高考数学百大经典例题 平面 新课标版

高考数学百大经典例题 平面 新课标版
高考数学百大经典例题 平面 新课标版

典型例题一

例1 三条直线两两相交,由这三条直线所确定平面的个数是( ).

A .1

B .2

C .3

D .1或3

分析:本题显然是要应用推论2判断所能确定平面的个数,需要在空间想象出这三条直线所有不同位置的图形,有如下图的三种情况(如图):

答案:D .

说明:本题启发我们考虑问题不要只局限于平面图形,应养成在三维空间考虑问题的习惯.

典型例题二

例2 一条直线与三条平行直线都相交,求证这四条直线共面.

分析:先将已知和求证改写成符号语言.证明诸线共面,可先由其中的两条直线确定一个平面,然后证明其余的直线均在此平面内.也可先由其中两条确定一个平面α,另两条确定平面β,再证平面α,β重合.

已知:c b a ////,A a l =I ,B b l =I ,C c l =I .

求证:直线a ,b ,c ,l 共面.

证明: ∵ b a //,

∴ a ,b 确定一个平面α.

∵ A a l =I ,B b l =I ,

∴ α∈A ,α∈B ,故α?l .

又 ∵ c a //, ∴ a ,c 确定一个平面β.

同理可证β?l .

∴ a =βαI ,且l =βαI .

∵ 过两条相交直线a ,l 有且只有一个平面,故α与β重合

即直线a ,b ,c ,l 共面.

说明:本例是新教材第9页第9题的一个简单推广,还可推广到更一般的情形.本例证明既采用了归一法,同时又采用了同一法.这两种方法是证明线共面问题的常用方法.在证明α?c 时,也可以用如下反证法证明:

假设直线α?c ,则c 一定与α相交,此时直线c 与a 内的所有直线都不会平行,这显然

与c a //矛盾.故α?c .

典型例题三

例3 已知ABC ?在平面α外,它的三边所在的直线分别交平面α于P ,Q ,R 三点,证明P ,Q ,R 三点在同一条直线上.

分析:如图所示,欲证P ,Q ,R 三点共线,只须证P ,

Q ,R 在平面α和平面ABC ?的交线上,由P ,Q ,R 都是

两平面的公共点而得证.

证明:∵ P AB =αI ,Q BC =αI ,

∴ PQ 是平面α与平面ABC 的交线.

又 ∵ R AC =αI

∴ α∈R 且∈R 平面ABC , ∴ PQ R ∈,

∴ P ,Q ,R 三点共线.

说明:证明点共线的一般方法是证明这些点是某两个平面的公共点,由公理2,这些点都在这两平面的交线上.

典型例题四

例4 如图所示,ABC ?与111C B A ?不在同一个平面内,如果三直线1AA 、1BB 、1CC 两两相交,证明:三直线1AA 、1BB 、1CC 交于一点.

分析:证明三线共点的一般思路是:先证明两条直线交

于一点,再证明该点在第三条直线上即可.

证明:由推论2,可设1BB 与1CC ,1CC 与1AA ,1

AA 与1BB 分别确定平面α,β,γ.

取P BB AA =11I ,则1AA P ∈,1BB P ∈.

又因1CC =βαI ,则1CC P ∈(公理2),

于是P CC BB AA =111I I ,

故三直线1AA 、1BB 、1CC 共点.

说明:空间中证三线共点有如下两种方法:

(1)先确定两直线交于一点,再证该点是这两条直线所在两个平面的公共点,第三条直线是这两个平面的交线,由公理2,该点在它们的交线上,从而得三线共点.

(2)先将其中一条直线看做是某两个平面的交线,证明该交线与另两直线分别交于两点,再证这两点重合.从而得三线共点.

典型例题五

(1)不共面的四点可以确定几个平面?

(2)三条直线两两平行但不共面,它们可以确定几个平面?

(3)共点的三条直线可以确定几个平面?

分析:(1)可利用公里3判定。

(2)可利用公里3的推论3判定。

(3)需进行分类讨论判定。

解:(1)不共面的四点可以确定四个平面。

(2)三条直线两两平行但不共面,它们可以确定3个平面。

(3)共点的三条直线可以确定1个或3个平面。

说明:判定平面的个数问题关键是要紧紧地抓住已知条件,要做到不重不漏。

平面的确定问题

主要是根据已知条件和公里3及其3个推论来判定平面的个数。

典型例题六

例6 A 、B 、C 为空间三点,经过这三点:

A .能确定一个平面

B .能确定无数个平面

C .能确定一个或无数个平面

D .能确定一个平面或不能确定平面

分析:本题考查空间确定平面的方法,解题的主要依据是公理3及三个推论.

解:由于题设中所给的三点A 、B 、C 并没有指明这三点之间的位置关系,

所以在应用公理3时要注意条件“不共线的三点”.

当A 、B 、C 三点共线时,经过这三点就不能确定平面,

当A 、B 、C 三点不共线时,经过这三点就可以确定一个平面,故选D .

说明:空间确定一平面的方法有多种,既可以根据不共线的三点来确定一个平面,又可以根据空间两相交直线或两平行直线来确定一个平面.

典型例题七

例7 判断题(答案正确的在括号内打“√”号,不正确的在括号内打“×”号).

(1)两条直线确定一个平面;( )

(2)经过一点的三条直线可以确定一个平面;( )

(3)两两相交的三条直线不共面;( )

(4)不共面的四点中,任何三点不共线.( )

分析:(1)两条直线能否确定平面,应注意这两条直线的位置关系,不给出位置关系则要分情况讨论,才可得出结论.两条相交直线可确定一个平面,两条平行直线可确定一个平面,

除此以外的任何两条直线不能确定平面;

(2)经过一点的两条直线可确定一个平面,三条直线不一定能确定平面;

(3)三条直线两两相交,若不共点时这三条直线必共面;

(4)如果有三点共线,则此三点所在直线与第四点必同在某一平面内,即四点共面. 解:(1)× (2)× (3)× (4)√.

说明:由(3)题的分析过程可知:两两相交的三条直线有时共面有时不共面.那么对于空间四条直线何时共面何时不共面呢?

典型例题八

例8 如图,在正方体1111D C B A ABCD 中,点E 、F 分别是棱1AA 、1CC 的中点,试画出过点1D 、E 、F 三点的截面.

分析:本题考查作多面体截面的能力,主要依据是公理1和公理2欲画出所要求的截面与正方体各个侧面的交线.

解:连F D 1并延长F D 1与DC 的延长线交于点H ,连结E D 1与DA 的延长线交于点G ,连结GH 与AB 、BC 两条棱交于点B ,连结BE 、BF ,则F BED 1就是过点1D 、E 、F 三点的截面.

说明:本题亦可以证明点B 、E 、1D 、F 四点共面.若E 、F 不是棱A A 1与C C 1的中点,则作图过程中GH 不一定过点B ,所画的截面多边形可能是五边形.

典型例题九

例9 判断下列说法是否正确?并说明理由.

(1)平行四边形是一个平面.

(2)任何一个平面图形都是一个平面.

(3)空间图形中先画的线是实线,后画的线是虚线.

解:(1)不正确.平行四边形它仅是平面上四条线段构成的图形,它是不能无限延伸的. 说明:在立体几何中,我们通常用平行四边形表示平面,但绝不是说平行四边形就是平面.

(2)不正确.平面图形和平面是完全不同的两个概念,平面图形是有大小,它是不可能无限延展的.

说明:要严格区分“平面图形”和“平面”这两个概念.

(3)不正确.在空间图形中,我们一般是把能够看得见的线画成实线,把被平面遮住看不见的线画成虚线(无论是题中原有的,还是后引的辅助线).

说明:在平面几何中,凡是后引的辅助线都画成虚线;在立体几何中却不然.有的同学在学习立体几何时,对此点没有认识,必将影响空间立体感的形成,削弱或阻断空间想象能力的培养.

典型例题十

例10按照给出的要求,完成下面两个相交平面的作图,如下图的(1)、(2)、(3)、(4)、(5)、(6)中的线段AB,分别是两个平面的交线.

解:由两个相交平面的画法:本题只须过线段的端点画出与交线AB平行且相等的线段,即可得到相关的平行四边形,注意被平面遮住的部分应画成虚线或者不画,然后在相关的平面上标上表示平面的字母即可如下图所示.

说明:(1)画好两个相交平面的图形,是画好一切立体图形的基础.

(2)画空间图形的过程,是培养我们空间想象能力的过程,一定要认真对待,决不可以掉以轻心.

典型例题十一

例11(1)一个平面将空间分成几部分?

(2)两个平面将空间分成几部分?

(3)三个平面将空间分成几部分?画出图形,(要求:至少有两种情况有画法过程) 解:(1)一个平面将空间分成两部分.

(2)两个平面平行时,将空间分成三部分,两个平面相交时,将空间分成四部分.

(3)本小题情况比较复杂,须分类予以处理.

情况1:当平面α、平面β、平面γ互相平行(即γβα////),将空

间分成四个部分,其图形如右图.

情况2:当平面α与平面β平行,平面γ与它们相交(即βα//,γ

与其相交),将空间分成六部分,其图形如下图.

画法是:

情况3:当平面α、平面β、平面γ都相交,且三条交线重合(即l =βαI 且l =γαI ) 将空间分成六部分,其图形如下图.

说明:本种情况给出两种图形,一种是将交线画成水平状态,一种是将交线画成竖直状态.

情况4:平面α、平面β、平面γ都相交且三条交线共点,但互不重合.(即l =γαI ,且γ与α、β都相交,三条交线共点).将空间分成八部分,其图形如下图.

画法是:

情况5:平面α、平面β、平面γ两两相交且三条交线平行(即l =βαI ,γ与α、β都相交且三条交线平行).将空间分成七部分,其图形如下图.

说明:1.本小题(3),在解答过程中,采用了简单到复杂递进的处理方法,首先对两个平面在空间的位置分类讨论,再让第三个平面以不同情况介入,然后分类解决.2.通过此题的解答,要学会处理问题的思维方法,注意逻辑思维能力的培养与提高.3.本题是一个基础性很强的问题,无论是对立体图形的画法以及空间想象能力的形成都大有裨益.

典型例题十二

例12下图中表示两个相交平面,其中画法正确的是().

解:对于A,图中没有画出平面α与平面β的交线,另外图中的实、虚线也没有按照画

法原则去画,因此A的画法不正确.

同样的道理,也可知B、C图形的画法不正确.

D的图形画法正确.

∴应选D.

说明:对空间图形的准确辨识,是培养空间想象能力的重要组成部分,一定要注意这方面能力的锻炼.

典型例题十三

例13观察下图,说明图形中的不同之处.

解:上面的图形都是由九条线段构成的图形、外形似乎相似.

仔细观察,由于图中的实、虚线的画法不同,则反映了不同的几何体.

A图是一个簸箕形图形;B图是体,是三棱柱;C图也是体,也是三棱柱.

B图如果看作是从三棱柱的正面观察,C图则可看作是从三棱柱的后面观察.

说明:在立体几何中,一定要明确画图过程中哪条线画实线,哪条线画虚线.要记住:能够看得到的线一定画成实线,被挡住的看不到的线画成虚线.

下面再给出两组图形如下图所示,请同学们予以辨识,指出它们有什么不同.

典型例题十四

例14 若点Q 在直线b 上,b 在平面β内,则Q 、b 、β之间的关系可记作(

). A .β∈∈b Q B .β?∈b Q C .β??b Q D .β∈?b Q

解法1:(直接法)

∵点Q 在直线b 上,∴b Q ∈,

∵直线b 在平面β内,∴β?b ,

∴β?∈b Q .

∴应选B .

解法2:(排除法)

∵点Q 与直线b 之间的关系是元素与集合之间的关系,

∴只能用符号“∈”或“?”表示,

∴C 、D 应予排除.

∵直线b 与平面β之间是集合与集合之间的关系,

∴只能用符号“?”或“?”表示,

∴A 应予以排除.

综上可知应选B .

说明:要能正确地使用点、直线、平面之间关系的符号语言.

典型例题十五

例15 用符号语言表示下列语句

(1)点A 在平面α内,但在平面β外;

(2)直线a 经过平面α外一点M ;

(3)直线a 在平面α内,又在平面β内,即平面α和β相交于直线a .

解:(1)α∈A 但β?A .

(2)α?M ,a M ∈.

(3)α?a 且β?a ,即a =βαI .

说明:符号语言比较简洁、严谨,可大大的缩短文字语言表达的长度,有利于推理、计算.

典型例题十六

例16 将下面用符号语言表示的关系改用文字语言予以叙述,并用用图形语言予以表示.βαβα??∈=AC AB l A l ,,,I .

分析:本题实质是数学三种语言——符号语言、文字语言、图形语言的互译.

解:文字语言叙述为:

点A 在平面α与平面β的交线l 上,AB 、AC 分别在α、β内.

图形语言表示为如图:

说明:文字语言比较自然、生动,它能将问题所研究的对象的含义更加明白地叙述出来,我们教科书上的概念、定理等多以文字语言叙述.

图形语言,易引起清晰的视觉形象,它能直观地表达概念、定理的本质以及相互关系,在抽象的数学思维面前起着具体化和加深理解的作用.

各种数学语言间的互译可为我们在更广阔的思维领域里寻找问题解决的途径提供方便.有利于培养我们思维的广阔性.

典型例题十七

例17 如下图中ABC ?,若AB 、BC 在平面α内,判断AC 是否在平面α内.

解:∵AB 在平面α内,

∴A 点一定在平面α内.

∵BC 在平面α内,

∴C 点一定在平面α内.

∴点A 、点C 都在平面α内.

∴直线AC 在平面内(公理1).

说明:公理1可以用来判断直线是否在平面内.

典型例题十八

例18 如下图,在正方体1111D C B A ABCD -中,E 、F 分别为1CC 和1AA 上的中点,画出平面F BED 1与平面ABCD 的交线.

分析:可根据公理2,如果两个平面有一个公共点,它们就有过这点的一条直线,也只有这一条直线;这条直线的位置还须借助于另一个条件来确定.

解:在平面D D AA 11内,延长F D 1,

∵F D 1与DA 不平行,

因此F D 1与DA 必相交于一点,设为P

则1FD P ∈,DA P ∈.

又∵?1FD 平面F BED 1,?AD 平面ABCD 内,

∴∈P 平面F BED 1,∈P 平面ABCD .

又B 为平面ABCD 与平面F BED 1的公共点,

∴连结PB ,PB 即为平面F BED 1与平面ABCD 的交线.

说明:公理2是两个平面相交的性质,它说明两个平面相交,交线是一条直线.要注意理解两个平面不存在只有一个公共点的情形,如果有一个公共点,那么必定有无数多个公共点,且这些点恰好组成一条直线.同时要注意,找到两个平面的一个公共点,交线的具体位置还无法判定,只有找到两个公共点,才确定这两个平面的交线.这是做几何体截面时确定交线经常用到的方法.

典型例题十九

例19 已知E 、F 、G 、H 分别是空间四边形ABCD (四条线段首尾相接,且连接点不在同一平面内.所组成的空间图形叫空间四边形.)各边AB 、AD 、CB 、CD 上的点,且直线EF 和HG 交于点P ,如下图,求证:点B 、D 、P 在同一条直线上.

证明:如图

HG=,

∵直线EF I直线P

∴P∈直线EF,而EF?平面ABD,

∴P∈平面ABD.

同理,P∈平面CBD,即点P是平面ABD和平面CBD的公共点.显然,点B、D也是平面ABD和平面CBD的公共点,由公理2知,点B、D、P都在平面ABD和平面CBD 的交线上,即点B、D、P在同一条直线上.

说明:证明三点共线通常采用如下方法:

方法1是首先找出两个平面,然后证明这三点都是这两个平面的公共点,根据公理2知,这些点都在交线上.

方法2是选择其中两点确定一条直线,然后证明另一点在其上.

平面向量经典例题讲解

平面向量经典例题讲解 讲课时间:___________姓名:___________课时:___________讲课教师:___________ 一、选择题(题型注释) 1. 空间四边形OABC 中,OA a =u u u r r ,OB b =u u u r r , OC c =u u u r r ,点M 在OA 上,且MA OM 2=,N 为BC 的 中点,则MN u u u u r =( ) A C 【答案】B 【解析】 试 题 分 析 : 因 为 N 为 BC 的中点,则 , ,选 B 考点:向量加法、减法、数乘的几何意义; 2.已知平面向量a ,b 满足||1= a ,||2= b ,且()+⊥a b a ,则a 与b 的夹角是( ) (A (B (C (D 【答案】D 【解析】 试题分析:2()()00a b a a b a a a b +⊥∴+?=∴+?=r r r r r r r r r Q ,||1=a ,||2=b ,设夹角为θ,则 考点:本题考查向量数量积的运算 点评:两向量垂直的充要条件是点乘积得0,用向量运算得到cos θ的值,求出角 3.若OA u u r 、 OB u u u r 、OC uuu r 三个单位向量两两之间夹角为60u u r 【答案】D 【解析】 试题分析 :ΘOA u u r 、OB u u u r 、OC uuu r 三个单位向量两两之间夹角为 60° 6= r 考点:向量的数量积. 4.在平行四边形ABCD 中,AC 与BD 交于点O E ,是线段OD 的中点,AE 的延长线与CD 交于点F , 若AC a =u u u r r ,BD b =u u u r r ,则AF =u u u r ( ) A.1142a b +r r B.1233a b +r r C.1124a b +r r D.2133 a b +r r 【答案】D 【解析】 试题分析:由题意可知,AEB ?与FED ?相似,且相似比为3:1,所以由向量加减法 的平行四边形法则可知,,AB AD a AD AB b +=-=u u u r u u u r r u u u r u u u r r ,解得,故D 正确。 考点:平面向量的加减法 5.在边长为1的等边ABC ?中,,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r ,2 AE EC =u u u r u u u r 则AD BE ?=u u u r u u u r ( ) A .【答案】A 【解析】 试题分析:由已知,D E 分别在边BC 与AC 上,且BD DC =u u u r u u u r , 2AE EC =u u u r u u u r 则D 是BC 的中轴点,E 为AC 的三等分点,以D 为坐标原点,DA 所在直线为y 轴,BC 边所在直线为x 轴,建立平面直角坐标系, ,设),(y x E ,由EC AE =2可得:

高考数学大题经典习题

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1 (2)(2)3 f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .

高中数学经典例题

高中数学经典例题讲解高中数学经典例题讲解典型例题一例1下列图形中,满足唯一性的是 (). A.过直线外一点作与该直线垂直的直线 B.过直线 外一点与该直线平行的平面C.过平面外一点与平面平行的直 线D.过一点作已知平面的垂线分析:本题考查的是空间线线 关系和线面关系,对定义的准确理解是解本题的关键.要注意空间垂直并非一定相关.解:A.过直线外一点作与这条直线垂直的直线,由于并没有强调相交,所以这样的垂线可以作无数条.事实上这无数条直线还在同一个平面内,这个平面为该直线的一个垂面.B.过直线外一点可以作一条而且仅能作一条直线与该直线平行,但可以作无数个平面和该直线平行.C.过此点作平面内任一直线的平行线,这条平行线都平行于平面.所以过平面外一点与平面平行的直线应有无数条..过一点作已知平面的垂线是有且仅有一条.假设空间点、平面,过点有两条直线、都垂直于,由于、为相交直线,不妨设、所确定的平面为 ,与的交线为,则必有,,又由于、、都在平面内,这样在内经过点就有两条直线和直线垂直,与平面几何中经过一点有县仅有一条直线与已知直线垂直相矛盾.故选D.说明:有关“唯一性”结论的问题,常用反证法,或者借助于其它已证明过的唯一性命题来证明.在本书中,过一点作已知平面的垂线有且仅有一条,同时,过一点作

已知直线的垂面也是有且仅有一个.它们都是“唯一性”命题,在空间作图题中常常用到.典型例题二例2 已知下列命题:(1)若一直线垂直于一个平面的一条斜线,则该直线必垂直于斜线在这个平面内的射影;(2)平面内与这个平面的一条斜线垂直的直线互相平行;(3)若平面外的两条直线,在这个平面上的射影互相垂直,则这两条直线互相垂直;(4)若两条直线互相垂直,且其中的一条平行一个平面,另一条是这个平面的斜线,则这两条直线在这个平面上的射影互相垂直.上述命题正确的是(). A.(1)、(2) B.(2)、(3) C.(3)、(4) D.(2)、(4)分析:本题考查的三垂线定理及其逆定理的简单应用.应用这两个定理时要特别注意“平面内”这一条件,同时要注意各种不同位置的两定理的基本图形及其变式图形.解:(1)已知直线不一定在平面内,所以不能用三垂线逆定理来判断垂直关系; - 1 - 高中数学经典例题讲解(2)平面内与这个平面的一条斜线垂直的直线必定与斜线在平面内的射影垂直,所以它们之间也平行;(3)根据三垂线定理可证明直线与另一直线的射影垂直,但不能进一步说明直线和直线垂直;(4)根据三垂线定理的逆定理和空间两直线所成角的概念,不难证明此命题的正确性.故选D.说明:(3)中若一直线与另一直线的射影垂直,则有另一直线必与这一直线的射影垂直.如E、FGBC在

高考数学专题复习第二轮第18讲 平面向量与解析几何

第18讲 平面向量与解析几何 在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。 一、知识整合 平面向量是高中数学的新增内容,也是新高考的一个亮点。 向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。 二、例题解析 例1、(2000年全国高考题)椭圆 14 9 2 2 =+ y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。 解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ) 21PF F ∠ 为钝角 ∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ?=- -?- ( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0 解得:5 5cos 5 5< <- θ ∴点P 横坐标的取值范围是(5 5 3,553- ) 点评:解决与角有关的一类问题,总可以从数量积入手。本题中把条件中的角为钝角转化为 向量的数量积为负值,通过坐标运算列出不等式,简洁明了。 例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2 =4上的一动点,求22 PA PB +的最 大值和最小值。 分析:因为O 为AB 的中点,所以2,P A P B P O += 故可利用向量把问题转化为求向量O P 的最值。 解:设已知圆的圆心为C ,由已知可得:{1,0},{1,0}O A O B =-=

小升初数学训练典型例题分析-找规律篇

名校真题 测试卷 找规律篇 时间:15分钟 满分5分 姓名_________ 测试成绩_________ 1 (12年清华附中考题) 如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么? 2 (13年三帆中学考题) 观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律, 然后填写20012+( )=20022 3 (12年西城实验考题) 一串分数:12123412345612812,,,,,,,,,,,,.....,,,......,33,55557777779991111 其中的第2000个分数是 . 4 (12年东城二中考题) 在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3) 5 (04年人大附中考题) 请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。为了达到这些目的。

(1)请你说明:11这个数必须选出来; (2)请你说明:37和73这两个数当中至少要选出一个; (3)你能选出55个数满足要求吗? 【附答案】 1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、 143。 2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……, 所以下面括号中填的数字为奇数列中的第2001个,即4003。 3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8… 88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。 4 【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,…… 它们的差依次为5、15、45、135、405……为等比数列,公比为3。 它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。 5 【解】 (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。 (2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必 须选出一个来。 (3),同37的例子, 01和10必选其一,02和20必选其一,……09和90必选其一,选出9个 12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。 23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。 ……… 89和98必选其一,选出1个。

[高考数学]高考数学函数典型例题

?0x时,总有 00 ?01}的四组函数如下: ①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) . 年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。 2 x 2 +1 xlnx+1 2x 2 x lnx x+1 其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④ 33. (20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任 意 3 x x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m ) 2 m 恒成立,则实数 m 的取值范围是 。 34 .( 20XX ? 2 ?1, x < 0 f (1- x 2 )> f ( 2x 的 x 的范围是__▲___。 35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线 (梯形的周长) 梯形的面积 36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 . (Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围; (Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

高考数学百大经典例题 曲线和方程(新课标)

典型例题一 例1 如果命题“坐标满足方程()0=y x f ,的点都在曲线C 上”不正确,那么以下正确的命题是 (A )曲线C 上的点的坐标都满足方程()0=y x f ,. (B )坐标满足方程()0=y x f ,的点有些在C 上,有些不在C 上. (C )坐标满足方程()0=y x f ,的点都不在曲线C 上. (D )一定有不在曲线C 上的点,其坐标满足方程()0=y x f ,. 分析:原命题是错误的,即坐标满足方程()0=y x f ,的点不一定都在曲线C 上,易知答案为D . 典型例题二 例2 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系. 分析:“曲线和方程”的定义中所列的两个条件正好组成两个集合相等的充要条件,二者缺一不可.其中“曲线上的点的坐标都是方程0),(=y x f 的解”,即纯粹性;“以方程的解为坐标的点都是曲线上的点”,即完备性.这是我们判断方程是不是指定曲线的方程,曲线是不是所给方程的曲线的准则. 解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程 1=y 所表示曲线的一部分. 说明:本题中曲线上的每一点都满足方程,即满足纯粹性,但以方程的解为坐标的点不都在曲线上,即不满足完备性. 典型例题三

例3 说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系. 分析:该题应该抓住“纯粹性”和“完备性”来进行分析. 解:方程x y =所表示的曲线上每一个点都满足到坐标轴距离相等.但是“到坐标轴距离相等的点的轨迹”上的点不都满足方程x y =,例如点)3,3(-到两坐标轴的距离均为3,但它不满足方程x y =.因此不能说方程x y =就是所有到坐标轴距离相等的点的轨迹方程,到坐标轴距离相等的点的轨迹也不能说是方程x y =所表示的轨迹. 说明:本题中“以方程的解为坐标点都在曲线上”,即满足完备性,而“轨迹上的点的坐标不都满足方程”,即不满足纯粹性.只有两者全符合,方程才能叫曲线的方程,曲线才能叫方程的曲线. 典型例题四 例 4 曲线4)1(2 2 =-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢? 分析:直线与曲线有两个交点、一个交点、无交点,就是由直线与曲线的方程组成的方程组分别有两个解、一个解和无解,也就是由两个方程整理出的关于x 的一元二次方程的判别式?分别满足0>?、0=?、0?即0)52)(12(<--k k ,即 25 21<--k k ,即21k 时,直线与曲线没有公共点. 说明:在判断直线与曲线的交点个数时,由于直线与曲线的方程组成的方程组解的个数 与由两方程联立所整理出的关于x (或y )的一元方程解的个数相同,所以如果上述一元方程是二次的,便可通过判别式来判断直线与曲线的交点个数,但如果是两个二次曲线相遇,两曲线的方程组成的方程组解的个数与由方程组所整理出的一元方程解的个数不一定相同,所以遇到此类问题时,不要盲目套用上例方法,一定要做到具体问题具体分析. 典型例题五

平面向量典型例题67629

平面向量经典例题: 1. 已知向量a =(1,2),b =(2,0),若向量λa +b 与向量c =(1,-2)共线,则实数λ等于( ) A .-2 B .-13 C .-1 D .-23 [答案] C [解析] λa +b =(λ,2λ)+(2,0)=(2+λ,2λ),∵λa +b 与c 共线,∴-2(2+λ)-2λ=0,∴λ=-1. 2. (文)已知向量a =(3,1),b =(0,1),c =(k , 3),若a +2b 与c 垂直,则k =( ) A .-1 B .- 3 C .-3 D .1 [答案] C [解析] a +2b =( 3,1)+(0,2)=( 3,3), ∵a +2b 与c 垂直,∴(a +2b )·c = 3k +3 3=0,∴k =-3. (理)已知a =(1,2),b =(3,-1),且a +b 与a -λb 互相垂直,则实数λ的值为( ) A .- 611 B .-116 C.611 D.11 6 [答案] C [解析] a +b =(4,1),a -λb =(1-3λ,2+λ), ∵a +b 与a -λb 垂直, ∴(a +b )·(a -λb )=4(1-3λ)+1×(2+λ)=6-11λ=0,∴λ=611 . 3. 设非零向量a 、b 、c 满足|a |=|b |=|c |,a +b =c ,则向量a 、b 间的夹角为( ) A .150° B .120° C .60° D .30° [答案] B [解析] 如图,在?ABCD 中, ∵|a |=|b |=|c |,c =a +b ,∴△ABD 为正三角形,∴∠BAD =60°,

小升初数学典型题数与代数

小升初数学典型题数与 代数 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

第一章 数与代数 第一节 数与代数 1.某一个数十万位上是最大的一位数,万位上是最小的合数,百位上最小的质数,其余各位上都是0,则这个数写作( ),读作( ),省略万位后面的尾数约是( )。 2.用三个8和三个0组成的六位数中,一个零都不读出的最小六位数是( ),只读出一个零的最大六位数是( ),读出两个零的六位数是( )。 3.填空。(1)如果向东走20米记作+20米,那么向西走15米应该记作( )。(2)如果把零下℃ 记作℃,那么零下℃ 记作( ),零上24℃ 记作( )。(3)如果足球比赛负一场记作-1,那么负两场记作( ),胜三场记作( )。 4.判断。(1)3· 是纯循环小数。( ) (2)一个自然数不是质数,就是合数。( ) (3)33 100米可以记作33%米。( ) (4)小数点的后面添上0或去掉0,小数点的大小不变。( ) 5.一个三位小数,“四舍五入”后约是,这个三位小数最大是( ),最小是( )。 6.庆“六一”,六年级同学买来336枝红花,252枝黄花,210枝粉花。用这些花最多可以扎成多少束同样的花束在每束花中,红、黄、粉三种花各有几枝 7.有一堆苹果,3个3个地数余2个,4个4个地数余3个,5个5个地数余4个,这堆苹果最少有多少个 8.要比较9 10和1112的大小,你能用哪些方法 9. ( ) ( ) = =( ):( )=( )% = ( )折 第二节 数的运算

1. 计算(1)9 4×8 5 ÷1.7(2)0.5×[51 5 ÷(3?2.5×7 8 )] 2. 如果83 5?1.5÷[12 3 ×( +11 3 )]=82 5 ,那么□=() 3. 解答下面各题。(1)有一个减法算式,被减数、减数和差的和是71 5 ,差是减数的2倍。请写出这个减法算式。 (2)有一个除法算式,被除数、除数、商和余数的和是100,已知商是12,余数是5。请你求出被除数。 4. 选择。a是大于0的数,(a+a)÷a+(a?a)×a的结果是() A. a B. 2 C. 2-a 5. 下面各题怎样简便就怎样算。 (1)4 7×3 5 +3 7 ÷5 3 (2)4 9 +2.28?5 9 (3)(4)×4.6+6.4×3.7?3.7 6.计算下面各题 (1)16 27×[3 4 ?(7 16 ?1 4 )] (2)1 2 +1 6 +1 12 +1 20 +1 30 +1 42 第三节常见的量 1. 45000平方米=()公顷小时=()分钟 20升20毫升=()升 4小时15分钟=()小时=()分钟千克=()千克()克=()克 2. 王军每天早上7:45到校,中午11:05放学;下午2:20到校,5:00放学。王军一天的在校时间是多少

高考数学百大经典例题不等式证明

典型例题一 例1 若10<-(0>a 且1≠a ). 分析1 用作差法来证明.需分为1>a 和10<a 时, 因为 11,110>+<---=x a . (2)当10<+<--=x a . 综合(1)(2)知)1(log )1(log x x a a +>-. 分析2 直接作差,然后用对数的性质来去绝对值符号. 解法2 作差比较法. 因为 )1(log )1(log x x a a +-- a x a x lg ) 1lg(lg )1lg(+- -= [])1lg()1lg(lg 1 x x a +--= [])1lg()1lg(lg 1 x x a +---= 0)1lg(lg 1 2>--= x a , 所以)1(log )1(log x x a a +>-.

说明:解法一用分类相当于增设了已知条件,便于在变形中脱去绝对值符号;解法二用对数性质(换底公式)也能达到同样的目的,且不必分而治之,其解法自然简捷、明快. 典型例题二 例2 设0>>b a ,求证:.a b b a b a b a > 分析:发现作差后变形、判断符号较为困难.考虑到两边都是正数,可以作商,判断比值与1的大小关系,从而证明不等式. 证明:b a a b b a a b b a b a b a b a b a ---=?=)( ∵0>>b a ,∴ .0,1>->b a b a ∴1)(>-b a b a . ∴a b b a b a b a .1> 又∵0>a b b a , ∴.a b b a b a b a >. 说明:本题考查不等式的证明方法——比较法(作商比较法).作商比较法证明不等式的步 骤是:判断符号、作商、变形、判断与1的大小. 典型例题三 例3 对于任意实数a 、b ,求证 444 ()22 a b a b ++≥(当且仅当a b =时取等号) 分析 这个题若使用比较法来证明,将会很麻烦,因为,所要证明的不等式中有4 ( )2 a b +,展开后很复杂。若使用综合法,从重要不等式:2 2 2a b ab +≥出发,再恰当地利用不等式的有关性质及“配方”的技巧可得到证明。 证明:∵ 222a b ab +≥(当且仅当22 a b =时取等号) 两边同加4 4 4 4 2 22 ():2()()a b a b a b ++≥+, 即: 44222 ()22 a b a b ++≥ (1) 又:∵ 22 2a b ab +≥(当且仅当a b =时取等号) 两边同加2 2 2 2 2 ():2()()a b a b a b ++≥+

平面向量易错题解析

平面向量易错题解析 1.你熟悉平面向量的运算(和、差、实数与向量的积、数量积)、运算性质和运算的几何意义吗? 2.你通常是如何处理有关向量的模(长度)的问题?(利用2 2 ||→→ =a a ;22||y x a +=) 3.你知道解决向量问题有哪两种途径? (①向量运算;②向量的坐标运算) 4.你弄清“02121=+?⊥→ → y y x x b a ”与“0//1221=-?→ → y x y x b a ”了吗? [问题]:两个向量的数量积与两个实数的乘积有什么区别? (1) 在实数中:若0≠a ,且ab=0,则b=0,但在向量的数量积中,若→→≠0a ,且0=?→ →b a ,不能推 出→ →=0b . (2) 已知实数)(,,,o b c b a ≠,且bc ab =,则a=c,但在向量的数量积中没有→ →→→→→=??=?c a c b b a . (3) 在实数中有)()(c b a c b a ??=??,但是在向量的数量积中)()(→ → → → → → ??≠??c b a c b a ,这是因为 左边是与→ c 共线的向量,而右边是与→ a 共线的向量. 5.正弦定理、余弦定理及三角形面积公式你掌握了吗?三角形内的求值、化简和证明恒等式有什么特点? 1.向量有关概念: (1)向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB 按向量a =(-1,3)平移后得到的向量是_____(答:(3,0)) (2)零向量:长度为0的向量叫零向量,记作:,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB 共线的单位向量是|| AB AB ±); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; (5)平行向量(也叫共线向量):方向相同或相反的非零向量、叫做平行向量,记作:∥,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直 线重合;③平行向量无传递性!(因为有0);④三点A B C 、、共线? AB AC 、 共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。的相反向量是-。 如下列命题:(1)若a b =,则a b =。(2)两个向量相等的充要条件是它们的起点相同,终点相同。(3)若AB DC =,则ABCD 是平行四边形。(4)若ABCD 是平行四边形,则AB DC =。(5)若,a b b c ==,则a c =。(6)若//,//a b b c ,则//a c 。其中正确的是_______(答:(4)(5)) 2.向量的表示方法:(1)几何表示法:用带箭头的有向线段表示,如,注意起点在前,终点在后;(2)符号表示法:用一个小写的英文字母来表示,如,,等;(3)坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量,j 为基底,则平面内的任一向量可表示为 (),a xi y j x y =+=,称(),x y 为向量的坐标,=(),x y 叫做向量的坐标表示。如果向量的起点在 原点,那么向量的坐标与向量的终点坐标相同。 3.平面向量的基本定理:如果e 1和e 2是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数1λ、2λ,使a =1λe 1+2λe 2。

小升初数学经典题型汇总

小升初数学:应用题综合训练1 1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地? 总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵 需要种的天数是2150÷86=25天 甲25天完成24×25=600棵 那么乙就要完成900-600=300棵之后,才去帮丙 即做了300÷30=10天之后即第11天从A地转到B地。 2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天? 这是一道牛吃草问题,是比较复杂的牛吃草问题。 把每头牛每天吃的草看作1份。 因为第一块草地5亩面积原有草量+5亩面积30天长的草=10×30=300份 所以每亩面积原有草量和每亩面积30天长的草是300÷5=60份 因为第二块草地15亩面积原有草量+15亩面积45天长的草=28×45=1260份

所以每亩面积原有草量和每亩面积45天长的草是1260÷15=84份 所以45-30=15天,每亩面积长84-60=24份 所以,每亩面积每天长24÷15=份 所以,每亩原有草量60-30×=12份 第三块地面积是24亩,所以每天要长×24=份,原有草就有24×12=288份 新生长的每天就要用头牛去吃,其余的牛每天去吃原有的草,那么原有的草就要够吃80天,因此288÷80=头牛 所以,一共需要+=42头牛来吃。 两种解法: 解法一: 设每头牛每天的吃草量为1,则每亩30天的总草量为:10*30/5=60;每亩45天的总草量为:28*45/15=84那么每亩每天的新生长草量为(84-60)/(45-30)=每亩原有草量为*30=12,那么24亩原有草量为12*24=288,24亩80天新长草量为24**80=3072,24亩80天共有草量3072+288=3360,所有3360/80=42(头) 解法二:10头牛30天吃5亩可推出30头牛30天吃15亩,根据28头牛45天吃15木,可以推出15亩每天新长草量(28*45-30*30)/(45-30)=24;15亩原有草量:1260-24*45=180;15亩80天所需牛180/80+24(头)24亩需牛:(180/80+24)*(24/15)=42头

高考数学百大经典例题——不等式解法

典型例题一 例1 解不等式:(1)01522 3>--x x x ;(2)0)2()5)(4(3 2 <-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或 0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根3 ,2 5 , 0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分. ∴原不等式解集为? ?????><<-3025x x x 或 (2)原不等式等价于 ?? ?>-<-≠????>-+≠+?>-++2450)2)(4(0 50 )2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{} 2455>-<<--

①0 ) ( ) ( ) ( ) ( < ? ? < x g x f x g x f ②0 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( < ? = ? ≤ ? ? ? ≠ ≤ ? ? ≤x g x f x f x g x f x g x g x f x g x f 或 或 (1)解:原不等式等价于 ? ? ? ≠ - + ≥ + - + - ? ≥ + - + - ? ≤ + - + + - ? ≤ + - - - + ? ≤ + - - ? + ≤ - )2 )( 2 ( )2 )( 2 )( 1 )( 6 ( )2 )( 2 ( )1 )( 6 ( )2 )( 2 ( 6 5 )2 )( 2 ( )2 ( )2 (3 2 2 3 2 2 3 2 x x x x x x x x x x x x x x x x x x x x x x x x x 用“穿根法” ∴原不等式解集为[)[) +∞ ? - ? - -∞,6 2,1 )2 , (。 (2)解法一:原不等式等价于0 2 7 3 1 3 2 2 2 > + - + - x x x x 2 1 2 1 3 1 2 7 3 1 3 2 2 7 3 1 3 2 )2 7 3 )( 1 3 2( 2 2 2 2 2 2 > < < < ? ?? ? ? ? < + - < + - ?? ? ? ? > + - > + - ? > + - + - ? x x x x x x x x x x x x x x x 或 或 或 ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞。 解法二:原不等式等价于0 )2 )(1 3( )1 )(1 2( > - - - - x x x x )2 ( )1 3 )( 1 )( 1 2(> - ? - - - ?x x x x 用“穿根法” ∴原不等式解集为) ,2( )1, 2 1 ( ) 3 1 , (+∞ ? ? -∞ 典型例题三

小升初数学典型题

升中典型题 1、一种商品按定价的75折出售,仍可获利20%,若按定价出售可获利()%。 2、圆柱体和圆锥体的底面半径的比是2:3,高的比是4:3,则圆柱与圆锥的体积比是(): ()。 3、有一个长方体,它的正面和上面的面积之和是209,如果它是长、宽、高都是质数,那么 这个长方体的体积是()。 4、小芳骑车从甲地到乙地每小时行30千米,然后按原路返回,若想往返的平均速度为40千 米,则返回时每小时应行()千米。 5、一个半圆形,半径是r,它的周长是()。 6﹑水结成冰后体积增了1 11 , 冰融化成水后,体积减少( ) 7.冰化成水后,体积比原来减少1 12,水结成冰后,体积比原来增加了(). 8、甲数为a,比乙数的3 4多b,表示乙数的式子是()。 9、一个圆柱和一个圆锥的体积相等。已知圆柱的高是圆锥高的 2 3,圆柱的底面积和圆锥底 面积的比是() .10、甲种商品降价20%后与乙商品涨价20%后的价格相等,甲乙两种商品的原价的比是()。 11.甲数比乙数少20%,乙数比甲数多()%。 12.甲乙两个数最大公因数是3,最小公倍数是45,若甲数是9,那么乙数是()。 13. 相同的小正方形拼成一个大正方形,至少要()个。相同的小正方体拼成一个大正方体,至少要()个。 二、解决问题。 1﹑用同一种方砖铺一间长8米,宽6米的乒乓球室的地板,先用200块方砖就铺了32平方米,余下的还要多少方砖(用比例解) 2﹑小明读一本书,第一天读了这本书的1 4 多6页,第二天读了这本书的 2 5 少2页,第三天读完剩 下的17页,这本书共有多少页 3、一筐梨,先拿走30kg,又拿出余下的70%,这时剩下的梨正好是原来的1 10。这筐梨原来 多少kg

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

小升初数学典型题:工程问题练习题

小升初数学典型题:工程问题练习题 工程问题历来是小升初考试的必考科目,题型多样,可出现于填空题,应用题。题目变化多,问题难易跨度大,下面是几道工程问题练习题,希望同学们可以认真学习。 题目一某工程,甲先做56天,乙接着做35天即可完成。若甲乙合做需42天也可以完成。现在,由甲先做48天,再由乙单独完成。问:乙还需做多少天? 题目二一项工程,甲队独做需要150天,乙队独做需要180天。现两队合作,甲队做5天休息2天,乙队做6天休息1天。问,甲乙合作几天能完工? 题目三甲队每工作6天休息1天,乙队每工作5天休息2天。一件工程,甲队单独做需97天,乙队单独做需75天。现两队合作,2019年3月3日开工,问完工时是几月几日? 答案及解析 题目一 解法一: 把甲独做56天,乙接着做35天看做甲乙共同做了35天后,甲再独做(56-35)天。 因为甲乙合做需42天,即合做效率为1/42,共同做的这35天就完成了35/42.剩下的由甲独做(56-35)天完成,可计算出甲的效率,进而算出乙的效率。 (1-1/42×35)÷(56-35)=1/6÷21=1/126

1/42-1/126=1/63 现在,甲先做48天,可找到甲已经完成的部分,余下的工作量即为乙总共需要完成的。 根据时间=工作量÷工作效率,即可得出乙工作天数 (1-1/126×48)÷1/63=13/21×63=39(天) 解法二: 甲乙合做42天看成甲先做42天,再由乙做42天。 甲做56天,乙做35天可以完成 甲做42天,乙做42天可以完成。 可以看出,甲少做(56-42)天,乙就要多做(42-35)天。 可以找到时间比,甲:乙=(56-42):(42-35)=2:1 甲做天数=56+35×2=126(天) 乙做天数=126÷2=63(天) 进而算出两人效率 现在,甲先做48天,可找到甲已经完成的部分,余下的工作量即为乙总共需要完成的。 根据时间=工作量÷工作效率,即可得出乙工作天数 (1-1/126×48)÷1/63=13/21×63=39(天) 题目二和题目三表面看着差别不大,其实是难度不同的两道题。题目二是基础题,题目三是易错题。区别在于独做时间与休息时间说法的顺序。 题目二在最开始就说了两队独做的时间,而只有在合作这项

相关文档
最新文档