导数大题 题型总结

导数大题 题型总结
导数大题 题型总结

导数大题 1.某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:31

()(10)10

V t H t =-(H 为常数)

,其图象如图所示. 记此堆雪从融化开始到结束的平均融化速度为

3(m /h)v . 那么瞬时融化速度等于3(m /h)v 的时刻

是图中的( )

(A )1t

(B )2t

(C )3t (D )4t

2.函数3()e x

f x x =的极值点0x = ,曲线()y f x =在点00(,())x f x 处的切线方程是 .

3.已知函数2

()ln f x a x bx =-,a ,b ∈R .

(Ⅰ)若()f x 在1x =处与直线1

2

y =-

相切,求a ,b 的值;

(Ⅱ)在(Ⅰ)的条件下,求()f x 在1[,e]e

上的

最大值;

(Ⅲ)若不等式()f x x ≥对所有的(,0]b ∈-∞,

2(e,e ]x ∈都成立,求a 的取值范围.

解:(Ⅰ)()2a

f x bx x

'=

-. 由函数()f x 在1x =处与直线1

2

y =-

相切,得(1)0,1(1).2f f '=???=-??即20,1.2

a b b -=??

?-=-??

a b ??

??? (2)

,定义域为此时()f x x x '=-2=x

x

.令

()0f x '>,解得01x <<,令()0f x '<,得

1x >.

所以()f x 在(

1

e

,1)上单调递增,在(1,e )上单调递减,

所以

()f x 在1

[,e]e

上的最大值为

1

(1)2

f =-. ……………………

…………8分

(Ⅲ)若不等式()f x x ≥对所有的

(,0]b ∈-∞,2(e,e ]x ∈都成立,

2ln a x bx x

-≥对所有的

(,0]b ∈-∞,2(e,e ]x ∈都成立,

即2ln a x x bx -≥对所有的(,0]b ∈-∞,

2(e,e ]x ∈都成立,

ln 0

a x x -≥对

2(e,e ]

x ∈恒成

立. …………………11分

即ln x

a x

对2(e,e ]x ∈恒成立, 即a 大于或等于ln x

x

在区间2(e,e ]上的

最大值.

令()ln x h x x =,则2ln 1(=(ln )x h x x -'),当2(e,e ]x ∈时,()0h x '>,()h x 单调递增,

所以()ln x h x x

=,2

(e,e ]x ∈的最大值为

22

e (e )2h =.即2

e 2

a ≥.

所以

a

的取值范围是

2

e [,)2

+∞. ………………………………14分

4.已知函数2()e x

f x x =. (Ⅰ)求()f x 的单调区间;

(Ⅱ)证明:1x ?,2(,0]x ∈-∞,

122

4()()e f x f x -≤

; (Ⅲ)写出集合{()0}x f x b ∈-=R (b 为常数且b ∈R )中元素的个数(只需写出结论).

解:(Ⅰ)()(2)x

f x x x e '=+.

令()(2)0x

f x x x e '=+=,则12x =-,

20x =.

)

所以函数()f x 的单调递减区间为

(2,0)-,单调递增区间为 (,2)-∞-,(0,)+∞.

…………………4分

(Ⅱ)证明:由(Ⅰ)知()f x 的单调递增区间

为(,2)-∞-,单调递减区间为(2,0)-, 所

(,0]x ∈-∞时,

()=f x 最大值2

4

(2)f e -=

因为当(,2]x ∈-∞-时,()0f x >,

(0)0f =,

(,0]x ∈-∞时,

()=f x 最小值(0)0f =.

所以()f x 最大值-()=

f x 最小值24e

. 所以对1x ?,2(,0]x ∈-∞,都有

12()()f x f x -≤()f x 最大值-()=

f x 最小值2

4e . ……………………10分

(Ⅲ)当0b <时,集合{()0}x f x b ∈-=R 的元素个数为0;

当0b =或2

4

b e >

时,集合

{()0}x f x b ∈-=R 的元素个数为1;

当24

b e =

时,集合{()0}x f x b ∈-=R 的元素个数为2;

2

40b e <<

{()0}x f x b ∈-=R 的元素3. …………13分

5.已知函数1

()ln ()f x a x a R x

=+

∈. (Ⅰ)当2a =时,求曲线()y f x =在点

(1,(1))f 处的切线方程;

(Ⅱ)如果函数()()2g x f x x =-在(0,)+∞上单调递减,求a 的取值范围;

(Ⅲ)当0a >时,讨论函数()y f x =零点的个数.

解:(Ⅰ)当2a =时,1

()2ln f x x x

=+,(1)1f =,

所以221

()f x x x

'=-,(1)1f '=.

线

y x

=. ……………………3分

(Ⅱ)因为()()2g x f x x =-在(0,)+∞上单调递减,

等价于21

()20a g x x x

'=--≤在

(0,)+∞恒成立,

变形得1

2a x x

≤+ (0)x >恒成立, 而12x x +≥=(当且仅当1

2x x

=

,即2x =时,等

号成立).

a ≤.

……………………8分

(Ⅲ)2

1

()ax f x x

-'=. 令()0f x '=,得1x =

. 所

min 1()=()f x f a

=1

ln (1ln )a a a a a +=-.

(ⅰ)当0a e <<时,min ()0f x >,所

以()f x 在定义域内无零点;

(ⅱ)当a e =时,min ()0f x =,所以

()f x 在定义域内有唯一的零点;

(ⅲ)当a e >时,min ()0f x <, ① 因为(1)10f =>,所以()f x 在增

区间1(,)a

+∞内有唯一零点;

② 21

()(2ln )f a a a a

=-,

设()2ln h a a a =-,则2

()1h a a

'=-

, 因为a e >,所以()0h a '>,即()h a 在

(,)e +∞上单调递增,

所以()()0h a h e >>,即2

1

(

)0f a >,所以()f x 在减区间1(0,)a

内有唯一的零点.

所以a e >时()f x 在定义域内有两个

零点.

综上所述:当0a e <<时,()f x 在定

义域内无零点; 当a e =时,()f x 在定义域内有唯一的

零点;

当a e >时,()f x 在定义域内有两个零

点. ……………………13分 6.已知函数

32

5()2f x x x ax b =+

++ ,327

()ln 2g x x x x b =+++,

(a ,b 为常数). (Ⅰ)若()g x 在1x =处的切线过点(0,5)-,求

b 的值;

(Ⅱ)设函数()f x 的导函数为()f x ',若关于x 的

方程()()f x x xf x '-=有唯一解,求实数b 的取值范围;

(Ⅲ)令()()()F x f x g x =-,若函数()F x 存在极值,且所有极值之和大于5ln 2+,求实数a 的取值范围.

解:(Ⅰ)设()g x 在1x =处的切线方程为

5y kx =-,

21

()37,(1)11g x x x g x

''=++

=, 所以11k =,故切线方程为

115y x =-.

当1x =时,6y =,将(1,6) 代入

32

7()ln 2

g x x x x b =+

++, 得

32

b =

. …………………………3分 (Ⅱ)()2

'35f x x x a =++,

32

325352

x x ax b x x ax x +

++=+++有唯一解,

(Ⅲ)2

()ln ,F x ax x x =-- 所以

221

'()x ax F x x

-+=-.

因为()F x 存在极值,所以

221

'()0x ax F x x

-+=-=在),0(+∞上有根,

即方程0122

=+-ax x

在),0(+∞上有

根,则有2=80a ?-≥.

显然当=0?时,()F x 无极值,不合题意; 所以方程必有两个不等正根. 记方程0122

=+-ax x

的两根为21,x x ,

则1212

1022

x x a x x ?=>????+=??,,

2212121212()()()()(ln ln )

F x F x a x x x x x x +=+-+-+

2

1ln 14222-+-=a a >

15ln 2

- ,

解得162>a ,满足0?>. 又1202

a

x x +=

>,即0a >, 故所求a 的取值范围是

),4(+∞. ……

……………………14分

导数题型总结(12种题型)

导数题型总结 1.导数的几何意义 2.导数四则运算构造新函数 3.利用导数研究函数单调性 4.利用导数研究函数极值和最值 5.①知零点个数求参数范围②含参数讨论零点个数 6.函数极值点偏移问题 7.导函数零点不可求问题 8.双变量的处理策略 9.不等式恒成立求参数范围 10.不等式证明策略 11.双量词的处理策略 12.绝对值与导数结合问题 导数专题一导数几何意义 一.知识点睛 导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。 二.方法点拨: 1.求切线 ①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导

数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0). ②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。 2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上 三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习 1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是 2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.3 3.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= 4.(2014江西)若曲线y=e -x 上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是 5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2 + x b (a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=2 1e x 上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B. 2(1-ln2) C.1+ln2 D.2(1+ln2) 7.若存在过点(1,0)的直线与曲线y=x 3 和y=ax 2 + 4 15 x-9都相切,则a 等于 8.抛物线y=x 2 上的点到直线x-y-2=0的最短距离为 A. 2 B.8 27 C. 2 2 D. 1

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数3 2 ()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈, ,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。

例7. 已知a 为实数,()() ()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。 (2)()04231'=-+=-a f ,2 1= ∴a 。()()()14343'2 +-=--=∴x x x x x f 令()0'=x f ,即()()0143=+-x x ,解得1-=x 或3 4 =x , 则()x f 和()x f '在区间[] 2,2- ()2 91= -f ,275034-=??? ??f 。所以,()x f 在区间[]2,2-上的最大值为 275034-=?? ? ??f ,最 小值为()2 9 1= -f 。 答案:(1)()423'2 --=ax x x f ;(2)最大值为275034- =?? ? ??f ,最小值为()2 91=-f 。 点评:本题考查可导函数最值的求法。求可导函数()x f 在区间[]b a ,上的最值,要先求出函数()x f 在区间()b a ,上的极值,然后与()a f 和()b f 进行比较,从而得出函数的最大最小值。 考点七:导数的综合性问题。 例8. 设函数3 ()f x ax bx c =++(0)a ≠为奇函数,其图象在点(1,(1))f 处的切线与直线 670x y --=垂直,导函数'()f x 的最小值为12-。(1)求a ,b ,c 的值; (2)求函数()f x 的单调递增区间,并求函数()f x 在[1,3]-上的最大值和最小值。

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

导数大题方法总结

导数大题方法总结 一总论 一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。 二主流题型及其方法 *(1)求函数中某参数的值或给定参数的值求导数或切线 一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x = k时取得极值,试求所给函数中参数的值;或者是f(x)在(a , f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是: 先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。 注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。 *(2)求函数的单调性或单调区间以及极值点和最值 一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是: 首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。 极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。 最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。 注意:①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。②分类要准,不要慌张。③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下

高中数学函数与导数常考题型归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1 x -a . 若a≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ???? 0,1a 时,f ′(x )>0; 当x ∈? ?? ?? 1a ,+∞时,f ′(x )<0, 所以f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ???? 0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ?? ??1a =ln 1 a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ?? 1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性.

2020高考数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令 0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征 )()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数32 1()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,2 2()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=2 3)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+) (0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数 2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为 510 2,函数33)()(2 2 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42 x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ) '2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2 220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2 320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时 '()0f x <,(2,3)x ∈时'()0f x >, ∴ ()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2 (2)3 f a = +. 若当[1, 3]x ∈时,要使 22()3f x a -> 恒成立,只需22(2)3f a >+, 即2 2233 a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2 . 由题意知? ??=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴ 233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=?a a .

导数大题 题型总结

导数大题 1.某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:31 ()(10)10 V t H t =-(H 为常数) ,其图象如图所示. 记此堆雪从融化开始到结束的平均融化速度为 3(m /h)v . 那么瞬时融化速度等于3(m /h)v 的时刻 是图中的( ) (A )1t (B )2t (C )3t (D )4t 2.函数3()e x f x x =的极值点0x = ,曲线()y f x =在点00(,())x f x 处的切线方程是 . 3.已知函数2 ()ln f x a x bx =-,a ,b ∈R . (Ⅰ)若()f x 在1x =处与直线1 2 y =- 相切,求a ,b 的值; (Ⅱ)在(Ⅰ)的条件下,求()f x 在1[,e]e 上的 最大值; (Ⅲ)若不等式()f x x ≥对所有的(,0]b ∈-∞, 2(e,e ]x ∈都成立,求a 的取值范围. 解:(Ⅰ)()2a f x bx x '= -. 由函数()f x 在1x =处与直线1 2 y =- 相切,得(1)0,1(1).2f f '=???=-??即20,1.2 a b b -=?? ?-=-?? 解 得 a b ?? ??? (2) ,定义域为此时()f x x x '=-2=x x .令 ()0f x '>,解得01x <<,令()0f x '<,得 1x >. 所以()f x 在( 1 e ,1)上单调递增,在(1,e )上单调递减, 所以 ()f x 在1 [,e]e 上的最大值为 1 (1)2 f =-. …………………… …………8分 (Ⅲ)若不等式()f x x ≥对所有的 (,0]b ∈-∞,2(e,e ]x ∈都成立, 即 2ln a x bx x -≥对所有的 (,0]b ∈-∞,2(e,e ]x ∈都成立, 即2ln a x x bx -≥对所有的(,0]b ∈-∞, 2(e,e ]x ∈都成立, 即 ln 0 a x x -≥对 2(e,e ] x ∈恒成 立. …………………11分

导数常见题型与解题方法总结

导数题型总结 1、分离变量-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 2、变更主元-----已知谁的范围就把谁作为主元 3、根分布 4、判别式法-----结合图像分析 5、二次函数区间最值求法-----(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 一、基础题型:函数的单调区间、极值、最值;不等式恒成立 此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 第三种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元)。 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=- - 2()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

最新高考导数问题常见题型总结

高考有关导数问题解题方法总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 二、热点题型分析 题型一:利用导数研究函数的极值、最值。 1. 32 ()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2 =-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数3 31x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程 1.曲线3 4y x x =-在点 ()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4 )(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程: (1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2 x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/2 3===∴+=∴++=-=-上,在曲线点-x x y x x y P 所以切线方程为02 11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则2 00x y =①又函数的导数为x y 2/=, 所以过 ) ,(00y x A 点的切线的斜率为 /2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有 3 5 2000--= x y x ②,由①②联立方程组得,??????====25 5 110 000y x y x 或,即切点为(1,1)时,切线斜率为 ; 2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分 别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即, 或 题型三:利用导数研究函数的单调性,极值、最值 1.已知函数 ))1(,1()(,)(2 3f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1

导数题型总结

导数题型总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立此类问题提倡按以下步骤进行解决: 第一步:令' ' ()0()0f x f x ><或者求出函数的单调区间; 第二步:根据第一步求出函数的极大值,极小值和最大值; 至于不等式恒成立,则要分离变量或者变更主元。 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立, 则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解: 由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '= -- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” ,则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330g m g m <-? ?<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =- (03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

帮你总结导数题型(共12类)

导数题型目录 1.导数的几何意义 2.导数四则运算构造新函数 3.利用导数研究函数单调性 4.利用导数研究函数极值和最值 5.①知零点个数求参数范围②含参数讨论零点个数 6.函数极值点偏移问题 7.导函数零点不可求问题 8.双变量的处理策略 9.不等式恒成立求参数范围 10.不等式证明策略 11.双量词的处理策略 12.绝对值与导数结合问题 导数专题一导数几何意义 一.知识点睛 导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。 二.方法点拨: 1.求切线 ①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y=f(x)在点x=x0处的导数f′(x0)(3)根据直线点斜式方程,得切线方程:y-y0=f′(x0)(x-x0). ②点(x0,y0)不是切点求切线:(1)设曲线上的切点为(x1,y1);(2)根据切点写出切线方程y-y1=f′(x1)(x-x1) (3)利用点(x0,y0)在切线上求出(x1,y1);(4)把(x1,y1)代入切线方程求得切线。 2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f′(x0) ②切点在曲线上③切点在切线上 三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习 1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=f(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是 2.(2014新课标全国Ⅱ)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=

导数大题题型总结

导数大题 1.某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系: 3 1()(10)10 V t H t =- (H 为常数) ,其图象如图所示. 记此堆雪从融化开始到结束的平均融化速度为 3(m /h)v . 那么瞬时融化速度等于3 (m /h)v 的时刻 是图中的( ) (A )1t (B )2t (C )3t (D )4t 2.函数3()e x f x x =的极值点0x = ,曲线()y f x =在点00(,())x f x 处的切线方程是 . 3.已知函数2 ()ln f x a x bx =-,a ,b ∈R . (Ⅰ)若()f x 在1x =处与直线1 2 y =- 相切,求a ,b 的值; (Ⅱ)在(Ⅰ)的条件下,求()f x 在1 [,e]e 上的最大值; (Ⅲ)若不等式()f x x ≥对所有的(,0]b ∈-∞,2 (e,e ]x ∈都成立,求a 的取值范围. 解:(Ⅰ)()2a f x bx x '= -. 由函数()f x 在1x =处与直线1 2y =-相切,得(1)0,1(1).2f f '=???=-??即20,1.2 a b b -=???-=-?? 解得1,1.2 a b =???=?? ………………………………4分 (Ⅱ)由(Ⅰ)得2 1()ln 2 f x x x =- ,定义域为(0,)+∞. 此时1()f x x x '=-2 1=x x -.令()0f x '>,解得01x <<,令()0f x '<,得1x >. 所以()f x 在( 1 e ,1)上单调递增,在(1,e )上单调递减, 所以()f x 在1[,e]e 上的最大值为1 (1)2 f =- . ………………………………8分 (Ⅲ)若不等式()f x x ≥对所有的(,0]b ∈-∞,2 (e,e ]x ∈都成立, 即2ln a x bx x -≥对所有的(,0]b ∈-∞,2 (e,e ]x ∈都成立, 即2ln a x x bx -≥对所有的(,0]b ∈-∞,2 (e,e ]x ∈都成立, 即ln 0a x x -≥对2 (e,e ]x ∈恒成立. …………………11分 即ln x a x ≥ 对2 (e,e ]x ∈恒成立, 即a 大于或等于 ln x x 在区间2 (e,e ]上的最大值. 令()ln x h x x = ,则2ln 1(=(ln )x h x x -'),当2 (e,e ]x ∈时,()0h x '>,()h x 单调递增,

导数知识点各种题型归纳方法总结

Word 资料

【导数基础知识及各种题型归纳方法总结】第3页共22页◎【导数基础知识及各种题型归纳方法总结】第4页共22页

值和f(a) 、f(b)中最大的一个。最小值为极小值和f(a) 、f(b)中最小的一个。 2.函数在定义域上只有一个极值,则它对应一个最值(极大值对应最大值;极小值对应最小值) 3、注意:极大值不一定比极小值大。如 1 () f x x x =+的极大值为2-,极小值为2。 注意:当x=x0时,函数有极值?f/(x0)=0。但是,f/(x0)=0不能得到当x=x0时,函数有极值; 判断极值,还需结合函数的单调性说明。 题型一、求极值与最值 题型二、导数的极值与最值的应用(不等式恒成立问题,讨论方程的根的个数问题) 题型四、导数图象与原函数图象关系 导函数(看正负)原函数(看升降增减) '() f x的符号() f x单调性 '() f x与x轴的交点且交点两侧异号() f x极值 '() f x的增减性() f x的每一点的切线斜率的变化趋势(() f x的图象的增减幅度) '() f x增() f x的每一点的切线斜率增大(() f x的图象的变化幅度快) '() f x减() f x的每一点的切线斜率减小(() f x的图象的变化幅度慢) 【题型针对训练】 1. 已知f(x)=e x-ax-1. (1)求f(x)的单调增区间; (2)若f(x)在定义域R单调递增,求a的取值围; (3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增? 若存在,求出a的值;若不存在,说明理由. 2.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0, 若x= 3 2时,y=f(x)有极值. (1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值. (请你欣赏)3.当0 > x,证明不等式x x x x < + < + ) 1 ln( 1 . 证明: x x x x f + - + = 1 )1 ln( ) (,x x x g- + =)1 ln( ) (,则 2 ) 1( ) ( x x x f + = ', 当0 > x时。)(x f ∴在() +∞ ,0是增函数,)0( ) (f x f> ∴,即0 1 ) 1 ln(> + - + x x x, 又 x x x g + - = ' 1 ) (,当0 > x时,0 ) (< 'x g,)(x g ∴在() +∞ ,0是减函数,)0( ) (g x g< ∴,即0 ) 1 ln(< - +x x,因此,当0 > x时,不等式x x x x < + < + ) 1 ln( 1 成立. 点评:由题意构造出两个函数 x x x x f + - + = 1 )1 ln( ) (,x x x g- + =)1 ln( ) (. 利用导数求函数的单调区间或求最值,从而导出是解决本题的关键. (请你欣赏)4、已知函数32 f(x)ax bx(c3a2b)x d (a0) =++--+>的图象如图所示。(Ⅰ)求c d 、的值; (Ⅱ)若函数f(x)的图象在点(2,f(2))处的切线方程为3x y110 +-=, 求函数f ( x )的解析式; (Ⅲ)若 x5, =方程f(x)8a =有三个不同的根,数a的取值围。 解:由题知:2 f(x)3ax2bx+c-3a-2b '=+ (Ⅰ)由图可知函数f ( x )的图像过点( 0 , 3 ),且()1 f'= 0 得 3 32c320 d a b a b = ? ? ++--= ? ? ? ? ? = = 3 c d (Ⅱ)依题意()2 f'= – 3 且f ( 2 ) = 5 124323 846435 a b a b a b a b +--=- ? ? +--+= ? 解得a = 1 , b = – 6 所以f ( x ) = x3– 6x2 + 9x + 3 (Ⅲ)依题意f ( x ) = ax3 + bx2– ( 3a + 2b )x + 3 ( a>0 ) ()x f'= 3ax2 + 2bx– 3a– 2b Word 资料

导数大题题型总结

导数大题题型总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

2 导数大题 1.某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系: 31 ()(10)10 V t H t =-(H 为常数),其图象如图 所示. 记此堆雪从融化开始到结束的平均融化速度为 3(m /h)v . 那么瞬时融化速度等于3 (m /h)v 的时刻 是图中的( ) (A )1t (B )2t (C )3t (D )4t 2.函数3()e x f x x =的极值点0x = ,曲线()y f x =在点00(,())x f x 处的切线方程是 . 3.已知函数2 ()ln f x a x bx =-,a ,b ∈R . (Ⅰ)若()f x 在1x =处与直线1 2 y =-相切,求a ,b 的值; (Ⅱ)在(Ⅰ)的条件下,求()f x 在1 [,e]e 上的最大值; (Ⅲ)若不等式()f x x ≥对所有的(,0]b ∈-∞,2(e,e ]x ∈都成立,求a 的取值范围. 解:(Ⅰ)()2a f x bx x '= -. 由函数()f x 在1x =处与直线1 2y =-相切,得(1)0,1(1).2f f '=???=-??即20,1.2 a b b -=???-=-?? 解得1, 1.2 a b =???=?? ………………………………4分 (Ⅱ)由(Ⅰ)得21 ()ln 2 f x x x =-,定义域为(0,)+∞. 此时1()f x x x '=-2 1=x x -.令()0f x '>,解得01x <<,令()0f x '<,得1x >. 所以()f x 在(1 e ,1)上单调递增,在(1,e )上单调递减, 所以()f x 在1[,e]e 上的最大值为1 (1)2 f =-. ………………………………8分 (Ⅲ)若不等式()f x x ≥对所有的(,0]b ∈-∞,2(e,e ]x ∈都成立, 即2ln a x bx x -≥对所有的(,0]b ∈-∞,2(e,e ]x ∈都成立, 即2ln a x x bx -≥对所有的(,0]b ∈-∞,2(e,e ]x ∈都成立, 即ln 0a x x -≥对2(e,e ]x ∈恒成立. …………………11分 即ln x a x ≥ 对2(e,e ]x ∈恒成立, 即a 大于或等于 ln x x 在区间2(e,e ]上的最大值. 令()ln x h x x =,则2ln 1(=(ln )x h x x -'),当2(e,e ]x ∈时,()0h x '>,()h x 单调递增, 所以()ln x h x x =,2(e,e ]x ∈的最大值为22 e (e )2h =.即2e 2 a ≥. 所以a 的取值范围是2 e [,)2 +∞. ………………………………14分

高考压轴题:导数题型及解题方法总结很全

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y =在0x x =处的切线方程。 方法:)(0x f '为在0x x =处的切线的斜率。 题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。 方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。 例 已知函数f (x )=x 3﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x ) (2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于m x ,0的方程有三个不同实数根问题。(答案:m 的范围是()2,3--) 题型3 求两个曲线)(x f y =、)(x g y =的公切线。 方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。()(,22x f x ); 建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。 例 求曲线2 x y =与曲线x e y ln 2=的公切线方程。(答案02=--e y x e ) 二.单调性问题 题型1 求函数的单调区间。 求含参函数的单调区间的关键是确定分类标准。分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。注意分类时必须从同一标准出发,做到不重复,不遗漏。 例 已知函数x a x x a x f )1(2 1ln )(2 +-+ = (1)求函数)(x f 的单调区间。(利用极值点的大小关系分类) (2)若[]e x ,2∈,求函数)(x f 的单调区间。(利用极值点与区间的关系分类) 题型2 已知函数在某区间是单调,求参数的范围问题。 方法1:研究导函数讨论。 方法2:转化为0)(0)(' '≤≥x f x f 或在给定区间上恒成立问题, 方法3:利用子区间(即子集思想);首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子集。 注意:“函数)(x f 在()n m ,上是减函数”与“函数)(x f 的单调减区间是()b a ,”的区别是前者是后者的子集。 例 已知函数2 ()ln f x x a x =++ x 2 在[)+∞,1上是单调函数,求实数a 的取值范围. (答案[)+∞,0) 题型3 已知函数在某区间的不单调,求参数的范围问题。 方法1:正难则反,研究在某区间的不单调 方法2:研究导函数是零点问题,再检验。 方法3:直接研究不单调,分情况讨论。 例 设函数1)(2 3 +++=x ax x x f ,R a ∈在区间?? ? ??1,21内不单调,求实数a 的取值范围。 (答案:() 3,2--∈a )) 三.极值、最值问题。 题型1 求函数极值、最值。 基本思路:定义域 → 疑似极值点 → 单调区间 → 极值 → 最值。 例 已知函数12 1)1()(2 ++- +-=kx x e k x e x f x x ,求在()2,1-∈x 的极小值。 (利用极值点的大小关系、及极值点与区间的关系分类) 题型2 已知函数极值,求系数值或范围。 方法:1.利用导函数零点问题转化为方程解问题,求出参数,再检验。 方法2.转化为函数单调性问题。 例 函数1)1(2 1 )1(3141)(234+----+= x p p px x p x x f 。0是函数)(x f 的极值点。求实数p 值。 (答案:1) 题型3 已知最值,求系数值或范围。

高中数学导数题型总结

导数 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122 y x = +,则 (1)(1)f f '+= 。 例3.曲线32242y x x x =--+在点(13)-,处的切线方程是 。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 2323+-=,直线kx y l =:,且直线l 与曲线C 相切于点 () 00,y x 00≠x ,求直线l 的方程及切点坐标。 考点四:函数的单调性。 例5.已知()1323+-+=x x ax x f 在R 上是减函数,求a 的取值范围。 例6. 设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值。 (1)求a 、b 的值; (2)若对于任意的[03]x ∈,,都有2 ()f x c <成立,求c 的取值范围。 点评:本题考查利用导数求函数的极值。求可导函数()x f 的极值步骤:①求导数()x f '; ②求()0'=x f 的根;③将()0'=x f 的根在数轴上标出,得出单调区间,由()x f '在各区间上取值的正负可确定并求出函数()x f 的极值。 例7. 已知a 为实数,()()()a x x x f --=42 。求导数()x f ';(2)若()01'=-f ,求() x f 在区间[]2,2-上的最大值和最小值。 解析:(1)()a x ax x x f 442 3 +--=,∴ ()423'2 --=ax x x f 。

相关文档
最新文档