2020年《高校自主招生考试》数学真题分类解析之7、解析几何

2020年《高校自主招生考试》数学真题分类解析之7、解析几何
2020年《高校自主招生考试》数学真题分类解析之7、解析几何

专题之7、解析几何

一、选择题。

1.(2009年复旦大学)设△ABC三条边之比AB∶BC∶CA=3∶2∶4,已知顶点A的坐标是(0,0),B的坐标是(a,b),则C的坐标一定是

2.(2009年复旦大学)平面上三条直线x?2y+2=0,x?2=0,x+ky=0,如果这三条直线将平面划分成六个部分,则k可能的取值情况是

A.只有唯一值

B.可取二个不同

C.可取三个不同

D.可取无穷多个

3.(2010年复旦大学)已知常数k1,k2满足0

5.(2011年复旦大学)

A.ρsin θ=1

B.ρcos θ=?1

C.ρcos θ=1

D.ρsin θ=?1 6.(2011年复旦大学)设直线L过点M(2,1),且与抛物线y2=2x相交于A,B两点,满足|MA|=|MB|,即点M(2,1)是A,B的连接线段的中点,则直线L的方程是

A.y=x?1

B.y=?x+3

C.2y=3x?4

D.3y=?x+5 7.(2011年复旦大学)设有直线族和椭圆族分别为x=t,y=mt+b(m,b为实数,t为参数)和

(a是非零实数),若对于所有的m,直线都与椭圆相交,则a,b应满足

A.a2(1?b2)≥1

B.a2(1?b2)>1

C.a2(1?b2)<1

D.a2(1?b2)≤1 8.(2011年复旦大学)极坐标表示的下列曲线中不是圆的是

A.ρ2+2ρ(cos θ+sin θ)=5

B.ρ2?6ρcos θ?4ρsin θ=0

C.ρ2?ρcos θ=1

D.ρ2cos 2θ+2ρ(cos θ+sin θ)=1

9.

10.(2012年复旦大学)

B.抛物线或双曲

A.圆或直线

C.双曲线或椭圆

D.抛物线或椭圆

线

11.(2011年同济大学等九校联考)已知抛物线的顶点在原点,焦点在x轴上,△ABC的三个顶点都在抛物线上,且△ABC的重心为抛物线的焦点,若BC边所在直线的方程为4x+y?20=0,则抛物线方程为

A.y2=16x

B.y2=8x

C.y2=?16x

D.y2=?8x

A.2

B.2

C.4

D.4

13.(2011年清华大学等七校联考)AB为过抛物线y2=4x焦点F的弦,O为坐标原点,且∠OFA=135°,C为抛物线准线与x轴的交点,则∠ACB的正切值为

14.(2012年清华大学等七校联考)椭圆长轴长为4,左顶点在圆(x?4)2+(y?1)2=4上,左准线为y 轴,则此椭圆离心率的取值范围是

二、解答题。

15.(2009年华南理工大学)设三角形ABC三个顶点的坐标分别为A(2,1),B(?1,2),C(3,?1),D,E 分别为AB,BC上的点,M是DE上一点,且

(1)求点M的横坐标的取值范围;

(2)求点M的轨迹方程.

16.(2009年南京大学)在x轴上方作与x轴相切的圆,切点横坐标为,过B(?3,0),C(3,0)分别作圆的切线,两切线交于点P,Q是C在锐角BPC的平分线上的射影.

(1)求点P的轨迹方程及其横坐标的取值范围;

(2)求点Q的轨迹方程.

17.(2010年南京大学)设|y2?16x|=256?16|x|.

(1)记方程表示的曲线围成的封闭区域为D,试作出这个区域D;

(2)过抛物线y2=16x焦点的直线l与该抛物线交于P,Q两点,若|PQ|=a,求S△OPQ;

(3)当过抛物线y2=16x焦点的直线l与该抛物线在区域D内的部分相交于P,Q时,求S△OPQ的最大值.

18.(2009年浙江大学)双曲线 =1(a>0,b>0)的离心率为,A(x1,y1),B(x2,y2)两点在双曲线上,且x1≠x2.

(1)若线段AB的垂直平分线经过点Q(4,0),且线段AB的中点坐标为(x0,y0),试求x0的值;

(2)双曲线上是否存在这样的点A与B,满足OA⊥OB?

19.(2011年同济大学等九校联考)已知椭圆的两个焦点为F1(?1,0),F2(1,0),且椭圆与直线y=x 相切.

(1)求椭圆的方程;

(2)过F1作两条互相垂直的直线l1,l2与椭圆分别交于P,Q及M,N,求四边形PMQN面积的最大值与最小值.

20.(2012年同济大学等九校联考)抛物线y2=2px(p>0),F为抛物线的焦点,A、B是抛物线上两点,线段AB的中垂线交x轴于D(a,0),a>0,

(1)证明:a是p、m的等差中项;

(2)若m=3p,l为平行于y轴的直线,其被以AD为直径的圆所截得的弦长为定值,求直线l的方程.

21.(2009年清华大学)有限条抛物线及其内部能否覆盖整个坐标平面?证明你的结论.

22.(2009年清华大学)已知|PM|?|PN|=2,M(?2,0),N(2,0).

(1)求点P的轨迹W;

(2)直线y=k(x?2)与W交于点A,B,求S△OAB(O为原点).

23.(2009年清华大学)椭圆C: + =1(a>b>0),直线l过点A(?a,0),与椭圆交于点Q,与y轴交于点R,过原点的平行于l的直线l'与椭圆交于点P,证明:|AQ|, |OP|,|AR|成等比数列.

24.(2010年清华大学等五校联考)设A,B,C,D 为抛物线x2=4y上不同的四点,A,D关于该抛物线的对称轴对称,BC 平行于该抛物线在点D 处的切线l.设D 到直线AB,AC 的距离分别为d1,d2,

(Ⅰ)判断△ABC是锐角三角形、直角三角形、钝角三角形中的哪一种三角形,并说明理由; (Ⅱ)若△ABC 的面积为240,求点A 的坐标及直线BC的方程.

25.(2011年清华大学等七校联考)F1、F2分别为C的左、右焦点,P为C右支上一点,

(1)求C的离心率e;

(2)设A为C的左顶点,Q为第一象限内C上的任意一点,问是否存在常数λ(λ>0),使得

∠QF2A=λ∠QAF2恒成立?若存在,求出λ的值;若不存在,请说明理由.

26.(2012年清华大学等七校联

考)

(1)求动点P的轨迹C的方程;

(2)已知过点B的直线交曲线C于x轴下方不同的两点M,N,设MN的中点为R,过R与点

Q(0,?2)作直线RQ,求直线RQ斜率的取值范围.

27.(2010年北京大学等三校联考)A,B为y=1?x2上在y轴两侧的点,求过A,B的切线与x轴围成的图形面积的最小值.

28.(2011年北京大学等十三校联考)C1和C2是平面上两个不重合的固定圆,C是该平面上的一个动圆,C与C1、C2都相切,则C的圆心的轨迹是何种曲线?说明理由.

29.(2011年北京大学等十三校联考)求过抛物线y=2x2?2x?1,y=?5x2+2x+3交点的直线方程.

1.A

【解析】如图,

2.C

【解析】三条直线相交于一点或者其中两条直线平行,则平面被分成六个部分.

(1)当三条直线交于一点(2,2),对应一个k值;

(2)当直线x+ky=0与x?2y+2=0或者x?2=0平行,则对应两个不同的k值.

因此共有三个不同的k值.

3.C

4.A

【解析】本题可以采用特殊值和特殊位置来分析,结合具体的选项,得到正确结果.

当n=4时,相邻两射线的夹角为,然后可以让A1,A2,A3,A4正好为椭圆的四个顶点,容易得到|OA k|?2=2(a?2+b?2),结合各选项知A正确.

7.B

【解析】由得直线方程为y=mx+b,由消去y得(x?1)2+a2(mx+b)2?a2=0,即

(1+a2m2)x2+(2a2mb?2)x+(1+a2b2?a2)=0,由于直线与椭圆相交,所以

Δ=(2a2mb?2)2?4(1+a2m2)(1+a2b2?a2)>0,整理得(a2?1)m2?2bm+(1?b2)>0,上式对于任意的实数m恒成立,所以有,整理得a2(1?b2)>1.

8.D

【解析】在D选项中,由ρ2cos 2θ+2ρ(cos θ+sin θ)=1得ρ2(cos2θ?sin2θ)+2ρ(cos θ+sin θ)=1,ρ2cos2θ?ρ2sin2θ+2ρcos θ+2ρsin θ=1,由于x=ρcos θ,y=ρsin θ,代入可得x2?y2+2x+2y?1=0,显然这不是一个圆的方程.

9.A

【解析】依题意知,椭圆上的各个点中到圆心(0,6)的距离最大的点是椭圆的下顶点(0,?4),最大距离为10,因此椭圆上的点到圆上的点的距离的最大值等于11.

10.D

【解析】设圆锥曲线上任一点M(ρ,θ),焦点F到相应准线的距离为P,则ρ=为三种圆锥曲线(椭圆、双曲线、抛物线)的统一极坐标方程,01时曲线表示双曲线右支,允许ρ<0表示整个双曲线.

由知识拓展中圆锥曲线的统一极坐标方程知:ρ==,则0

11.A

【解析】由题意可设抛物线方程为y2=2px(p≠0),

A(x3,y3),B(x1,y1),C(x2,y2),△ABC的重心为G(,0).联立,得2y2+py?20p=0,有,又,得,即A(10,),代入抛物线方程可得=2p(10),故p=8,抛物线方程为y2=16x.故选A.

12.D

【解析】利用C2的短轴长与C1的实轴长的比值等于C2的离心率找到k和a之间的关系,再利用k和a表示出C1在C2的一条准线上截得线段的长,整理可得最终结果.

由C2的短轴长与C1的实轴长的比值等于C2的离心率可知,= ,故k(a2?4)=4,C2的右准线方程为x=,代入C1的方程得? =k,整理可得y=±2,故C1在C2的右准线上截得线段的长为4,选D.

13.A

解法二如图,

14.B

15.(1)如图所示,

16.(1)设x轴与圆的切点为D,PB,PC分别切圆于E,F,

17.(1)首先,256?16|x|≥0,∴|x|≤16,∴?16≤x≤16.

①y2?16x=256?16|x|.

i)当0≤x≤16时,y2=256, ∴y=±16(0≤x≤16),图象是两条线段;

ii)当?16≤x<0时,y2=256+32x=32(x+8)(?8≤x<0),图象是抛物线y2=32(x+8)的一段;

(3)

18.(1) x0=2. (2)不存在

19.(1)椭圆方程为+y2=1.

(2) S四边形PMQN的最小值为,最大值为2 【解析】

20.(1)设A(x1,y1),B(x2,y2),由抛物线的定义知

21.与抛物线对称轴不平行的直线与抛物线的位置关系有以下三种:

(1)总有两个交点;(2)相切;(3)无公共点.

对于(1),抛物线及其内部仅覆盖该直线上的一段线段;

对于(2),抛物线及其内部仅覆盖该直线上的一个点;

对于(3),抛物线及其内部不能覆盖该直线上的任意一点.

根据以上三种情况,我们知道:用有限条抛物线及其内部不能覆盖与这有限条抛物线的对称轴均不平行的直线,而平面中存在这样的直线.于是,用有限条抛物线及其内部不能覆盖一条直线,当然不能覆盖整个坐标平面.

22.(1)由题意可得点P的轨迹W是双曲线的右支:x2?y2=2(x>0).

23.设l:y=k(x+a)(易知斜率存在,否则点Q不存在),则l':y=kx.

24.如图.

所以×8|4|=240,解得x0=±8,所以A(8,16)或A(?8,16),当取A(?8,16)时,求得B(4,4),又BC的斜率为x0=4,所以直线BC的方程为y?4=4(x?4),即4x?y?12=0.

同理,当取A(8,16)时,求得B(?12,36),直线BC的方程为4x+y+12=0.

25.(1)如图,

26.

27.【解析】设过A点的切线交x轴于点C,过B点的切线交x轴于点D,直线AC与直线BD 相交于点E,如图.

解析几何试题库完整

解析几何题库 一、选择题 1.已知圆C 与直线x -y =0 及x -y -4=0都相切,圆心在直线x +y =0上,则圆C 的方程为 A.2 2(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C.2 2(1) (1)2x y -+-= D. 22(1)(1)2x y +++= 【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B 2.直线 1y x =+与圆221x y +=的位置关系为( ) A .相切 B .相交但直线不过圆心 C .直线过圆心 D .相离 【解析】圆心(0,0)为到直线1y x =+,即10x y -+= 的距离2d = = ,而012 < <,选B 。 【答案】B 3.圆心在y 轴上,半径为1,且过点(1,2)的圆的方程为( ) A .2 2(2)1x y +-= B .2 2(2)1x y ++= C .2 2(1) (3)1x y -+-= D .2 2(3)1x y +-= 解法1(直接法):设圆心坐标为(0,)b 1=,解得2b =,故圆的方程为22(2)1x y +-=。 解法2(数形结合法):由作图根据点(1,2)到圆心的距离为1易知圆心为(0,2),故圆的方程为2 2(2)1x y +-= 解法3(验证法):将点(1,2)代入四个选择支,排除B ,D ,又由于圆心在y 轴上,排除C 。 【答案】A 4.点P (4,-2)与圆2 24x y +=上任一点连续的中点轨迹方程是 ( ) A.2 2(2)(1)1x y -++= B.2 2(2) (1)4x y -++= C.2 2(4) (2)4x y ++-= D.2 2(2) (1)1x y ++-= 【解析】设圆上任一点为Q (s ,t ),PQ 的中点为A (x ,y ),解得:? ??+=-=224 2y t x s ,代入圆方程,得(2x -4)2 +(2y +2)2 =4,整理,得:2 2(2) (1)1x y -++= 【答案】A 5.已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( ) A. 1或3 B.1或5 C.3或5 D.1或2

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高中数学解析几何专题之抛物线(汇总解析版)

圆锥曲线第3讲抛物线 【知识要点】 一、抛物线的定义 平面内到某一定点F的距离与它到定直线l(l F?)的距离相等的点的轨迹叫抛物线,这个定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。 注1:在抛物线的定义中,必须强调:定点F不在定直线l上,否则点的轨迹就不是一个抛物线,而是过点F且垂直于直线l的一条直线。 注2:抛物线的定义也可以说成是:平面内到某一定点F的距离与它到定直线l(l F?)的距离之比等于1的点的轨迹叫抛物线。 注3:抛物线的定义指明了抛物线上的点到其焦点的距离与到其准线的距离相等这样一个事实。以后在解决一些相关问题时,这两者可以相互转化,这是利用抛物线的定义解题的关键。 二、抛物线的标准方程 1.抛物线的标准方程 抛物线的标准方程有以下四种: (1) px y2 2= ( > p),其焦点为 )0, 2 ( p F ,准线为2 p x- = ; (2) px y2 2- =(0 > p),其焦点为 )0, 2 ( p F- ,准线为2 p x= ; (3) py x2 2= ( > p),其焦点为 ) 2 ,0( p F ,准线为2 p y- = ; (4) py x2 2- = ( > p),其焦点为 ) 2 ,0( p F- ,准线为2 p y= . 2.抛物线的标准方程的特点

抛物线的标准方程px y 22±=(0>p )或py x 22±=(0>p )的特点在于:等号的一端 是某个变元的完全平方,等号的另一端是另一个变元的一次项,抛物线方程的这个形式与其位置特征相对应:当抛物线的对称轴为x 轴时,抛物线方程中的一次项就是x 的一次项,且一次项x 的符号指明了抛物线的开口方向;当抛物线的对称轴为y 轴时,抛物线方程中的一次项就是y 的一次项,且一次项y 的符号指明了抛物线的开口方向. 三、抛物线的性质 以标准方程 px y 22 =(0>p )为例,其他形式的方程可用同样的方法得到相关结论。 (1)范围:0≥x ,R y ∈; (2)顶点:坐标原点)0,0(O ; (3)对称性:关于x 轴轴对称,对称轴方程为0=y ; (4)开口方向:向右; (5)焦参数:p ; (6)焦点: )0,2(p F ; (7)准线: 2p x - =; (8)焦准距:p ; (9)离心率:1=e ; (10)焦半径:若 ) ,(00y x P 为抛物线 px y 22=(0>p )上一点,则由抛物线的定义,有20p x PF + =; (11)通径长:p 2. 注1:抛物线的焦准距指的是抛物线的焦点到其相应准线的距离。以抛物线 px y 22=

高中数学解析几何测试题答案版(供参考)

解析几何练习题 一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的.) 1.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0 2.若直线210ay -=与直线(31)10a x y -+-=平行,则实数a 等于( ) A 、12 B 、12 - C 、13 D 、13 - 3.若直线,直线与关于直线对称,则直线的斜率为 ( ) A . B . C . D . 4.在等腰三角形AOB 中,AO =AB ,点O(0,0),A(1,3),点B 在x 轴的正半轴上,则直线AB 的方程为( ) A .y -1=3(x -3) B .y -1=-3(x -3) C .y -3=3(x -1) D .y -3=-3(x -1) 5.直线对称的直线方程是 ( ) A . B . C . D . 6.若直线与直线关于点对称,则直线恒过定点( ) 32:1+=x y l 2l 1l x y -=2l 2 1 2 1-22-02032=+-=+-y x y x 关于直线032=+-y x 032=--y x 210x y ++=210x y +-=()1:4l y k x =-2l )1,2(2l

A . B . C . D . 7.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y 轴上的截距为3 1,则m ,n 的值分别为 A.4和3 B.-4和3 C.- 4和-3 D.4和-3 8.直线x-y+1=0与圆(x+1)2+y 2=1的位置关系是( ) A 相切 B 直线过圆心 C .直线不过圆心但与圆相交 D .相离 9.圆x 2+y 2-2y -1=0关于直线x -2y -3=0对称的圆方程是( ) A.(x -2)2 +(y+3)2 =1 2 B.(x -2)2+(y+3)2=2 C.(x +2)2 +(y -3)2 =1 2 D.(x +2)2+(y -3)2=2 10.已知点在直线上移动,当取得最小值时,过点引圆的切线,则此切线段的长度为( ) A . B . C . D . 11.经过点(2,3)P -作圆22(1)25x y ++=的弦AB ,使点P 为弦AB 的中点,则 弦AB 所在直线方程为( ) A .50x y --= B .50x y -+= C .50x y ++= D .50x y +-= 0,40,22,44,2(,)P x y 23x y +=24x y +(,)P x y 22111()()242 x y -++ =2 321 22

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

解析几何试题及答案

解析几何 1.(21)(本小题满分13分) 设,点的坐标为(1,1),点在抛物线上运动,点满足,经 过点与轴垂直的直线交抛物线于点,点满足 ,求点的轨迹方程。 (21)(本小题满分13分)本题考查直线和抛物线的方程,平面向量 的概念,性质与运算,动点的轨迹方程等基本知识,考查灵 活运用知识探究问题和解决问题的能力,全面考核综合数学 素养. 解:由知Q,M,P三点在同一条垂直于x轴的直 线上,故可设 ① 再设 解得②,将①式代入②式,消去,得 ③,又点B在抛物线上,所以, 再将③式代入,得 故所求点P的轨迹方程为 2.(17)(本小题满分13分) 设直线 (I)证明与相交; (II)证明与的交点在椭圆 (17)(本小题满分13分)本题考查直线与直线的位置关系,线线相交的判断与证明,点在曲线上的判断与证明,椭圆方程等基本知识,考查推理论证能力和运算求解能力. 证明:(I)反证法,假设是l1与l2不相交,则l1与l2平行,有k1=k2,代入k1k2+2=0,得此与k1为实数的事实相矛盾. 从而相交. (II)(方法一)由方程组,解得交点P的坐标为,而 此即表明交点 (方法二)交点P的坐标满足, ,整理后,得 所以交点P在椭圆 .已知椭圆G:,过点(m,0)作圆的切线l交椭圆G于A,B两点。 (1)求椭圆G的焦点坐标和离心率; (2)将表示为m的函数,并求的最大值。 (19)解:(Ⅰ)由已知得所以 所以椭圆G的焦点坐标为,离心率为 (Ⅱ)由题意知,.当时,切线l的方程, 点A、B的坐标分别为此时 当m=-1时,同理可得 当时,设切线l的方程为 由;设A、B两点的坐标分别为,则; 又由l与圆

高三数学解析几何专题

专题四 解析几何专题 【命题趋向】解析几何是高中数学的一个重要内容,其核心内容是直线和圆以及圆锥曲线.由于平面向量可以用坐标表示,因此以坐标为桥梁,可以使向量的有关运算与解析几何中的坐标运算产生联系,平面向量的引入为高考中解析几何试题的命制开拓了新的思路,为实现在知识网络交汇处设计试题提供了良好的素材.解析几何问题着重考查解析几何的基本思想,利用代数的方法研究几何问题的基本特点和性质.解析几何试题对运算求解能力有较高的要求.解析几何试题的基本特点是淡化对图形性质的技巧性处理,关注解题方向的选择及计算方法的合理性,适当关注与向量、解三角形、函数等知识的交汇,关注对数形结合、函数与方程、化归与转化、特殊与一般思想的考查,关注对整体处理问题的策略以及待定系数法、换元法等的考查.在高考试卷中该部分一般有1至2道小题有针对性地考查直线与圆、圆锥曲线中的重要知识和方法;一道综合解答题,以圆或圆锥曲线为依托,综合平面向量、解三角形、函数等综合考查解析几何的基础知识、基本方法和基本的数学思想方法在解题中的应用,这道解答题往往是试卷的把关题之一. 【考点透析】解析几何的主要考点是:(1)直线与方程,重点是直线的斜率、直线方程的各种形式、两直线的交点坐标、两点间的距离公式、点到直线的距离公式等;(2)圆与方程,重点是确定圆的几何要素、圆的标准方程与一般方程、直线与圆和圆与圆的位置关系,以及坐标法思想的初步应用;(3)圆锥曲线与方程,重点是椭圆、双曲线、抛物线的定义、标准方程和简单几何性质,圆锥曲线的简单应用,曲线与方程的关系,以及数形结合的思想方法等. 【例题解析】 题型1 直线与方程 例1 (2008高考安徽理8)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( ) A .[ B .( C .[33 D .(33 - 分析:利用圆心到直线的距离不大于其半径布列关于直线的斜率k 的不等式,通过解不等式解决. 解析:C 设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1 x y -+= 有公共点,圆心到直线的距离小于等于半径 1d =≤,得222141,3 k k k ≤+≤,选择C 点评:本题利用直线和圆的位置关系考查运算能力和数形结合的思想意识.高考试卷中一般不单独考查直线与方程,而是把直线与方程与圆、圆锥曲线或其他知识交汇考查. 例2.(2009江苏泰州期末第10题)已知04,k <<直线1:2280l kx y k --+=和直线

解析几何测试题

解析几何测试题 一、选择题 1.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( ) A .4 B C D 2.若直线1:10l ax y +-=与2:3(2)10l x a y +++=平行,则a 的值为( ) A 、-3 B 、1 C 、0或- 2 3 D 、1或-3 3.直线经过点A (2,1),B (1,m 2 )两点(m ∈R ),那么直线l 的倾斜角取值范围是 ( ) A .),0[π B .),2(]4, 0[πππ ? C .]4 ,0[π D .),2 ()2,4[ ππ π π? 4. 过点A(1,2)且与原点距离最大的直线方程是( ) A 、052=-+y x B 、042=--y x C 、073=-+y x D 、0 53=-+y x 5.若直线42y kx k =++ k 的取值范围是 A .[1,+∞) B . [-1,-. .(-∞,-1] 6.椭圆1322=+ky x 的一个焦点坐标为)10(,, 则其离心率等于 ( ) A. 2 B. 2 1 C. 332 D. 23 7.一动圆与圆O :x 2 +y 2 =1外切,与圆C :x 2 +y 2 -6x +8=0内切,那么动圆的圆心的 轨迹是( ) (A )圆 (B )椭圆 (C )双曲线的一支 (D )抛物线 8.如右图双曲线122 22=-b y a x 焦点1F ,2F , 过点1F 作垂直于x 轴的直线交双曲线于P 点,且2130PF F ∠=?,则双曲线的渐近线是( ) A x y ±= B x y 2±= C x y 2±= D x y 4±= 9.设抛物线 x y 82 =的焦点为F ,过点F 作直线l 交抛物线于A 、B 两点,若线段AB 的

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

高中数学椭圆常考题目解题方法及练习2018高三专题复习-解析几何专题

高中数学椭圆常考题目解题方法及练习 2018高三专题复习-解析几何专题(2) 第一部分:复习运用的知识 (一)椭圆几何性质 椭圆第一定义:平面内与两定点21F F 、距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆. 两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2. 椭圆的几何性质:以()0122 22>>=+b a b y a x 为例 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,122 22≤≤b y a x ,即 b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题. 2. 对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。 3. 顶点(椭圆和它的对称轴的交点) 有四个: ()()()().,0B ,0B 0,0,2121b b a A a A 、、、-- 4. 长轴、短轴: 21A A 叫椭圆的长轴,a a A A ,221=是长半轴长; 21B B 叫椭圆的短轴,b b B B ,221=是短半轴长. 5. 离心率 (1)椭圆焦距与长轴的比a c e = ,()10,0<<∴>>e c a (2)22F OB Rt ?,2 22 22 22OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率. (3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e 接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越

空间解析几何试题

空间解析几何试卷 一、填空题(本大题共计30分,每空3分。请把正确答案填在横线上) 1. 设向量{}{}1,1,2,0,1,1=--=→→b a ,则→→b a 在上的射影是_____________,→ a 是 _______________. 2. 设向量{}3,5,4-=→a ,向量225共线,反向且模为与→→a b ,那么向量→b 的坐标是 ________________. 3. 已知向量{ }{}3,2,,1,1,1x b a ==→→, 如果→→b a ,垂直, 那么x =_________. 4. 已知向量{}{},0,3,2,1,0,1=-=→→b a {}2,1,0=→c ,则由这3个向量张成的平行六面体的体积是_________. 5. 直线z y x -=-+= -3212与直线2 112-+=-=z y x 间的距离是_____________. 6. 若直线123z y a x ==- 与平面x-2y+bz=0平行,则a,b 的值分别是______________. 7. 经过直线? ??=-+-=-+0201z y x y x 且与直线z y x 2==平行的平面的方程是_________________. 8. 空间曲线???+==-+1 022x z z y x 在y x 0坐标面上的射影曲线和射影柱面的方程分别 是_____________________________. 9. 顶点在原点、准线为抛物线???==1 22z x y 的锥面方程是________________(请用 x y x ,,的一个方程表示). 10. 曲线?????==-0 19422y z x 绕x 轴旋转后产生的曲面方程是__________________,此曲面表示______________曲面.

2020年高考试题分类汇编(解析几何)

2020年高考试题分类汇编(解析几何) 考点1直线、圆 1.(2020·北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为 A .4 B .5 C .6 D .7 1.(2020·全国卷Ⅰ·理科)已知 M :222220x y x y +---=,直线l : 220x y ++=.P 为直线l 上的动点,过P 作M 的切线PA ,PB ,切点为A ,B , 当PM AB ?最小时,直线AB 的方程为 A .210x y --= B .210x y +-= C .210x y -+= D .210x y ++= 1.(2020·全国卷Ⅰ·文科)已知圆2260x y x +-=,过点(1,2)的直线被圆所截得的弦的长度最小值为 A .1 B .2 C .3 D .4 1.(2020·全国卷Ⅱ·文理科)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 A . 5 B .5 C .5 D .5 1.(2020·全国卷Ⅲ·理科)若直线l 与y =和圆221 5 x y +=都相切,则l 的方程为 A .21y x =+ B .122y x =+ C .112y x =+ D .1122 y x =+ 考点2椭圆 1.(2020·北京卷)已知椭圆C :22 221x y a b +=过点(2,1)A --,且2a b =. (Ⅰ)求椭圆C 的方程: (Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点M ,N ,直线MA ,NA 分别交直线 4x =-于点P ,Q .求 PB BQ 的值.

1.(2020·海南卷)已知椭圆C :22 221x y a b +=(0a b >>)的过点(2,3)M ,A 为 其左顶点,且AM 的斜率为12 . (Ⅰ)求C 的方程: (Ⅱ)点N 为椭圆上任意一点,求AMN ?的面积的最大值. 1.(2020·全国卷Ⅰ·文理科)已知A ,B 分别为椭圆E :2 221x y a +=(1a >) 的左、右顶点,G 为E 的上顶点,8AG GB ?=.P 为直线6x =上的动点,PA 与E 的另一个交点为C ,PB 与E 的另一个交点为D . (Ⅰ)求E 的方程; (Ⅱ)证明:直线CD 过定点. 1.(2020·全国卷Ⅱ·理科)已知椭圆1C :22 221x y a b +=(0a b >>)的右焦点为 F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且4 3 CD AB =. (Ⅰ)求1C 的离心率; (Ⅱ)设M 是1C 与2C 的公共点,若5MF =,求1C 与2C 的标准方程. 1.(2020·全国卷Ⅱ·文科)已知椭圆1C :22 221x y a b +=(0a b >>)的由焦点为 F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C ,D 两点,且4 3 CD AB =. (Ⅰ)求1C 的离心率; (Ⅱ)若1C 的四个顶点到2C 的准线的距离之和为12,求1C 与2C 的标准方程. 1.(2020·全国卷Ⅲ·理科)已知椭圆C :22 2125x y m +=(05m <<)的离心率为 ,A ,B 分别为C 的左、右顶点.

高中数学解析几何题型

解析几何题型 考点1.求参数的值 求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之. 例1.若抛物线22y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质. 解答过程:椭圆22 162 x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =, 考点2. 求线段的长 求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之. 例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于 A.3 B.4 C.32 D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用. 解:设直线AB 的方程为y x b =+,由22123 301y x x x b x x y x b ?=-+?++-=?+=-? =+?,进而可求出AB 的中点11(,)22M b -- +,又由11 (,)22 M b --+在直线0x y +=上可求出1b =, ∴220x x +-=,由弦长公式可求出2 211 14(2)32AB =+-?-=. 例3.如图,把椭圆22 12516 x y +=的长轴 AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部 分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆22 12516 x y +=的方程知225, 5.a a =∴= ∴1234567 7277535.2 a PF P F P F P F P F P F P F a ?++++++==?=?= 考点3. 曲线的离心率

高考数学解析几何的解法

解析几何题怎么解 高考解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题), 共计30分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识,这点值得考生在复课时强化. 例1 已知点T 是半圆O 的直径AB 上一点,AB=2、OT=t (0>=+b a b y a x 有且仅有一个交点Q ,且与x 轴、y 轴分别交于R 、 S ,求以线段SR 为对角线的矩形ORPS 的一个顶点P 的轨迹方程. 讲解:从直线l 所处的位置, 设出直线l 的方程, 由已知,直线l 不过椭圆的四个顶点,所以设直线l 的方程为).0(≠+=k m kx y 代入椭圆方程,222222b a y a x b =+ 得 .)2(22222222b a m kmx x k a x b =+++ 化简后,得关于x 的一元二次方程 .02)(222222222=-+++b a m a mx ka x b k a 于是其判别式).(4))((4)2(222222222222222m b k a b a b a m a b k a m ka -+=-+-=?

2017、2018高考试题分类汇编之解析几何和圆锥曲线理

2017、2018高考试题分类汇编之解析几何(理) 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.(2017课标I 理)已知F 为抛物线x y C 4:2 =的焦点,过F 作两条互相垂直的直线21,l l ,直线1l 与C 交 于B A ,两点,直线2l 与C 交于E D ,两点,则DE AB +的最小值为( ) 16.A 14.B 12.C 10.D 2.(2017课标II 理)若双曲线C:22221x y a b -=(0a >,0b >)的一条渐近线被圆()2 224x y -+=所截 得的弦长为2,则C 的离心率为( ) 2.A 3.B 2.C 3 3 2. D 3.(2017浙江)椭圆22 194 x y +=的离心率是( ). A . B . C 23 . D 5 9 4.(2017课标III 理)已知椭圆:C 22 221x y a b +=)0(>>b a ,的左、右顶点分别为21,A A 且以线段21A A 为 直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( ) . A . B . C . D 13 5.(2017天津理)已知双曲线22 221(0,0)x y a b a b -=>>的左焦点为F ,.若经过F 和(0,4)P 两 点的直线平行于双曲线的一条渐近线,则双曲线的方程为( ) .A 22144x y -= .B 22188x y -= .C 22148x y -= .D 22 184x y -= 6.(2017课标III 理)已知双曲线:C 22221x y a b -=)0,0(>>b a 的一条渐近线方程为y x =,且与椭圆22 1123x y +=有公共焦点,则C 的方程为( ) . A 22 1810 x y -= . B 22145x y -= . C 22 154 x y -= .D 22 143 x y -=

(完整)高中数学解析几何解题方法

高考专题:解析几何常规题型及方法 A:常规题型方面 (1)中点弦问题 具有斜率的弦中点问题,常用设而不求法(点差法):设曲线上两点为(,)x y 11,(,)x y 22,代入方程,然后两方程相减,再应用中点关系及斜率公式,消去四个参数。 典型例题 给定双曲线x y 2 2 2 1-=。过A (2,1)的直线与双曲线交于两点P 1 及P 2,求线段P 1P 2的中点P 的轨迹方程。 分析:设P x y 111(,),P x y 222(,)代入方程得x y 1 2 1221-=,x y 22 22 2 1-=。 两式相减得 ()()()()x x x x y y y y 121212121 2 0+-- +-=。 又设中点P (x,y ),将x x x 122+=,y y y 122+=代入,当x x 12≠时得 22201212x y y y x x - --=·。 又k y y x x y x = --=--12121 2 , 代入得2402 2 x y x y --+=。 当弦P P 12斜率不存在时,其中点P (2,0)的坐标也满足上述方程。 因此所求轨迹方程是2402 2 x y x y --+= 说明:本题要注意思维的严密性,必须单独考虑斜率不存在时的情况。 (2)焦点三角形问题 椭圆或双曲线上一点P ,与两个焦点F 1、F 2构成的三角形问题,常用正、余弦定理搭桥。 典型例题 设P(x,y)为椭圆x a y b 222 21+=上任一点,F c 10(,)-,F c 20(,)为焦点,∠=PF F 12α,∠=PF F 21β。 (1)求证离心率β αβαsin sin ) sin(++= e ; (2)求|||PF PF 13 23 +的最值。

高等数学-空间解析几何与向量代数练习题与答案

空间解析几何与矢量代数小练习 一 填空题 5’x9=45分 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模_________________, 方向余弦_________________和方向角_________________ 3、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 4、方程0242222=++-++z y x z y x 表示______________曲面. 5、方程22x y z +=表示______________曲面. 6、222x y z +=表示______________曲面. 7、 在空间解析几何中2x y =表示______________图形. 二 计算题 11’x5=55分 1、求过点(3,0,-1)且与平面3x-7y+5z-12=0平行的平面方程. 2、求平行于x 轴且过两点(4,0,-2)和(5,1,7)的平面方程. 3、求过点(1,2,3)且平行于直线 5 1132-=-=z y x 的直线方程. 4、求过点(2,0,-3)且与直线? ??=+-+=-+-012530742z y x z y x 垂直的平面方

5、已知:k i OA 3+=,k j OB 3+=,求OAB ?的面积。 参考答案 一 填空题 1、? ?????-±116,117,116 2、21M M =2,21cos ,22cos ,21cos ==- =γβα,3,43,32πγπβπα=== 3、14)2()3()1(222=++-+-z y x 4、以(1,-2,-1)为球心,半径为6的球面 5、旋转抛物面 6、 圆锥面 7、 抛物柱面 二 计算题 1、04573=-+-z y x 2、029=--z y 3、5 31221-=-=-z y x 4、065111416=---z y x 5 219== ?S

2019年高考数学分类汇编:专题九解析几何

第九篇:解析几何 一、选择题 1.【2018全国一卷8】设抛物线C :y 2 =4x 的焦点为F ,过点(–2,0)且斜率为 23 的直线与 C 交于M ,N 两点,则FM FN = A .5 B .6 C .7 D .8 2.【2018全国一卷11】已知双曲线C : 2 2 13 x y ,O 为坐标原点,F 为C 的右焦点,过 F 的直线与C 的两条渐近线的交点分别为 M 、N.若△OMN 为直角三角形,则 |MN |= A .32 B .3 C .23 D .4 3.【2018全国二卷5】双曲线2 2 2 21(0,0)x y a b a b 的离心率为 3,则其渐近线方程为 A .2y x B .3y x C .22 y x D .32 y x 4.【2018全国二卷12】已知1F ,2F 是椭圆2 2 2 21(0)x y C a b a b :的左、右焦点,A 是C 的 左顶点,点P 在过A 且斜率为36 的直线上,12PF F △为等腰三角形, 12120F F P , 则C 的离心率为 A .23 B .12 C . 13 D . 14 5.【2018全国三卷 6】直线2 0x y 分别与x 轴,y 轴交于A ,B 两点,点P 在圆 2 2 2 2x y 上,则 ABP △面积的取值范围是 A .26, B .48 ,C . 232 ,D .2232 ,6.【2018全国三卷11】设12F F ,是双曲线2 2 221x y C a b : (00a b ,)的左,右焦点, O 是坐标原点.过 2F 作C 的一条渐近线的垂线,垂足为 P .若1 6PF OP ,则C 的离

高中数学解析几何答题全攻略,2020高考生必看!

高中数学解析几何答题全攻略,2020高考生必看! 解析几何由于形式复杂多样,一直是难于解决的问题,很多同学对于解析几何的把握还差很多,很多同学对此知识点提出了相应的问题。对此清华附中数学老师有针对性的回答了同学们的共性问题。下面是对本次答疑情况的汇总,希望对大家学习数学尤其是解析几何部分有所帮助。 1 考试时间分配 问题1:老师我怎么这么短时间内做几道题通解一类题目呢?解析几何也有不少类型题 老师:理解的基础上去做,不要单纯的套公式,做题一定要保证真的会了,而不是只追求数量。如果感觉自己的水平没有提高,那么问问自己错题有没有好好整理,有没有盖住答案重新做过,再做的时候能不能保证很快的就有思路,之前出过的问题有没有及时得到解决?总之刷题不能埋头死刷,要有总结和反思。如果都做到了,考试还是没有好成绩,那么看看是不是考试时过于紧张,这个时候心态也很重要! 问题2:错题也有很多呀,怎么从错题那里去帮助学习数学呀?都抄几遍和看几遍吗?很多呀!该怎么办呢? 老师:对待错题,不要抄也不要只是看,当做新题重新做一遍,有时候一道题我们直接去看答案,总是发现不了问题,我建议把错题的题目直接汇编在一起,不要有答案,每隔一段时间都重新做一下,如果做题的过程很肯定,没有模糊的地方,这道题才可以过。这个过程比做新题更重要。

问题3:老师我数学只有三四十分马上高考该从哪里开始复习分数会提高呢? 老师:简单的题目模块比如复数、集合、线性规划、程序框图、三角函数与解三角形、简单的等差等比数列以及立体几何等,还有导数和圆锥曲线的第一问,找出前几年的高考题,看看都考了哪些简单模块,一个模块练几十道,绝对会有效果的,别放弃,只要努力一定能看到进步! 问题4:三视图怎么想也想不出来!有什么好的办法呀!老师!救救我 老师:平时见到三视图的题目无论问什么,都是去画他的立体图形,训练自己。如果考试时真的想不出来了,那么看看能不能判断出这个图形是什么,比如正视图和侧视图都只有一个最高顶点,那么基本可以判断这是一个椎体,如果是求体积的题目,直接底面积乘以高除以3就可以了,但是这个方法不是所有题目都适用。还有就是如果正视侧视和俯视都和正方形或者等腰直角三角形有关,那么可以画一个正方体,去找这个立体图形的可能性。 2 解析几何如何把握

相关文档
最新文档