高中数学 第三章 概率 3_2_1 古典概型的特征和概率计算公式教案 北师大版必修31

高中数学 第三章 概率 3_2_1 古典概型的特征和概率计算公式教案 北师大版必修31
高中数学 第三章 概率 3_2_1 古典概型的特征和概率计算公式教案 北师大版必修31

2.1 古典概型的特征和概率计算公式

整体设计

教学分析

本节课是高中数学(必修3)第三章“概率”的第二节“古典概型”的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.三维目标

1.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,正确理解古典概型的两大特点;树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性地理解世界,使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.

2.鼓励学生通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的概率计算公式,掌握古典概型的概率计算公式;注意公式:P(A)=事件A包含的可能结果数

的使用条件——古典概型,体现了化归的重要思想.掌握列举法,试验的所有可能结果数

学会运用分类讨论的思想解决概率的计算问题,增强学生数学思维情趣,形成学习数学知识的积极态度.

重点难点

教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率.

教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数.

课时安排

1课时

教学过程

导入新课

思路1.(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.

(2)一个盒子中有10个完全相同的球,分别标有号码1,2,3,…,10,从中任取一球,

只有10种不同的结果,即标号为1,2,3, (10)

思考讨论根据上述情况,你能发现它们有什么共同特点?

为此我们学习古典概型,教师板书课题.

思路2.将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概

率有多大?是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好地解决方法吗?把“抽到红心”记为事件B ,那么事件B 相当于“抽到红心1”“抽到红心2”……“抽到红心K”这13种情况,而同样抽到其他牌的共有39种情况;由于是任意抽取的,可以认为这52种情况的可能性是相等的.所以,当出现红心是“抽到红心1”“抽到红心2”……“抽到红心K”这13种情形之一时,事件

B 就发生,于是P (B )=1352=14

.为此我们学习古典概型. 推进新课

新知探究

提出问题

试验一:抛掷一枚质地均匀的硬币,分别记录“正面朝上”和“反面朝上”的次数,要

求每个数学小组至少完成20次(最好是整十数),最后由课代表汇总;

试验二:抛掷一枚质地均匀的骰子,分别记录出现“1点”“2点”“3点”“4点”“5

点”和“6点”的次数,要求每个数学小组至少完成60次(最好是整十数),最后由课代表汇总.

1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?

2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?

3.什么是基本事件?基本事件具有什么特点?

4.什么是古典概型?它具有什么特点?

5.对于古典概型,应怎样计算事件的概率?

活动:学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,讨论可能出

现的情况,最后师生共同汇总方法、结果和感受.

讨论结果:1.用模拟试验的方法来求某一随机事件的概率不好,因为需要进行大量的试

验,同时我们只是把随机事件出现的频率近似地认为随机事件的概率,存在一定的误差.

2.上述试验一的两个结果是“正面朝上”和“反面朝上”,它们都是随机事件,出现

的概率是相等的,都是0.5.上述试验二的6个结果是“1点”“2点”“3点”“4点”“5

点”和“6点”,它们也都是随机事件,出现的概率是相等的,都是16

. 3.根据以前的学习,上述试验一的两个结果“正面朝上”和“反面朝上”,它们都是

随机事件;上述试验二的6个结果“1点”“2点”“3点”“4点”“5点”和“6点”,它们都是随机事件,像这类随机事件我们称为基本事件(elementary event);它是试验的每一个可能结果.

基本事件具有如下的两个特点:

①任何两个基本事件是互斥的;

②任何事件(除不可能事件)都可以表示成基本事件的和.

4.在一个试验中,如果:

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等.(等可能性)

我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型.

如图1,向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?

图1

因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件.如图2,某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环.你认为这是古典概型吗?为什么?

图2

不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中

5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件.

5.古典概型,随机事件的概率计算

对于试验一,出现正面朝上的概率与反面朝上的概率相等,即

P (“正面朝上”)=P (“反面朝上”),

由概率的加法公式,得P (“正面朝上”)+P (“反面朝上”)=P (必然事件)=1.

因此P (“正面朝上”)=P (“反面朝上”)=12

, 即P (“出现正面朝上”)=12=“出现正面朝上”所包含的基本事件的个数基本事件的总数

. 试验二中,出现各个点的概率相等,即

P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”).

反复利用概率的加法公式,我们有

P (“1点”)+P (“2点”)+P (“3点”)+P (“4点”)+P (“5点”)+P (“6点”)=

P (必然事件)=1,

所以P (“1点”)=P (“2点”)=P (“3点”)=P (“4点”)=P (“5点”)=P (“6点”)

=16

. 进一步,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

P (“出现偶数点”)=P (“2点”)+P (“4点”)+P (“6点”)=16+16+16=36=12

, 即P (“出现偶数点”)=36=“出现偶数点”所包含的基本事件的个数基本事件的总数

. 因此根据上述两则模拟试验,可以概括总结出,古典概型计算任何事件的概率计算公式

为P (A )=事件A 包含的可能结果数试验的所有可能结果数

. 在使用古典概型的概率公式时,应该注意:

①要判断该概率模型是不是古典概型;

②要找出随机事件A 包含的基本事件的个数和试验中基本事件的总数.

下面我们看它们的应用.

应用示例

思路1

例1 在一个健身房里,用拉力器进行锻炼时,需要选取2个质量盘装在拉力器上.有

2个装质量盘的箱子,每个箱子中都装有4个不同的质量盘:2.5 kg,5 kg,10 kg 和20 kg ,每次都随机地从2个箱子中各取1个质量盘装在拉力器上后,再拉动这个拉力器.

(1)随机地从2个箱子中各取1个质量盘,共有多少种可能的结果?用表格列出所有可

能的结果.

(2)计算选取的2个质量盘的总质量分别是下列质量的概率:

①20 kg ;②30 kg ;③不超过10 kg ;④超过10 kg.

(3)如果一个人不能拉动超过22 kg 的质量,那么他不能拉开拉力器的概率是多少?

解:(1)第一个箱子的质量盘和第二个箱子的质量盘都可以从4种不同的质量盘中任意

选取.我们可以用一个“有序实数对”来表示随机选取的结果.例如,我们用(10,20)来表示: 在一次随机的选取中,从第一个箱子取的质量盘是10 kg ,从第二个箱子取的质量盘是20 kg.下表列出了所有可能结果.

从表中可以看出,随机地从2个箱子中各取1个质量盘的所有可能结果共有16种.由

于选取质量盘是随机的,因此这16种结果出现的可能性是相同的,这个试验属于古典概型.

(2)

①用A 表示事件“选取的2个质量盘的总质量是20 kg”,因为总质量为20 kg 的所

有可能结果只有1种,因此,事件A 的概率

P (A )=116=0.062 5. ②用B 表示事件“选取的2个质量盘的总质量是30 kg”,从表中可以看出,总质量

为30 kg 的所有可能结果共有2种,因此,事件B 的概率

P (B )=216=18

=0.125. ③用C 表示事件“选取的2个质量盘的总质量不超过10 kg”.总质量不超过10 kg ,即总质量为5 kg,7.5 kg,10 kg 之一,从表中容易看出,所有可能结果共有4种,因此,事件C 的概率

P (C )=416=14

=0.25. ④用D 表示事件“选取的2个质量盘的总质量超过10 kg”.总质量超过10 kg ,即

总质量为12.5 kg,15 kg,20 kg,22.5 kg,25 kg, 30 kg,40 kg 之一,从表中可以看出,所有可能结果共有12种,因此,事件D 的概率

P (D )=1216=34

=0.75. (3)用E 表示事件“不能拉开拉力器”,即总质量超过了22 kg.总质量超过22 kg 是指

总质量为22.5 kg,25 kg,30 kg,40 kg 之一,从表中可以看出,这样的可能结果共有7种,因此,不能拉开拉力器的概率

P (E )=716

≈0.44. 点评:在这个例子中,我们用列表的方法列出了所有可能的结果.在计算古典概率时,只要所有可能结果的数量不是很多,列举法是我们常用的一种方法.

例2 单选题是标准化考试中常用的题型,一般是从A ,B ,C ,D 四个选项中选择一

个正确答案.如果考生掌握了考查的内容,他可以选择唯一正确的答案.假设考生不会做,他随机地选择一个答案,问他答对的概率是多少?

活动:学生阅读题目,搜集信息,交流讨论,教师引导,解决这个问题的关键,即讨论

这个问题什么情况下可以看成古典概型.如果学生掌握或者掌握了部分考查内容,这都不满足古典概型的第2个条件——等可能性,因此,只有在假定学生不会做,随机地选择了一个答案的情况下,才可以化为古典概型.

解:这是一个古典概型,因为试验的可能结果只有4个:选择A 、选择B 、选择C 、选

择D ,即基本事件共有4个,考生随机地选择一个答案是A ,B ,C ,D 的可能性是相等的.从而由古典概型的概率计算公式,得P (“答对”)=

“答对”所包含的基本事件的个数基本事件的总数=14

=0.25.

点评:古典概型解题步骤:

(1)阅读题目,搜集信息;

(2)判断是否是等可能事件,并用字母表示事件;

(3)求出基本事件总数n 和事件A 所包含的结果数m ;

(4)用公式P (A )=m n

求出概率并下结论. 变式训练

1.抛掷两枚均匀硬币,求出现两个正面朝上的概率.

解:试验的所有可能结果为:(正,正),(正,反),(反,正),(反,反).

这里四个基本事件是等可能发生的,故属古典概型.

故出现两个正面朝上的概率为14

. 2.一次投掷两颗骰子,求出现的点数之和为奇数的概率.

解法一:设A 表示“出现点数之和为奇数”,用(i ,j )记“第一颗骰子出现i 点,第二

颗骰子出现j 点”,i ,j =1,2,…,6.显然出现的36个基本事件的概率是相等的,其中A

包含的基本事件个数为k =3×3+3×3=18,故P (A )=12

. 解法二:若把一次试验的所有可能结果取为:(奇,奇),(奇,偶),(偶,奇),(偶,偶),

则它们发生的概率相等.基本事件总数n =4,A 包含的基本事件个数k =2,故P (A )=12

. 解法三:若把一次试验的所有可能结果取为:{点数和为奇数},{点数和为偶数},两者

发生的概率也相等,基本事件总数n =2,A 所包含基本事件数为1,故P (A )=12

. 点评:找出所有的基本事件,必须是等概率的.解法二中倘若解为:(两个奇),(一奇一

偶),(两个偶)当作基本事件组成样本空间,则得出P (A )=13

,错的原因就是它不是等概率的.例如P (两个奇)=14,而P (一奇一偶)=12

.本例又告诉我们,同一问题可取不同的基本事件解答.

例3 同时掷两个骰子,计算:

(1)一共有多少种不同的结果?

(2)其中向上的点数之和是5的结果有多少种?

(3)向上的点数之和是5的概率是多少?

解:(1)掷一个骰子的结果有6种.我们把两个骰子标上记号1,2以便区分,由于1号

骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,因此同时掷两个骰子的结果共有36种.

(2)在上面的所有结果中,向上的点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),其

中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果.

(3)由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A )有4种,

因此,由古典概型的概率计算公式可得P (A )=436=19

.

例4 假设储蓄卡的密码由4个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个.假设一个人完全忘记了自己的储蓄卡密码,问他到自动取款机上随机试一次密码就能取到钱的概率是多少?

图3

解:一个密码相当于一个基本事件,总共有10 000个基本事件,它们分别是0000,0001,0002,…,9998,9999.随机地试密码,相当于试到任何一个密码的可能性都是相等的,所以这是一个古典概型.事件“试一次密码就能取到钱”由1个基本事件构成,

所以P(“试一次密码就能取到钱”)=1

10 000

.

发生概率为

1

10 000

的事件是小概率事件,通常我们认为这样的事件在一次试验中是几

乎不可能发生的,也就是通过随机试验的方法取到储蓄卡中的钱的概率是很小的.但我们知道,如果试验很多次,比如100 000次,那么这个小概率事件是可能发生的.所以,为了安全,自动取款机一般允许取款人最多试3次密码,如果第4次输入的号码仍是错误的,那么取款机将“没收”储蓄卡.另外,为了使通过随机试验的方法取到储蓄卡中的钱的概率更小,现在储蓄卡可以使用6位数字作密码.

人们为了方便记忆,通常用自己的生日作为储蓄卡的密码.当钱包里既有身份证又有储蓄卡时,密码泄密的概率很大.因此用身份证上的号码作密码是不安全的.

思路2

例1 一个口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两个球,问:

(1)共有多少个基本事件?

(2)摸出的两个都是白球的概率是多少?

活动:可用枚举法找出所有的等可能基本事件.

解:(1)分别记白球为1,2,3号,黑球4,5号,从中摸出2只球,有如下基本事件〔摸到1,2号球用(1,2)表示〕:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).

因此,共有10个基本事件.

(2)上述10个基本事件发生的可能性是相同的,且只有3个基本事件是摸到两个白球(记

为事件A ),即(1,2),(1,3),(2,3),故P (A )=310

. 即共有10个基本事件,摸到两个白球的概率为310

. 变式训练

将一颗骰子先后抛掷两次,观察向上的点数,问:

(1)共有多少种不同的结果?

(2)两数的和是3的倍数的结果有多少种?

(3)两数的和是3的倍数的概率是多少?

分析:(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6种结果.先后抛掷两次骰

子,第一次骰子向上的点数有6种结果,第2次又有6种可能的结果,于是一共有6×6=36种不同的结果.

(2)第1次抛掷,向上的点数为1,2,3,4,5,6这6个数中的某一个,第2次抛掷时都可以

有两种结果,使向上的点数和为3的倍数(例如:第一次向上的点数为4,则当第2次向上的点数为2或5时,两次的点数的和都为3的倍数),于是共有6×2=12种不同的结果.

(3)记“向上点数和为3的倍数”为事件A ,则事件A 的结果有12种,因为抛两次得

到的36种结果是等可能出现的,所以所求的概率为P (A )=1236=13

. 解:(1)先后抛掷2次,共有36种不同的结果;(2)两数的和是3的倍数的结果有12

种;(3)两数的和是3的倍数的概率为13

. 点评:也可以利用图表来数基本事件的个数(如图4):

图4

例2 从含有两件正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出

后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率.

活动:学生思考或交流,教师引导,每次取出一个,取后不放回,其一切可能的结果组

成的基本事件是等可能发生的,因此可用古典概型解决.

解:每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6

个,即(a 1,a 2)和(a 1,b 2),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2).其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品,用A 表示“取出的两件中,恰好有一件次品”这一事件,则A 由(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)这4个基本事件组成,

因而P (A )=46=23

. 思考

在上例中,把“每次取出后不放回”这一条件换成“每次取出后放回”,其余条件不变,求取出的两件中恰好有一件次品的概率.

有放回地连续取出两件,其一切可能的结果有:(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,

a 1),(a 2,a 2),(a 2,

b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1),由9个基本事件组成,由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B 包含了(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)这4个基本事件.

因而P (B )=49

. 点评:(1)在连续两次取出过程中,(a 1,b 1)与(b 1,a 1)不是同一个基本事件,因为先后

顺序不同.

(2)无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的. 变式训练

现有一批产品共有10件,其中8件为正品,2件为次品.

(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;

(2)如果从中一次取3件,求3件都是正品的概率.

分析:(1)为有放回抽样;(2)为不放回抽样.

解:(1)有放回地抽取3次,按抽取顺序(x ,y ,z )记录结果,则x ,y ,z 都有10种可

能,所以试验结果有10×10×10=103种;设事件A 为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P (A )=83103=0.512. (2)方法一:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x ,y ,z ),则x 有10种可能,y 有9种可能,z 有8种可能,所以试验的所有结果为10×9×8=720种.设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为8×7×6=336,

所以P (B )=336720

≈0.467. 方法二:可以看作不放回3次无顺序抽样,先按抽取顺序(x ,y ,z )记录结果,则x 有

10种可能,y 有9种可能,z 有8种可能,但(x ,y ,z ),(x ,z ,y ),(y ,x ,z ),(y ,z ,x ),(z ,x ,y ),(z ,y ,x )是相同的,所以试验的所有结果有10×9×8÷6=120,按同样的方法,事件B 包含的基本事件个数为8×7×6÷6=56,因此P (B )=56120

≈0.467. 点评:关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误. 知能训练

本节练习1,2,3.

拓展提升

一个各面都涂有色彩的正方体,被锯成1 000个同样大小的小正方体,将这些正方体混合后,从中任取一个小正方体,求:(1)有一面涂有色彩的概率;(2)有两面涂有色彩的概率;(3)有三面涂有色彩的概率.

解:在1 000个小正方体中,一面涂有色彩的有82×6个,两面涂有色彩的有8×12个,三面涂有色彩的有8个,故(1)有一面涂有色彩的概率为P 1=3841 000

=0.384;(2)有两面涂有色彩的概率为P 2=961 000=0.096;(3)有三面涂有色彩的概率为P 3=81 000=0.008. 答:(1)一面涂有色彩的概率为0.384;(2)有两面涂有色彩的概率为0.096;(3)有三面涂有色彩的概率为0.008.

课堂小结

1.古典概型

我们将具有

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等.(等可能性)

这样两个特点的概率模型称为古典概率概型,简称古典概型.

2.古典概型计算任何事件的概率计算公式

P (A )=

事件A 包含的可能结果数试验的所有可能结果数. 3.求某个随机事件A 包含的基本事件的个数和试验中基本事件的总数的常用方法是列举法(画树状图和列表),应做到不重不漏.

作业

本节练习4.

设计感想

本节课的教学通过提出问题,引导学生发现问题,经历思考交流概括归纳后得出古典概型的概念,由两个问题的提出进一步加深对古典概型的两个特点的理解;再通过学生观察类

比推导出古典概型的概率计算公式.这一过程能够培养学生发现问题、分析问题和解决问题的能力.

在解决概率的计算上,让学生感受求基本事件个数的一般方法,从而化解由于没有学习排列组合而学习概率这一教学困惑.由此,整个教学设计可以在教师的期盼中实施.

备课资料

一、备选习题

1.在40根纤维中,有12根的长度超过30 mm ,从中任取一根,取到长度超过30 mm 的纤维的概率是( ).

A.3040

B.1240

C.1230 D .以上都不对

解析:在40根纤维中,有12根的长度超过30 mm ,即基本事件总数为40,且它们

是等可能发生的,所求事件包含12个基本事件,故所求事件的概率为1240

. 答案:B

2.盒中有10个铁钉,其中8个是合格的,2个是不合格的,从中任取一个恰为合格铁钉的概率是( ).

A.15

B.14

C.45

D.110 解析:从盒中任取一个铁钉包含基本事件总数为10,其中抽到合格铁钉(记为事件A )包含8个基本事件,所以,所求概率为P (A )=810=45

. 答案:C

3.在大小相同的5个球中,2个是红球,3个是白球,若从中任取2个,则所取的2个球中至少有一个红球的概率是________.

解析:记大小相同的5个球分别为红1,红2,白1,白2,白3,则基本事件为:(红1,红2),(红1,白1),(红1,白2),(红1,白3),(红2,白1),(红2,白2),(红2,白3),(白1,白2),(白1,白3),(白2,白3)共10个,其中至少有一个红球的事件包括7个基本事件,所以,所求事件的概率为710

. 答案:710

4.抛掷2颗质地均匀的骰子,求点数和为8的概率.

解:在抛掷2颗骰子的试验中,每颗骰子均可出现1点,2点,…,6点6种不同的结果,我们把两颗骰子标上记号1,2以便区分,由于1,2号骰子分别有6种不同的结果,因此同时掷两颗骰子的结果共有6×6=36种,在所有结果中,向上的点数之和为8的结果有(2,6),(3,5),(4,4),(5,3),(6,2)5种,所以,所求事件的概率为536

. 5.豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D ,决定矮的基因

高中数学《概率与统计》教学设计

高中数学《概率与统计》教学设计 课题:1.3抽样方法 教学目的:1理解什么是系统抽样 2.会用系统抽样从总体中抽取样 教学重点:系统抽样的概念及如何用系统抽样获取样本 教学难点:与简单随机抽样一样,系统抽样也属于等概率抽样,这是本节课的一个难点;当总体中的个体数不能被样本容量整除时,可先用简单随机抽样从总体中剔除几个个体,使剩下的个体数能被样本容量整除,然后再按系统抽样进行,这时在整个抽样过程中每个个体被抽取的概率仍然是相等的.这是本节课的又一难点授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.在统计学里,我们把所要考察对象的全体叫做总体,其中的每一个考察对象叫做个体,从总体中所抽取的一部分个体叫做总体的一个样本,样本中个体的数目叫做样本的容量.总体中所有个体的平均数叫做总体平均数,样本中所有个体的平均数叫做样本平均数. 2.简单随机抽样:设一个总体的个体数为N.如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样 3.⑴用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为 N 1;在整个抽样过程中各个个体被抽到的概率为N n;⑵简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;⑶简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础. 4.抽签法:先将总体中的所有个体(共有N个编号(号码可从1到N,并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时

2019高考数学概率:几何概型

几何概型 【考点梳理】 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的两个基本特点 (1)无限性:在一次试验中可能出现的结果有无限多个. (2)等可能性:每个试验结果的发生具有等可能性. 3.几何概型的概率公式 P (A )= 构成事件A 的区域长度面积或体积 试验的全部结果所构成的区域长度面积或体积 . 【考点突破】 考点一、与长度(角度)有关的几何概型 【例1】(1)在长为12 cm 的线段AB 上任取一点C ,现作一矩形,邻边长分别等于线段AC , CB 的长,则该矩形的面积大于20 cm 2的概率为( ) A .16 B .13 C .23 D .45 (2)如图所示,四边形ABCD 为矩形,AB =3,BC =1,在∠DAB 内作射线AP ,则射线AP 与线段BC 有公共点的概率为________. [答案] (1) C (2) 1 3 [解析] (1)设|AC |=x ,则|BC |=12-x ,所以x (12-x )>20,解得2

P ′在C ''B 上发生”. 又在Rt△ABC 中,易求∠BAC =∠B ′AC ′=π 6 . 故所求事件的概率P = C D l l ''B 'B =π6·1π2 ·1=13 . 【类题通法】 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置. 2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 【对点训练】 1.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A .1 3 B .12 C .23 D .34 [答案] B [解析] 如图,7:50至8:30之间的时间长度为40分钟,而小明等车时间不超过10分钟是指小明在7:50至8:00之间或8:20至8:30之间到达发车站,此两种情况下的时间长度之和为20分钟,由几何概型概率公式知所求概率为P =2040=1 2 .故选 B. 2.如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与 AB 交于点M ,则AM

人教版高中数学《随机事件的概率》教学设计(一等奖)

《随机事件的概率》教学设计 一、教学内容解析 由于概率问题与人们的实际生活有着紧密的联系,对指导人们社会生产、生活具有十分重要的意义,所以概率不仅是高考重点内容,更是学生应该掌握的重要知识。 相对于传统的代数、几何而言,概率论形成较晚,其定义方式新颖独特,具有不确定性,这是理解概率的难点所在.“随机事件的概率”是人教A版《数学必修3》第三章第一节的内容,本节课是其中的第一课时。课程标准要求:“在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别”。并指出:“概率教学的核心问题是让学生了解随机现象与概率的意义”。要求“教师应通过日常生活中的大量实例,鼓励学生动手试验,正确理解随机事件发生的不确定性及其频率的稳定性,并尝试澄清日常生活遇到的一些错误认识。”本节课在学生已有的初中知识基础上通过数学试验展开了对概率的研究——利用频率估计概率,即当试验次数较大时,频率渐趋稳定的那个常数就叫概率,属于原认知性知识,本节课通过对生活实例的剖析,让学生体会生活中我们利用事件发生的频率估计概率的实践经验,通过抛硬币的数学试验让学生逐渐体会虽然随机事件在一次试验中其发生与否不可确定,但是大量重复试验的情况下其概率值会存在一定的规律性——接近于一个常数。体会偶然与必然的联系,体会现象与本质的关系,体会规律的客观存在性,体会数学源于生活又应用于生活。同时,本节课的学习,将为后面学习古典概型、几何概型、条件概率等打下基础。因此,我认为“通过抛掷硬币了解概率的定义、明确其与频率的区别和联系”是本节课的教学重点。 二、教学目标设置 课程标准要求:“在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别”。并指出:“概率教学的核心问题是让学生了解随机现象与概率的意义”。要求“教师应通过日常生活中的大量实例,鼓励学生动手试验,正确理解随机事件发生的不确定性及其频率的稳定性。”因此本节课的教学目标设定为: 1、知识与技能 ⑴了解随机事件、必然事件、不可能事件的概念; ⑵通过试验了解随机事件发生的不确定性和频率的稳定性;正确理解事件A出现的频率的 P A的区别与联系 意义,明确事件A发生的频率与事件A发生的概率() 2、过程与方法

高二数学古典概型知识点

2019学年高二数学古典概型知识点 古典概型是一种概率模型,是概率论中最直观和最简单的模型,小编准备了高二数学古典概型知识点,具体请看以下内容。 知识点总结 本节主要包括古典概型的特征、古典概型的概率计算公式等主要知识点。其中主要是理解和掌握古典概型的概率计算公式,这个并不难。 1、古典概型 (1)定义:如果试验中所有可能出现的基本事件只有有限个,并且每个基本事件出现的可能性相等,则称此概率为古典概型。 (2)特点:①试验结果的有限性②所有结果的等可能性 (3)古典概型的解题步骤; ①求出试验的总的基本事件数 ; ②求出事件A所包含的基本事件数 ; 2、基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能 事件除外)。 常见考法 本节在段考中,一般以选择题、填空题和解答题的形式考查

古典概型的特征、古典概型的概率计算公式等知识点,属于中档题。在高考中多融合在离散型随机变量的分布列中考查古典概型的概率计算公式,属于中档题,先求出各个基本量再代入即可解答。 误区提醒 在求试验的基本事件时,有时容易计算出错。基本事件是事件的最小单位,所有事件都是由基本事件组成的,基本事件有下列两个特点:①任何两个基本事件都是互斥的;②任何事件都可以表示成基本事件的和(不可能事件除外)。 【典型例题】 例1 如图,四边形ABCD被两条对角线分成四个小三角形,若每个小三角形用4种不同颜色中的任一种涂染,求出现相邻三角形均不同色的概率. 解:若不考虑相邻三角形不同色的要求,则有44=256(种)涂法,下面求相邻三角形不同色的涂法种数:①若△AOB与△COD同色,它们共有4种涂法,对每一种涂法,△BOC与△AOD各有3种涂法,所以此时共有433=36(种)涂法.②若△AOB与△COD不同色,它们共有43=12(种)涂法,对每一种涂法△BOC与△AOD各有2种涂法,所以此时有4322=48(种)涂法.故相邻三角形均不同色的概率 例2 盒中有6只灯泡,其中2只次品,4只正品,有放回地

人教版高中数学必修三 第三章 概率几何概型知识与常见题型梳理

几何概型知识与常见题型梳理 基本知识 1.几何概型的定义 如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的概率公式 P(A)=积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 3.几何概型的特点 (1)试验中所有可能出现的结果(基本事件)有无限多个;(2)每个基本事件出现的可能性相等. 4.几何概型与古典概型的比较 一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度(或面积、体积等)有关,即试验结果具有无限性,是不可数的.这是两者的不同之处.另一方面,古典概型与几何概型的试验结果都具有等可能性,这是两者的共性. 通过以上对几何概型的基本知识点的梳理,我们不难看出其要点是:要抓住几何概型具有无限性和等可能性这两个特点,无限性是指在一次试验中,基本事件的个数可以是无限的,这是区分几何概型与古典概型的关键所在;等可能性是指每一个基本事件发生的可能性是均等的,这是解题的基本前提.因此,用几何概型求解的概率问题跟古典概型的基本思路是相同的,同属于“比例法”,即随机事件A 的概率可以用“事件A 包含的基本事件所占的图形的长度、面积(体积)和角度等”与“试验的基本事件所占总长度、面积(体积)和角度等”之比来表示. 常见题型 1.长度之比类型 例1 小赵欲在国庆60周年之后从某车站乘车外出考察,已知该站发往各站的客车均每小时一班,求小赵等车时间不多于10分钟的概率. 分析 因为客车每小时一班,而小赵在0~60分钟之间任何一个时刻到车站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件,且属于几何概型中的长度类型. 解 设A={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,而事件的总体是整个一小时,即60分钟.因此,由几何概型的概率公式,得P(A)= 605060-=61,即小赵等车时间不多于10分钟的概率为6 1. 例2 在长为12 cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,求这个正方 形的面积介于36 cm 2 与81 cm 2之间的概率. 分析 正方形的面积只与边长有关,因此,此题可以转化为在12 cm 长的线段AB 上任取一点M ,求使得AM 的长度介于6 cm 与9 cm 之间的概率. 解 记“面积介于36 cm 2 与81 cm 2之间”为事件A ,事件A 的概率等价于“长度介于 6cm 与9 cm 之间”的概率,所以有P(A)= 9612-=14. 小结 本题的难点不在于几何概型与古典概型的区别,而是将正方形的面积关系转化为边长的关系,从而将问题归为几何概型中的长度类型,这是本题的关键所在.同时,本题也体现了数学上的化归思想的作用. 2.面积、体积之比类型 例3 在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成

人教版高中数学必修三 习题:第三章3.3几何概型

第三章 3.3 几何概型 3.3.1 几何概型 3.3.2 均匀随机数的产生 A 级 基础巩固 一、选择题 1.下列关于几何概型的说法中,错误的是( ) A .几何概型是古典概型的一种,基本事件都具有等可能性 B .几何概型中事件发生的概率与它的位置或形状无关 C .几何概型在一次试验中可能出现的结果有无限多个 D .几何概型中每个结果的发生都具有等可能性 解析:几何概型和古典概型是两种不同的概率模型. 答案:A 2.有下列四个游戏盘,将它们水平放稳后,向上面扔一颗小玻璃球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是( ) 解析:A 中奖概率为38,B 中奖概率为14,C 中奖概率为13,D 中奖概率为1 3. 答案:A 3.在400毫升自来水中有一个大肠杆菌,今从中随机取出2毫升水样放到显微镜下观察,则发现大肠杆菌的概率为( ) A .0.008 B .0.004 C .0.002 D .0.005 答案:D 4.在2016年春节期间,3路公交车由原来的每15分钟一班改为现在的每10分钟一班,在车站停1分钟,则乘客到达站台立即乘上车的概率是( ) A.110 B.19 C.111 D.9 10 解析:记“乘客到达站台立即乘上车”为事件A ,则A 所占时间区域长度为1分钟,而整个区域的时间长度为10分钟,故由几何概型的概率公式,得P (A )=110 . 答案:A

5.在腰长为2的等腰直角三角形内任取一点,则该点到此三角形的直角顶点的距离小于1的概率为( ) A.π16 B.π8 C.π4 D. π2 解析:该点到此三角形的直角顶点的距离小于1,则此点落在以直角顶点为圆心、1为半径的14圆内.所以所求的概率为14 π12 ×2×2=π8 . 答案:B 二、填空题 6.在正方体ABCD -A 1B 1C 1D 1内随机抽取一点,则该点在三棱锥A 1-ABC 内的概率是________. 解析:P =VA 1-ABC VABCD -A 1B 1C 1D 1=1 6 . 答案:1 6 7.某人对某台的电视节目进行了长期的统计后得出结论,他任意时间打开电视机看该台节目时,看不到广告的概率为 9 10 ,那么该台每小时约有________分钟的广告. 解析:60×??? ?1-910=6(分钟). 答案:6 8.有一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得的两段的长度都不小于1 m 的概率是________. 解析:从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3 m 的绳子上的任意一点. 如上图,记“剪得两段的长都不小于1 m ”为事件A .把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段的长度等于绳长的1 3,于是事件A 发生的概率 P (A )=13 . 答案:1 3 三、解答题 9.一海豚在水池中自由游弋,水池为长30 m 、宽20 m 的长方形,求此刻海豚嘴尖离岸边不超过2 m 的概率.

高中数学概率统计教案

专题二 概率统计(文科) (一)统计 【背一背基础知识】 一.抽样方法 抽样方法包含简单随机抽样、系统抽样、分层抽样三种方法,三种抽样方法都是等概率抽样,体现了抽样的公平性,但又各有其特点和适用范围. 二.用样本估计总体 1.频率分布直方图:画一个只有横、纵轴正方向的直角坐标系,把横轴分成若干段,每一段对应一个组的组距,然后以此段为底作一矩形,它的高等于该组的 频率 组距 ,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率,这些矩形就构成了频率分布直方图.在频率分布直方图中,每个小矩形的面积等于相应数据的频率,各小矩形的面积之和等于 1; 2.茎叶图:茎叶图是一种将样本数据有条理地列出来,从中观察样本分布情况的图.在茎叶图中,“茎”表示数的高位部分,“叶”表示数的低位部分. 3.样本的数字特征: (1)众数:一组数据中,出现次数最多的数据就是这组数据的众数(一组数据中的众数可能只有一个,也可能有多个).在频率分布直方图中,最高的矩形的中点的横坐标即为该组数据的众数; (2)中位数:将一组数据由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.在频率分布直方图中,中位数a 对应的直线x a =的左右两边的矩形面积之和均为0.5,可以根据这个特点求频率分布直方图中的中位数; (3)平均数:设n 个数分别为1x 、2x 、L 、n x ,则()121 n x x x x n = +++L 叫做这n 个数的算数平均数.在频率分布直方图中,它等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和; (4)方差:设n 个数分别为1x 、2x 、L 、n x ,则 ()()() 2222 121n s x x x x x x n ? ?=-+-++-????L 叫做这n 个数的方差,方差衡量样本的稳定

高中数学 第三章 概率 几何概型的类型及解法知识素材 北师大版必修3

几何概型的类型及解法 几何概型是一种特殊的概率模型,下面结合例题介绍它的类型及其解题方法。 一、与长度有关的几何概型 若一次试验中所有可能结果和某个事件A 包含的结果(基本事件)都对应一个长度,如线段长、时间区间、距离、路程等,那么需要求出各自相应的长度,然后运用几何概型的计算公式即可求出事件A 发生的概率。 例1 某人睡觉醒来,发现钟表停了,他打开收音机,想听电台报时,求他等待的时间不多于10分钟的概率。 分析 假设他在0~60分钟之间任何一个时刻打开收音机是等可能的。因为电台每隔1小时报时一次,他在哪个时间段打开收音机的概率只与这时间段的长度有关,因此,需要求出各自相应的时间“长度”,然后用几何概型公式求解。 解 设事件A ={等待时间不超过10分钟},我们关心的事件A 恰好是打开收音机的时刻位于[50,60]之间,它的区间长度为10;电台每隔1小时报时一次,它的区间长度为60,由几何概型的计算公式得()P A = 605060-=16。即“他等待的时间不多于10分钟的概率”为16 。 评注 解决此类问题的关键是确定他在哪个时间段打开收音机的概率只与这时间段的长度有关,把它转化为与“长度”有关的几何概型。 二、与角有关的几何概型 若一次试验中所有可能结果和某个事件A 包含的结果(基本事件)都对应一个角,那么需要求出各自相应的角度,然后运用几何概型的计算公式即可求出事件A 发生的概率。 例 如图1所示,在直角坐标系内,射线OT 落在60的终边上,任作一条射线

OA ,求射线OA 落在xOT ∠内的概率。 分析 过O 作射线OA 是随机的,射线OA 落在任何位置都是等可能的,落在xOT ∠内的概率只与xOT ∠的大小有关,符合几何概型的条件。 解 设事件A ={射线OA 落在xOT ∠内},事件A 的“几何度量”是60,而坐标平面的“几何度量”为360,所以由几何概率公式,得()P A =60360=16 。 评注 解此题的关键是找到事件A ={射线OA 落在xOT ∠内}的“几何度量”是60,以及坐标平面的“几何度量”为360。 三、与面积有关的几何概型 如果每个基本事件可以理解为从某个特定的几何区域内随机地取一点,某个随机事件的发生理解为恰好取到上述区域内的某个指定区域内的点,且该区域中每一个被取到的机会都一样,这样的概率模型就可以用几何模型来解。并且,这里的区域可以用面积表示,然后利用几何概型的公式求解。 例3 两人约定在20:00到21:00之间相见,并且先到者必须等迟到者40分钟方可离去,如果两人出发是各自独立的,在20:00到21:00各时刻相见的可能性是相等的,求两人在约定时间内相见的概率。 分析 设两人分别在x 时和y 时到达约见地点,要使两人能在约定时间范围内相见,当且仅当x y -≤23 。两人到达约定地点的所有时刻(x ,y )的可能结果可用图2中的单位正方形内(包括边界)的点表示,而两人能在约定的时间内相见的所有可能结果可用图2中的阴影部分(包括边界)表示,因此可求出两人在约定时间内相见的概率。 解 设两人分别在x 时和y 时到达约见地点,要使两人在能在约定时间范围内相见,当且仅当x y -≤23 。如图2所示,根据题意,得两人在约定时间内相见的概

高中数学古典概率教案新人教版必修3

§3.2.1 古典概型 一、教材分析 本节课是高中数学3(必修)第三章概率的第二节古典概型的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位. 学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题. 概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神. 二、教学目标 1、知识与技能: (1)正确理解古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等; (2)掌握古典概型的概率计算公式:P (A )=总的基本事件个数 包含的基本事件个数A 2、过程与方法: (1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力; (2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。 3、情感态度与价值观: 通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点. 三、重点难点 教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率. 教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数. 四、课时安排 1课时 五、教学设计 (一)导入新课 思路1 (1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件. (2)一个盒子中有10个完全相同的球,分别标以号码1,2,3,...,10,从中任取一球,只有10种不同的结果,即标号为1,2,3, (10) 思考讨论根据上述情况,你能发现它们有什么共同特点? 为此我们学习古典概型,教师板书课题. 思路2 将扑克牌(52张)反扣在桌上,先从中任意抽取一张,那么抽到的牌为红心的概率有多大?是否一定要进行大量的重复试验,用“出现红心”这一事件的频率估计概率?这样工作量较大且不够准确.有更好的解决方法吗?把“抽到红心”记为事件B,那么事件B 相当于“抽到红心1”,“抽到红心2”,…,“抽到红

高中数学完整讲义——概率_古典概型与几何概型1.古典概型

高中数学讲义 版块一:古典概型 1.古典概型: 如果一个试验有以下两个特征: ⑴有限性:一次试验出现的结果只有有限个,即只有有限个不同的基本事件; ⑵等可能性:每个基本事件发生的可能性是均等的. 称这样的试验为古典概型. 2.概率的古典定义: 随机事件A 的概率定义为()P A = A 事件包含的基本事件数 试验的基本事件总数 . 版块二:几何概型 几何概型 事件A 理解为区域Ω的某一子区域A ,A 的概率只与子区域A 的几何度量(长度、面积或体积)成正比,而与A 的位置和形状无关,满足此条件的试验称为几何概型. 几何概型中,事件A 的概率定义为()A P A μμΩ =,其中μΩ表示区域Ω的几何度量, A μ表示区域A 的几何度量. 题型一 基础题型 【例1】 在第136816,,,,路公共汽车都要依靠的一个站(假设这个站只能停靠一辆汽车),有一 位乘客等候第6路或第16路汽车.假定当时各路汽车首先到站的可能性都是相等,则首先 到站正好是这位乘客所需求的汽车的概率等于____ 【例2】 (2010崇文一模) 从52张扑克牌(没有大小王)中随机的抽一张牌,这张牌是J 或Q 或K 的概率为_______. 【例3】 (2010上海卷高考) 从一副混合后的扑克牌(52张)中随机抽取1张,,事件A 为“抽得红桃K”,事件B 为“抽得为黑桃”,则概率()P A B = (结果用最简分数表示). 典例分析 知识内容 板块一.古典概型

高中数学讲义 【例4】 (2010湖北高考) 投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰于向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是 A .512 B .12 C .712 D .3 4 【例5】 甲、乙、丙三人随意坐下一排座位,乙正好坐中间的概率为( ) A .12 B .1 3 C .14 D .16 【例6】 甲、乙、丙三人在3天节日中值班,每人值班1天,则甲紧接着排在乙后面值班的概率是 ( ) A .16 B . 14 C .1 3 D .12 【例7】 今后三天每一天下雨的概率都为50%,这三天恰有两天下雨的概率为多少? 【例8】 某学生做两道选择题,已知每道题均有4个选项,其中有且只有一个正确答案,该学生随 意填写两个答案,则两个答案都选错的概率为 . 【例9】 现有8名奥运会志愿者,其中志愿者123,,A A A 通晓日语,123,,B B B 通晓俄语,12,C C 通 晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. ⑴求1A 被选中的概率; ⑵求1B 和1C 全被选中的概率.

古典概型的特征和概率计算公式

高中数学必修(3)导学案 2013-2014学年第二学期高一年级班姓名编写者使用时间2018-6-23 课题:§3.2.1 古典概型的特征和概率计算公式 1 课时学习目标: 1、知识与技能 (1)正确理解基本事件的概念,准确求出基本事件及其个数; (2)正确理解古典改性的两个特征; (3)掌握古典概型的概率计算公式,会用列举法计算一些随机事件所含的基本事件数及其事件发生的概率. 2、过程与方法 鼓励学生通过实践、观察、类比,归纳总结出古典概型的概率计算公式,提高学生利用数学知识解决实际问题的能力. 3、情感态度与价值观 通过各种有趣的,贴近学生生活的素材,进一步培养学生用随机的观点认识世界,激发学生学习数学的热情和兴趣. 学习重点:理解古典概型的含义及其概率的计算公式. 学习难点:计算试验的所有可能结果数以及某事件所包含的结果数. 基础达标: 1、古典概型 (1)定义:具有以下两个特征的的数学模型称为古典概型(古典的概率模型). ①试验的所有可能结果,每个试验只出现其中的结果. ②每一个试验结果出现的可能性. (2)基本事件 试验的称为基本事件. 2、随机事件A的概率 对于古典概型,通常试验中的某一事件A是由组成.如果试验的所有可能结果(基本事件)数为n,随机事件A包含的基本事件数为m,那么事件A的概率规定为P(A)=.合作交流: 1、判断下列事件是否为古典概型. (1)在适宜的条件下种下一粒种子观察它是否发芽; (2)射击运动员向一靶心进行射击,射中与射不中; (3)向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的; (4)如果袋内装有n个不同的球,现从中依次有放回摸球,每次摸一个; (5)如果袋内装有n个不同的球,现从中依次无放回摸球,每次摸一个. 2、一个口袋装有大小相同的1个白球和与它编有不同号码的3个黑球,从中摸出2个 球.求: (1)找出所有基本事件;(2)事件“摸出2个黑球”包括多少个基本事件? 3、袋中装有6个形状完全相同的小球,其中4个白球,2个红球,从袋中任意取出两球, 求下列事件的概率. (1)A:取出的两球都是白球;(2)B:取出的两球一个是白球,另一个是红球. 思考探究: 1、在标准化的考试中既有单选题,又有多选题,多选题是从A、B、C、D四个选项中选出所有的正确答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么? 2、使用古典概型概率的计算公式时应注意些什么?

高中数学教案——概率与统计

课题:1.7概率与统计 教学目的: 1能运用简单随机抽样、分层抽样的方法抽取样本; 2. 能通过对样本的频率分布估计总体分布; 3. 培养学生动手能力和解决实际问题能力通过例题,对本章部分内容进行一次复习.培养学生的探究能力以及分析与解决实际问题的能力 教学重点:统计在实际生活中的应用 教学难点:学生解决实际问题 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 二、讲解范例: 例1某中学高中部共有16个班级,其中一年级6个班,二年级6个班,三年级4个班.每个班的人数均在46人左右(44人-49人),各班的男女学生数均基本各占一半.现要调查这所学校学生的周体育活动时间,它是指学生在一周中参加早锻炼、课间操、课外体育活动、体育比赛等时间的总和(体育课、上学和放学路上的活动时间不计在内).为使所得数据更加可靠,应在所定抽样的“周”之后的两天内完成抽样工作.此外还有以下具体要求: (1)分别对男、女学生抽取一个容量相同的样本,样本容量可在40-50之间选择 (2)写出实习报告,其中含:全部样本数据;相应于男生样本的 - - 1 x与 1 s,相 应于女生的 - - 2 x与 2 s,相应于男、女全体的样本的 - - x;对上面计算结果作出分

析. 解:(1)由于各个年级的学生参加体育活动的时间存在差异,应采用分层抽样;又由于各班的学生数相差不多,且每班的男女学生人数也基本各占一半,为便于操作,分层抽样时可以班级为单位.关于抽取人数,如果从每班中抽取男、女学生各3人,样本容量各为48(3×16),符合对样本容量的要求. (2)实习报告如表一所示. 1 .在本班范围内,就每名学生所在家庭的月人均用水量进行调查.调查的具

高中数学几何概型

第6讲几何概型 一、选择题 1.在区间[-2,3]上随机选取一个数x,即x≤1,故所求的概率为() A.4 5 B. 3 5 C. 2 5 D. 1 5 解析在区间[-2,3]上随机选取一个数x,且x≤1,即-2≤x≤1,故所求的 概率为P=3 5. 答案 B 2.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆 中随机扔一粒豆子,它落在阴影区域内的概率是1 3,则阴影部分的 面积是() A.π 3 B.π C.2π D.3π 解析设阴影部分的面积为S,且圆的面积S′=π·32=9π.由几何概型的概率, 得S S′= 1 3,则S=3π. 答案 D 3.(2015·山东卷)在区间[0,2]上随机地取一个数x,则事件“-1≤log1 2? ? ? ? ?x+ 1 2 ≤1”发生的概率为() A.3 4 B. 2 3 C. 1 3 D. 1 4 解析由-1≤log1 2? ? ? ? ? x+ 1 2≤1, 得1 2≤x+ 1 2≤2, 解得0≤x≤3 2,所以事件“-1≤log1 2 ? ? ? ? ? x+ 1 2≤1”发生的 概率为3 2 2= 3 4,故选A. 答案 A

4.(2017·东北师大附中检测)若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( ) A.π2 B.π4 C.π6 D.π8 解析 设质点落在以AB 为直径的半圆内为事件A ,则P (A )=阴影面积长方形面积 = 12π×121×2=π 4. 答案 B 5.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1 内随机取一点P ,则点P 到点O 的距离大于1的概率为( ) A.π12 B.1-π12 C.π6 D.1-π6 解析 设“点P 到点O 的距离大于1”为事件A . 则事件A 发生时,点P 位于以点O 为球心,以1为半径的半球的外部. ∴V 正方体=23=8,V 半球=43π·13×12=2 3π.∴P (A )=23-23π2 3 =1-π12. 答案 B 6.已知△ABC 中,∠ABC =60°,AB =2,BC =6,在BC 上任取一点D ,则使△ABD 为钝角三角形的概率为( ) A.16 B.13 C.12 D.23 解析 如图,当BE =1时,∠AEB 为直角,则点D 在线段BE (不包含B ,E 点)上时,△ABD 为钝角三角形;当BF =4 时,∠BAF 为直角,则点D 在线段CF (不包含C ,F 点)上时,△ABD 为钝角

高中数学 第三章 概率 3_2_1 古典概型的特征和概率计算公式教案 北师大版必修31

2.1 古典概型的特征和概率计算公式 整体设计 教学分析 本节课是高中数学(必修3)第三章“概率”的第二节“古典概型”的第一课时,是在随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的.古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位.学好古典概型可以为其他概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,掌握列举法,学会运用数形结合、分类讨论的思想解决概率的计算问题.概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.适当地增加学生合作学习交流的机会,尽量地让学生自己举出生活和学习中与古典概型有关的实例.使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神.三维目标 1.根据本节课的内容和学生的实际水平,通过模拟试验让学生理解古典概型的特征:试验结果的有限性和每一个试验结果出现的等可能性,观察类比各个试验,正确理解古典概型的两大特点;树立从具体到抽象、从特殊到一般的辩证唯物主义观点,培养学生用随机的观点来理性地理解世界,使得学生在体会概率意义的同时,感受与他人合作的重要性以及初步形成实事求是的科学态度和锲而不舍的求学精神. 2.鼓励学生通过观察、类比,提高发现问题、分析问题、解决问题的能力,归纳总结出古典概型的概率计算公式,掌握古典概型的概率计算公式;注意公式:P(A)=事件A包含的可能结果数 的使用条件——古典概型,体现了化归的重要思想.掌握列举法,试验的所有可能结果数 学会运用分类讨论的思想解决概率的计算问题,增强学生数学思维情趣,形成学习数学知识的积极态度. 重点难点 教学重点:理解古典概型的概念及利用古典概型求解随机事件的概率. 教学难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数. 课时安排 1课时 教学过程 导入新课 思路1.(1)掷一枚质地均匀的硬币,结果只有2个,即“正面朝上”或“反面朝上”,它们都是随机事件.

创新设计2020高考数学一轮复习排列组合与概率(课件+随堂演练)打包下载6几何概型doc高中数学

创新设计2020高考数学一轮复习排列组合与概率(课件+随堂演练)打包下载6几何概型doc 高中 数学 一、选择题 1.函数f (x )=x 2-x -2,x ∈[-5,5],那么任取一点x 0∈[-5,5],使f (x 0)≤0的概率是( ) A .1 B.2 3 C.310 D.25 解析:将咨询题转化为与长度有关的几何概型求解,当x 0∈[-1,2]时,f (x 0)≤0.那么所求概率P =2-(-1)5-(-5)=3 10. 答案:C 2. (2018·福建福州)为了测算如右图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,恰有200个点落在阴影部分内,据此,可估量阴影部分的面积是( ) A .12 B .9 C .8 D .6 解析:正方形面积为36,阴影部分面积为200 800×36=9. 答案:B 3. 如下图,设M 是半径为R 的圆周上一个定点,在圆周上等可能地任取一点N ,连结MN ,那么弦MN 的长超过 R 的概率为( ) A.15 B.14 C.13 D.12

解析:在圆上过圆心O 作与OM 垂直的直径CD ,那么MD=MC= ,当点N 不在半 圆弧上时,MN> ,故所求的概率P(A)= . 答案:D 4.(2018·高考改编题)在区间[-1,1]上随机取一个数x ,那么 sin πx 4的值介于-12与2 2 之间的 概率为( ) A.14 B.13 C.23 D.56 解析:在区间[-1,1]上随机取一个数x ,要使sin πx 4的值介于-12与22之间,需使-π6≤ πx 4 ≤π4,即-23≤x ≤1,其区间长度为5 3,由几何概型公式知所求概率为532=56,应选D. 答案:D 二、填空题 5. (2018·安徽合肥模拟)某人随机地在如右图所示正三角形及其外接圆区域内部投针(不包括三角形边界及圆的边界),那么针扎到阴影区域(不包括边界)的概率为________. 解析:设正三角形边长为a ,那么外接圆半径r =32a ·23=33 a . ∴概率P =34a 2π ????33a 2=33 4π. 答案:33 4π 6. 如右图所示,在直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,求

最新人教版高中数学选修2-3《条件概率》示范教案

2.2 二项分布及其应用 2.2.1 条件概率 整体设计 教材分析 条件概率的概念在概率理论中占有十分重要的地位,教科书只是简单介绍条件概率的初等定义.为了便于学生理解,教材以简单事例为载体,逐步通过探究,引导学生体会条件概率的思想. 课时分配 1课时 教学目标 知识与技能 通过对具体情境的分析,了解条件概率的定义,掌握简单的条件概率的计算. 过程与方法 发展抽象、概括能力,提高解决实际问题的能力. 情感、态度与价值观 使学生了解数学来源于实际,应用于实际的唯物主义思想. 重点难点 教学重点:条件概率定义的理解. 教学难点:概率计算公式的应用. 教学过程 探究活动 抓阄游戏:三张奖券中只有一张能中奖,现分别由三名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比前两名同学小. 活动结果: 法一:若抽到中奖奖券用“Y”表示,没有抽到用“Y ”表示,那么三名同学的抽奖结果共有三种可能:Y Y Y ,Y Y Y 和Y Y Y.用B 表示事件“最后一名同学抽到中奖奖券”,则B 仅包含一个基本事件Y Y Y.由古典概型计算公式可知,最后一名同学抽到中奖奖券 的概率为P(B)=13 . 故三名同学抽到中奖奖券的概率是相同的. 法二:(利用乘法原理)记A i 表示:“第i 名同学抽到中奖奖券”的事件,i =1,2,3, 则有P(A 1)=13,P(A 2)=2×13×2=13,P(A 3)=2×1×13×2×1=13 . 提出问题:如果已经知道第一名同学没有抽到中奖奖券,那么最后一名同学抽到奖券的概率又是多少? 设计意图:引导学生深入思考,小组内同学合作讨论,得出以下结论,教师因势利导. 学情预测:一些学生缺乏用数学语言来表述问题的能力,教师可适当辅助完成.

高中数学-古典概型

课题:古典概型 导学目标: 1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率. 自主梳理 1.基本事件有如下特点: (1)任何两个基本事件是________的. (2)任何事件(除不可能事件)都可以表示成______________. 2.一般地,一次试验有下面两个特征 (1)有限性.试验中所有可能出现的基本事件只有有限个; (2)等可能性.每个基本事件出现的可能性相同,称这样的概率模型为古典概型. 判断一个试验是否是古典概型,在于该试验是否具有古典概型的两个特征:有限性和等可能性. 3.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是________;如果某个事件A 包括的结果有m 个,那么事件A 的概率P(A)=________. 自我检测 1.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x +y =5下方的概率为( ) A .16 B .14 C .112 D .19 2.一块各面均涂有油漆的正方体被锯成1 000个大小相同的小正方体,若将这些小正方体均匀地搅混在一起,则任意取出一个,其两面涂有油漆的概率是( ) A .112 B .110 C .325 D .12125 3.三张卡片上分别写上字母E ,E ,B ,将三张卡片随机地排成一行,恰好排成英文单词BEE 的概率为________. 4.有100张卡片(编号从1号到100号),从中任取1张,取到卡号是7的倍数的概率为________. 5.在平面直角坐标系中,从五个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三个,这三点能构成三角形的概率是________(用分数表示). 探究点一 基本事件的概率 例1 投掷六个面分别记有1,2,2,3,3,3的两颗骰子. (1)求所出现的点数均为2的概率; (2)求所出现的点数之和为4的概率. 变式迁移1 一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球.问: (1)共有多少个基本事件? (2)摸出的两只球都是白球的概率是多少? 探究点二 古典概型的概率计算 例2 班级联欢时,主持人拟出了如下一些节目:跳双人舞、独唱、朗诵等,指定3个男生和2个女生来参与,把5个人分别编号为1,2,3,4,5,其中1,2,3号是男生,4,5号是女生,将每个人的号分别写在5张

人教新课标A版高中数学必修3第三章概率3.3几何概型同步测试D卷

人教新课标A版高中数学必修3 第三章概率 3.3几何概型同步测试D卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共15题;共30分) 1. (2分) (2016高二上·定州期中) 在平面区域内随机取一点,则所取的点恰好满足x+y≤ 的概率是() A . B . C . D . 2. (2分)(2017·湘潭模拟) 如图所示的阴影部分是由x轴,直线x=1及曲线y=ex﹣1围成,现向矩形区域OABC内随机投掷一点,则该点落在阴影部分的概率是() A . B . C . D . 3. (2分)如图,在半径为1的圆内有四段以1为半径的相等弧,现向园内投掷一颗豆子(假设豆子不落在线上),则恰好落在阴影部分的概率为()

A . B . C . D . 4. (2分)(2017·葫芦岛模拟) 设f(x)=. ,直线x=0,x=e,y=0,y=1所围成的区域为M,曲线y=f(x)与直线y=1围成的区域为N,在区域M内任取一个点P,则点P在区域N内概率为() A . B . C . D . 5. (2分) (2017高一上·深圳期末) 为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是() A . 12 B . 9

D . 6 6. (2分) (2018高一下·伊通期末) 已知定义在上的偶函数在上单调递增,若 ,则不等式成立的概率是() A . B . C . D . 7. (2分) (2016高一下·揭阳开学考) 在区间[﹣1,1]上任取两个实数x,y,则满足不等式的概率为() A . B . C . D . 8. (2分) (2016高二上·抚州期中) 如图面积为4的矩形ABCD中有一个阴影部分,若往矩形ABCD投掷1000个点,落在矩形ABCD的非阴影部分中的点数为400个,试估计阴影部分的面积为()

相关文档
最新文档