶点式与一般式如何转化 四、教学媒体 三角板小黑板 五、教学设计思路 1.出示一组练习,导入新课. 2.“如何画的图像?”教师提问,让学生去讨论、发现:要写成的形式,找出对称轴,引入由一般式化成顶点式,推导出顶点坐标公式. 3.学生练习,为了强化巩固. 六、教学步骤 提问:说出下列抛物线的开口方向、对称轴与顶点坐标: (1) (2) (3) (4) (5)(出示幻灯) 通过这些练习题,使学生对以前的知识加以复习巩固,以便这节课的应用.这几个问题可找层次较低的学生回答,由其他同学给予评价. 我们已画过二次函数的图像,画它的图象的第一步是干什么?(列表)列表时我们是怎样取值的呢?(先确定中心值)若我们要画二次函数的图象应怎么办呢? 学生讨论得到:把二次函数转化成的形式再加以研究. 提问:怎样能把二次函数转化成的形式呢?我们先来看几个练习题:(出示幻灯)

(完整版)二次函数对称性

(一)、教学内容 1. 二次函数的解析式六种形式 ① 一般式 y=ax 2 +bx+c(a ≠0) ② 顶点式 2 ()y a x h k =-+(a ≠0已知顶点) ③ 交点式 12()()y a x x x x =--(a ≠0已知二次函数与X 轴的交点) ④ y=ax 2 (a ≠0) (顶点在原点) ⑤ y=ax 2+c (a ≠0) (顶点在y 轴上) ⑥ y= ax 2 +bx (a ≠0) (图象过原点) 2. 二次函数图像与性质 对称轴:2b x a =- 顶点坐标:2 4(,)24b ac b a a -- 与y 轴交点坐标(0,c ) 增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小 ☆ 二次函数的对称性 二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴:12 2 x x x += 与抛物线y=ax 2 +bx+c(a ≠0)关于 y 轴对称的函数解析式:y=ax 2 -bx+c(a ≠0) 与抛物线y=ax 2 +bx+c(a ≠0)关于 x 轴对称的函数解析式:y=-ax 2 –bx-c(a ≠0) 当a>0时,离对称轴越近函数值越小,离对称轴越远函数值越大; 当a<0时,离对称轴越远函数值越小,离对称轴越近函数值越大; 【典型例题】 题型 1 求二次函数的对称轴 1、 二次函数y=2x -mx+3的对称轴为直线x=3,则m=________。 2、 二次函数c bx x y ++=2的图像上有两点(3,-8)和(-5,-8),则此拋物线的对称轴是( ) (A )1x =- (B )1x = (C )2x = (D )3x = 3、 y=2x 2-4的顶点坐标为___ _____,对称轴为__________。 4、 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0), 对称轴为x =-1.求它与x 轴的另一个交点的坐标( , ) y x O

配方法求二次函数的对称轴和顶点坐标

配方法求二次函数的对称轴和顶点坐标 提取二次项系数 加上再减去一次项系数一半的平方 例1、试用配方法把二次函数①y =-2x 2+4x -4 ②5632+-=x x y 化为k h x a y +-=2)(的形式并完成下表: 练习;一、填空题: 1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) c bx ax y ++=2??? ? ?++=a c x a b x a 2??? ? ??+??? ??-??? ??++=a c a b a b x a b x a 22222????????-+??? ??+=222442a b ac a b x a .44222a b ac a b x a -+??? ??+=.2:a b x -=它的对称轴是直线.44,22???? ? ?--a b ac a b 它的顶点是

5.已知抛物线y =x 2+(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 6.抛物线y=x 2+2x -3的对称轴是 。 7.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。 8.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线, 且其顶点在原点,此抛物线的开口________. 9.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0. 10.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。 11.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。 二、用配方法求二次函数的对称轴和顶点坐标 1、y=x 2-x-2 2、y=12 1212++-x 3、y=12 1212+--x x 4、y=22++-x x

高中数学二次函数对称轴问题

二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[]-∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

初中二次函数知识点总结(全面)

二次函数知识点 二次函数概念: 1.二次函数的概念:一般地,形如y=a x2+bx +c(a b c ,,是常数,a ≠0)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数a ≠0,而b c ,可以为零.二次函数的定义域是全体实数。<<>≤≥ 2. 二次函数y=ax 2+bx+c 的性质 1)当a>0时,抛物线开口向上,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,. 当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2b x a =-时,y 有最小值244ac b a -. 2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ??-- ??? ,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2b x a =-时,y 有最大值244ac b a -. (三)、二次函数解析式的表示方法 1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠); 3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以 写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 练习 1.下列关系式中,属于二次函数的是(x 为自变量)( )?A. B. C. D .? 2. 函数y =x2-2x+3的图象的顶点坐标是( )? A. (1,-4) B.(-1,2) C. (1,2) D.(0,3) 3. 抛物线y =2(x-3)2的顶点在( ) A . 第一象限 B. 第二象限 C. x 轴上 D . y 轴上

二次函数的对称轴

二次函数的对称轴: 二次函数y=ax 2+bx +c (a 、b 、、c 是常数,a ≠0)的对称轴为__________-,如果自变量离对称轴的距 离相等则所对应的函数值有什么样的关系?如果距离远呢?在二次函数函数值的大小由_________决定。当________,离对称轴越远则函数值越大;当___________,离对称轴越远则函数值越小。因而在求解函数值的值域时,你认为应该怎么求解?______________________ 1.求下列函数的最大值或最小值。 (1)y =-x 2 -4x +2 []2,1--∈x ; []3,1--∈x ;[] 4,1--∈x 2,已知函数[] 1,,13)(2 +∈++-=m m x x x x f ,(1)求 )(x f 的最大值)(m g (2)当1≥m ,求 )(m g 的最大值。 3,已知函数[] 2,1,12)(2 -∈++-=x mx x x f ,求)(x f 的最大值)(m g 引申:求函数求3sin 2sin 2--=x x y 的最大最小值; 二次函数的单调性: 请结合函数图象谈谈当________________函数为增函数,当______________________函数为减函数. 请利用导数相关性质谈谈二次函数的单调性: 例;如果单调递减,单调递增在区间)2,(,),2(5)2()(2 -∞+∞+++=x a x x f 则a 的值为______ 例:如果 ,),2(5)2()(2单调递增在区间+∞+++=x a x x f 则a 的取值范围是 ______________________ 二次函数与不等式: 请画出二次函数的六个函数图像并求解出y>0,y<0,y=0的自变量x 的范围; 结合图像你发现不等式的求解与方程的根有何关系?______________________________________________,结合图像你发现如果函数图像在x 轴上方则所对应的函数值___________________在x 轴下方函数值______________在x 轴上呢___________? 所以在求解一元二次不等式时应该与方程的______________发生联系 例求解不等式: (!)062 >--x x (2)0822 >++-x x 0144)3(2 >+-x x (4) 0632 >--x x

配方法求二次函数的对称轴和顶点坐标

提取二次项系数 加上再减去一次项系数一半的平方 例1、试用配方法把二次函数①y=-2x 2+4x -4 ②5632+-=x x y 化为k h x a y +-=2)(的形式并完成下表: 练习;一、填空题: 1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2+3x 的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y =ax 2-6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) ??? ? ?++=a c x a b x a 2???? ??+??? ??-??? ??++=a c a b a b x a b x a 22222????????-+??? ??+=222442a b ac a b x a .44222a b ac a b x a -+??? ??+=.2:a b x -=它的对称轴是直线.44,22???? ? ?--a b ac a b 它的顶点是

5.已知抛物线y =x 2+(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 6.抛物线y=x 2+2x -3的对称轴是 。 7.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。 8.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线, 且其顶点在原点,此抛物线的开口________. 9.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0. 10.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。 11.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。 二、用配方法求二次函数的对称轴和顶点坐标 1、y=x 2-x-2 2、y=12 1212++-x 3、y=12 1212+--x x 4、y=22++-x x

二次函数对称轴与区间的关系分析

二次函数对称轴与区间的关系分析 (1)轴定,区间定 方法:可以对其二次函数配方处理或者是结合二次函数图形求解, 例1若实数y x ,满足06222=+-y x x ,则x y x 222++的最大值是 . 解:由22 62y x x =-得22222262026228x x x y x x x x x x x ?-≥??++=+-+=-?? 问题转化为求2()8f x x x =-,当[0,3]x ∈中的最大值,易的max ()(3)15f x f ==. 设计意图:利用消元思想将问题简化,但是其中必须注意的是消元之后的自变量的取值范围,进而转化为二次函数在闭区间上的最值。 设计意图:结合韦达定理转化成为有关m 的二次函数,但是其中的隐含条件:二次方程有实根,从而确定m 的取值范围。 (2)轴定,区间变 方法:结合二次函数的图象,讨论对称轴与区间的相对位置关系: ① 轴在区间右边 ②轴在区间左边 ③轴在区间内 例2 已知2()22f x x x =-+在[,1]x t t ∈+上的最大、最小值分别为()()M t m t 、, 求()()M t m t 、的解析式. 活动:师生一起合作求解函数的最小值()m t 的表达式,并作小结,再让学生板书求解函数的最大值()M t 的表达式,和下面例题4的最小值)(t g 的表达式 设计意图:(1)通过讲解让学生体会解题过程中注意分哪几类讨论,做到不遗漏不重复,同时怎样结合图像求解函数的最值,并且引导学生注意解题的规范性 (2)学生求解例3函数中最大值的表达式中讨论轴在区间内的可能遇到阻碍,讲解过程中启发学生结合函数的图像和性质:如果我们俩个自变量的值到对称轴的距离相等,则我们的函数值也相等,离对称轴的距离越远,我们的函数值越大的性质来求解函数的最大值的表达式 (3)根据物理中动、静(定)的相对原理,那么例题4的轴变区间定的题型可以类比成轴定区间动的这种题型求解,培养学生的发散思维和类比能力 解:对称轴为1x =,分4种情况讨论(另解:最大值可以分2种情况,最小值可以分3种情况): (1)11t +≤,即0t ≤时,22()()-22()(1)1M t f t t t m t f t t ==+=+=+、 (2)1t ≥时,22()(1)1()()-22M t f t t m t f t t t =+=+==+、 (3)011-1-1t t t <<<+,且,即112 t <<时, 2()(1)1()(1)1M t f t t m t f =+=+==、

二次函数顶点对称轴,解析式

《二次函数的图象》教案一、教学目标 (一)知识目标 1.使学生会用描点法画出二次函数 2 y ax bx c =++的图象; 2.使学生会用配方法确定抛物线的顶点和对称轴(对于不升学的学生,只要求会用公式确定抛物线的顶点和对称轴); 3.使学生进一步理解二次函数与抛物线的有关概念; 4.使学生会用待定系数法由已知图像上三点的坐标求二次函数的解析式. (二)能力目标 1.培养学生分析问题、解决问题的能力; 2.向学生进行配方法和待定系数法的渗透,使学生能初步掌握; (三)情感目标 1.向学生进行事物间是互相联系及互相转化的辩证唯物主义观点教育.2.通过二次函数的进一步研究,让学生认识到二次函数的对称轴、顶点坐标与二次项系数、一次项系数及常数项之间的内在联系的数学美及和谐的数学美. 二、教学方法 教师采用比较法、观察法、归纳总结法 本节重点是求二次函数解析式及将二次函数的解析式配方,确定抛物线的顶点、对称轴等特征,进而画出这条抛物线,在学习中,学生不要死记硬背,要运用数形结合思想,熟练画出抛物线草图,结合图像研究函数的性质以及不同图像之间的相互关系. 三、重点·难点·疑点及解决办法 1.教学重点:用配方法确定抛物线的顶点坐标求对称轴及用待定系数法由已知图像上 三点的坐标求二次函数的解析式.因为它们是画出二次函数 2 y ax bx c =++的图像的基础. 2.教学难点:配方法的推导过程,因为虽然这种方法在前面学习一元二次方程时介绍过,但是在配方的过程中需要考虑加、减的数,对学生有一定的难度. 3.教学疑点:顶点式与一般式如何转化 四、教学媒体 三角板小黑板 五、教学设计思路 1.出示一组练习,导入新课. 2.“如何画 2 1 621 2 y x x =-+ 的图像?”教师提问,让学生去讨论、发现:要写成 2 () y a x h k =-+的形式,找出对称轴,引入由一般式化成顶点式,推导出顶点坐标公式. 3.学生练习,为了强化巩固. 六、教学步骤 提问:说出下列抛物线的开口方向、对称轴与顶点坐标: (1) 2 152 (); 333 y x =-+ (2) 2 0.7( 1.2) 2.1; y x =-+- (3) 2 15(10)20; y x =++ (4) 2 113 (); 424 y x =--- (5) 2 (). y a x h k =-+(出示幻灯)

二次函数图象的对称轴和顶点坐标

设计:刘厚振学生:班级:时间:2015年月日课题二次函数图象(2) 学习目标 1.会用配方法将c bx ax y+ + =2化为k h- a2+ =) (x y形式; 2.会用对称轴和顶点坐标公式求二次函数的对称轴和顶点坐标。 学习重点用配方法将c bx ax y+ + =2化为k h- a2+ =) (x y形式。 学习 难点 教学 方法 探索——交流法。 学习 过程 学习流程学生笔记 预习导学 1.二次函数k h- a2+ =) (x y的图象可以看作是由二次函数 2 ax y=的图象经过怎样的变换得到的? 2.完成下表: k h- a2+ =) (x y开口方向对称轴顶点坐标 a>0 a<0 , 用公式 a b x 2 :- =顶点坐标。 求二次函数的对称轴和 ?? ? ? ? ?- - a b ac a b 4 4 , 2 2

学 习 研 讨 合作探究: 活动一:配方法求二次函数的对称轴和顶点坐标 解: 观察配方所得的结果: k h -a 2 +=)(x y 在结构上相同吗?h ,k 分别等于什么? 由此可以得到公式: 活动二:试用配方法把二次函数 5632+-=x x y 化为 k h x a y +-=2)(的形式并完成下表: 5632+-=x x y 开口方向 顶点 对称轴 最值 增减性(对称轴左侧) c bx ax y ++=2? ?? ? ? ++=a c x a b x a 2???? ??+??? ??-??? ??++=a c a b a b x a b x a 22222??? ?????-+??? ??+=2 22 442a b ac a b x a . 44222 a b ac a b x a -+?? ? ?? +== x :它的对称轴是直线它的顶点是: 它与a b ac a b x a 442y 22 -+ ??? ? ? +=

二次函数知识点总结

二次函数的定义 (考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式) 1、下列函数中,是二次函数的是 . ①y=x 2-4x+1; ②y=2x 2; ③y=2x 2 +4x ; ④y=-3x ; ⑤y=-2x -1; ⑥y=mx 2 +nx+p ; ⑦y =(4,x) ; ⑧y=-5x 。 2、在一定条件下,若物体运动的路程s (米)与时间t (秒)的关系式为s=5t 2 +2t ,则t =4秒时,该物体所经过的路程为 。 3、若函数y=(m 2+2m -7)x 2 +4x+5是关于x 的二次函数,则m 的取值范围为 。 4、若函数y=(m -2)x m -2 +5x+1是关于x 的二次函数,则m 的值为 。 5、已知函数y=(m -1)x m2 +1 +5x -3是二次函数,求m 的值。 二次函数的对称轴、顶点、最值 (技法:如果解析式为顶点式y=a(x -h)2 +k ,则最值为k ;如果解析式为一般式y=ax 2 +bx+c 则最值为4ac-b 2 4a 1.抛物线y=2x 2+4x+m 2-m 经过坐标原点,则m 的值为 。 2.抛物y=x 2+bx+c 线的顶点坐标为(1,3),则b = ,c = . 3.抛物线y =x 2 +3x 的顶点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.若抛物线y =ax 2 -6x 经过点(2,0),则抛物线顶点到坐标原点的距离为( ) 5.若直线y =ax +b 不经过二、四象限,则抛物线y =ax 2 +bx +c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 6.已知抛物线y =x 2 +(m -1)x -14 的顶点的横坐标是2,则m 的值是_ . 7.抛物线y=x 2 +2x -3的对称轴是 。 8.若二次函数y=3x 2+mx -3的对称轴是直线x =1,则m = 。 9.当n =______,m =______时,函数y =(m +n)x n +(m -n)x 的图象是抛物线,且其顶点在原点,此抛物线的开口________. 10.已知二次函数y=x 2-2ax+2a+3,当a= 时,该函数y 的最小值为0. 11.已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,则m = ______ 。 12.已知二次函数y=x 2-4x+m -3的最小值为3,则m = 。 函数y=ax 2 +bx+c 的图象和性质 1.抛物线y=x 2 +4x+9的对称轴是 。 2.抛物线y=2x 2 -12x+25的开口方向是 ,顶点坐标是 。 3.试写出一个开口方向向上,对称轴为直线x =-2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 。 4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标: (1)y=12 x 2-2x+1 ; (2)y=-3x 2 +8x -2; (3)y=-14 x 2+x -4 5.把抛物线y=x 2+bx+c 的图象向右平移3个单位,在向下平移2个单位,所得图象的解析式是y=x 2 -3x+5,试求b 、c 的值。 6.把抛物线y=-2x 2 +4x+1沿坐标轴先向左平移2个单位,再向上平移3个单位,问所得的抛物线有没有最大值,若有,求出该最大值;若没有,说明理由。 7.某商场以每台2500元进口一批彩电。如每台售价定为2700元,可卖出400台,以每100元为一个价格单位,若将每台提高一个单位价格,则会少卖出50台,那么每台定价为多少元即可获得最大利润?最大利润是多少元?

相关文档
最新文档