如何求非齐次线性方程组Ax=b的通解

如何求非齐次线性方程组Ax=b的通解

如何求非齐次线性方程组Ax=b的通解?

解答:由非齐次线性方程组的解的结构知识,只要求出它的一个解和对应的齐次线性方程组的基础解系,其具体步骤如下:

(1)用初等行变换将增广矩阵化为行最简形矩阵;

(2)写出同解方程组(用自由未知量表示所有未知量的形式);

(3)读出右端常数项(即自由未知量全部取零),则求出Ax=b的一个解;

(4)读出自由未知量的系数(相当于一个自由未知量取1,其余自由未知量取0),则求出Ax=0的基础解系;

(5)写出所求通解.

齐次和非齐次线性方程组的解法

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】r(A)= r

二次微分方程的通解

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解

这是因为 函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且 x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 2 1y y i x e x -= βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

二次微分方程的通解

教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程 方程 y py qy 0 称为二阶常系数齐次线性微分方程 其中p 、q 均为常数 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解 那么y C 1y 1C 2y 2就是它的通解 我们看看 能否适当选取r 使y e rx 满足二阶常系数齐次线性微分方程 为此将 y e rx 代入方程 y py qy 0 得 (r 2 pr q )e rx 0 由此可见 只要r 满足代数方程r 2 pr q 0 函数y e rx 就是微分方程的解 特征方程 方程r 2 pr q 0叫做微分方程y py qy 0的特征方程 特征方程 的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出 特征方程的根与通解的关系 (1)特征方程有两个不相等的实根r 1、r 2时 函数x r e y 11=、x r e y 22=是方程的两个线性无 关的解 这是因为

函数x r e y 11=、x r e y 22=是方程的解 又x r r x r x r e e e y y )(212121-==不是常数 因此方程的通解为 x r x r e C e C y 2121+= (2)特征方程有两个相等的实根r 1r 2时 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解 这是因为 x r e y 11=是方程的解 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0 )()2(121111=++++=q pr r xe p r e x r x r 所以x r xe y 12=也是方程的解 且x e xe y y x r x r ==1112不是常数 因此方程的通解为 x r x r xe C e C y 1121+= (3)特征方程有一对共轭复根r 1, 2i 时 函数y e ( i )x 、y e (i )x 是微分方程的 两个线性无关的复数形式的解 函数y e x cos x 、y e x sin x 是微分方程的两个线性无关 的实数形式的解 函数y 1e ( i )x 和y 2e (i )x 都是方程的解 而由欧拉公式 得 y 1e ( i )x e x (cos x i sin x ) y 2e ( i )x e x (cos x i sin x ) y 1y 22e x cos x ) (2 1cos 21y y x e x +=βα y 1y 22ie x sin x ) (21sin 21y y i x e x -=βα 故e x cos x 、y 2e x sin x 也是方程解 可以验证 y 1e x cos x 、y 2e x sin x 是方程的线性无关解 因此方程的通解为

非齐次线性方程组

非齐次线性方程组解得结构得进一步讨论摘要:本文通过矩阵得初等变换及非齐次线性方程组得解得有关性质进一步讨论了非齐次线性方程组得解得结构问题,虽然非齐次线性方程组得解向量得全体不能构成向量空间,也没有基础解系,但我们找到了类似齐次线性方程组得基础解系得解向量组,这个解向量组线性无关。并且得任意一个解都可以由这个解向量组线性表示、最后,给出了非齐次线性方程组有全非零解得充要条件,并给出了相应例题。 关键字:非零解,基础解系,线性无关,初等变换 引言 非其次线性方程组(Ⅰ) 得矩阵形式为。取,得到其次线性方程组称为非其次线性方程组得导出组。我们知道非其次线性方程组得解有以下得一些性质: (1)若就是非其次线性方程组得一个解,就是其导出组得一个解,则也就是得一个解。 证明:因为就是非其次线性方程组得一个解,所以有,同理有,则由。所以就是非其次线性方程组得解。 (2)若就是非其次线性方程组得两个解,则就是其导出组得解 证明:由,,所以有,故为其导出组得解。 2。定理 (非其次线性方程组解得结构定理)若就是非其次线性方程组得一个解,就是其导出组得通解,则就是非其次线性方程组得通解。 证明:由性质(1)可知加上其导出组得一个解仍就是非其次线性方程组得一个解,所以只需证明,非其次线性方程组得任意一个解,一定就是与其导出组某一个解得与,取 由性质(2)可知,就是导出组得一个解,于就是得到,即非其次线性方程组得任意一个解与其导出组得某一个解得与。 由上面这个定理我们可以知道,一个其次线性方程组得解得全体可以用基础解系来表示。因此,根据定理我们可以用导出组得基础解系来表示出一般方程组得一般解,如果就是方程组(Ⅰ)得一个特解,就是其导出组得一个基础解系,那么(Ⅰ)得任一个解都可以表示成: 3。由上面2得证明过程,我们可以知道其次线性方程组得全部解可由基础解系线性表示出(其基础解系含有个解向量),即为任意实数。那么,当非其次线性方程组有解时,则至多有多少个线性无关得解向量?得全部解又如何表示? 定理 若其次线性方程组得基础解系为,当非其次线性方程组有解时,则它至多且一定有个线性无关得解向量,得通解可以表示为为满足关系式,得任意实数。 证明:(ⅰ)若就是非其次线性方程组得解,则为非零解向量,那么向量组,线性无关(否则可由线性表示,与就是得解矛盾)。那么,易证都就是得解,并且线性无关。这说明至少有个线性无关得解向量。 下面再证至多有个线性无关得解向量。 反证:若有个线性无关得解向量,那么易证均为得解,并且线性无关。这样具有线性无关得解向量矛盾,所以,至多且一定有个线性无关得解向量。 (ⅱ)对于得任意一个解,一定可以表示成它得一个特解与其导出组得基础解系得线性组合,即为任意常数 那么

非齐次线性微分方程通解的证明

非齐次线性微分方程通解的证明 问题重述 如果是区间上的连续函数,是区间上齐次线性微分方程 (5.21) 的基本解组,那么,非齐次线性微分方程 (5.28) 的满足初值条件 的解由下面公式给出 (5.29) 这里是的朗斯基行列式,是在中的第k 行代以后得到的行列式,而且(5.28)的任一解u(t)都具有形式 ,(5.30) 这里是适当选取的常数。 公式(5.29)称为(5.28)的常数变易公式。 我们指出,这时方程(5.28)的通解可以表示为 证明 考虑n 阶线性微分方程的初值问题 12(),(),...,(),()n a t a t a t f t a t b ≤≤12x (),x (),...,x (),n t t t a t b ≤≤()(n-11()+...+()x=0n n x a t x a t +)()(n-11()+...+()x=() n n x a t x a t f t +)(1)0000()0()=0()=0,[,] n a b t t t t ???-'=∈,,...,0n 12k 112[x (),x (),...,x ()]()=x (){ }()[x (),x (),...,x ()]t k n k t n W s s s t t f s ds W s s s ?=∑?12[x (),x (),...,x ()]k n W s s s 12x (),x (),...,x ()n s s s 12[x (),x (),...,x ()]k n W s s s 12[x (),x (),...,x ()]n W s s s (0,0,...,0,1)T 1122()()()...()()n n u t c x t c x t c x t t ?=++++12,,...,n c c c 1122()()...()()n n x c x t c x t c x t t ?=++++

一阶线性非齐次微分方程求解方法归类

一阶线性非齐次微分方程一、线性方程 方程 dy dx P x y Q x += ()() 1 叫做一阶线性微分方程(因为它对于未知函数及其导数均为一次的)。 如果 Q x()≡0,则方程称为齐次的; 如果 Q x()不恒等于零,则方程称为非齐次的。 a)首先,我们讨论1式所对应的齐次方程 dy dx P x y += ()0 2 的通解问题。 分离变量得dy y P x dx =-() 两边积分得ln()ln y P x dx c =-+ ? 或 y c e P x dx =?-?() 其次,我们使用所谓的常数变易法来求非齐次线性方程1的通解。 将1的通解中的常数c换成的未知函数u x(),即作变换 y u e P x dx =?-?() 两边乘以得P x y uP x e P x dx ()()() ?=-? 两边求导得dy dx u e uP x e P x dx P x dx ='- -?-? ()() () 代入方程1得

'=-?u e Q x P x dx ()() , '=?u Q x e P x dx ()() u c Q x e dx P x dx =+??()() 于是得到非齐次线性方程1的通解 [] y e c Q x e dx P x dx P x dx =?+-???()()() 将它写成两项之和 y c e e Q x e dx P x dx P x dx P x dx =?+?--????()()()() 非齐次通解 = 齐次通解 + 非齐次特解 【例1】求方程 dy dx y x x -+=+21 13 2 () 的通解。 解: ] 23 )1([1212dx e x c e y dx x dx x ??++??=+-+-- ] 23 )1([22 )1(ln )1(ln dx e x c e x x +-+??++?= =+?++- ?()[()]x c x dx 1121 2 =+?++()[()] x c x 12121 2 由此例的求解可知,若能确定一个方程为一阶线性非齐次方程,求解它只需套用公式。

非齐次线性方程组

非齐次线性方程组Ax=b 一、基本理论 线性方程组Ax=b 有解条件: 系数矩阵A 的秩 = 增广矩阵(A,b )的秩. 非齐次线性方程组的解集结构: 若x 1是Ax=b 的一个特解, N (A )表示齐次线性方程组Ax=0的解空间, 则非齐次线性方程组Ax=b 的解集为x 1+N (A ). 解非齐次线性方程组的方法: 通过初等行变换将增广矩阵(A,b )化为最简行阶梯矩阵(A 1,b 1), 写出对应的方程组,根据方程组写出解. 二、Matlab 实现 调用rref(A )将A 化为最简行阶梯矩阵, 根据对应的方程组写出解. 若方程组有解, 且rank(A )=n ,即A 列满秩时, 方程组有唯一解. 此时可直接用A 左除b 求得唯一解:x=A\b . 三、例子 例1. 求解线性方程组 123452451234512351 2 3 4 5 343226333 434222026231 x x x x x x x x x x x x x x x x x x x x x x -++-=??---=-??-++-=??++-=?-+-++= ?? A=[3 -4 3 2 -1; 0 -6 0 -3 -3; 4 -3 4 2 -2; 1 1 1 0 -1; -2 6 -2 1 3]; b=[2; -3; 2; 0; 1]; A1=[A b] A1 = 3 - 4 3 2 -1 2 0 -6 0 -3 -3 -3 4 -3 4 2 -2 2 1 1 1 0 -1 0 -2 6 -2 1 3 1 rref(A1) ans = 1 0 1 0 -1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

二阶非齐次线性微分方程的解法.

目 录 待定系数法 常数变异法 幂级数法 特征根法 升阶法 降阶法 关键词:微分方程,特解,通解, 二阶齐次线性微分方程 常系数微分方程 待定系数法 解决常系数齐次线性微分方程[]21220, (1) d x dx L x a a x dt dt ≡++= 12,. a a 这里是常数 特征方程212()0F a a λλλ=++= (1.1) (1)特征根是单根的情形 设 12,,,n λλλ 是特征方程的 (1.1)的2个彼此不相等的根,则相应的方程 (1)有如 下2个解: 12,t t e e λλ (1.2) 如果(1,2)i i λ=均为实数,则 (1.2)是方程 (1)的2个线性无关的实值解,而方程 (1)的通解可表示为 1212t t x c e c e λλ=+ 如果方程有复根,则因方程的系数是实系数,复根将成对共轭出现。设 i λαβ=+是一特征根,则i λαβ=-也是特征根,因而与这对共轭复根对应,方程 (1)有两个复值解 (i)t (cos t sin ),t e e i t αβαββ+=+

(i)t (cos t sin ).t e e i t αβαββ-=- 它们的实部和虚部也是方程的解。这样一来,对应于特征方程的一对共轭复根 i λαβ=±,我们可求得方程 (1)的两个实值解 cos ,sin .t t e t e t ααββ (2)特征根有重跟的情形 若10λ=特征方程的 k 重零根,对应于方程 (1)的k 个线性无关的解21 1,t,t ,k t - 。 若这个 k 重零根10, λ≠设特征根为12,,,,m λλλ 其重数为 1212,,,k (k 2)m m k k k k ++= 。方程 (1)的解为 11112222111,t ,t ;,t ,t ;;,t ,t ;m m m m t t k t t t k t t t k t e e e e e e e e e λλλλλλλλλ--- 对于特征方程有复重根的情况,譬如假设i λαβ=+是k 重特征根,则i λαβ=- 也是k 重特征根,可以得到方程 (1)的2k 个实值解 2121cos ,cos ,cos ,,cos ,sin ,sin ,sin ,,sin .t t t k t t t t k t e t te t t e t t e t e t te t t e t t e t ααααααααββββββββ-- 例1 求方程 220d x x dt -=的通解。 解 特征方程 210λ-=的根为121,1λλ==-有两个实根,均是单根,故方程的通 解为 12,t t x c e c e -=+ 这里12,c c 是任意常数。 例2 求解方程 220d x x dt +=的通解。 解 特征方程 210λ+=的根为12,i i λλ==-有两个复根, 均是单根,故方程的通解 为 12sin cos ,x c t c t =+

二次微分方程的通解.

第六节二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐次线性 微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程:方程 y''+py'+qy=0 称为二阶常系数齐次线性微分方程,其中p、q均为常数. 如果y1、y2是二阶常系数齐次线性微分方程的两个线性无关解,那么y=C1y1+C2y2就是它的通解. 我们看看,能否适当选取r,使y=e rx满足二阶常系数齐次线性微分方程,为此将y=e rx代入方程 y''+py'+qy=0 得 (r2+pr+q)e rx=0. 由此可见,只要r满足代数方程r2+pr+q=0,函数y=e rx就是微分方程的解.

特征方程: 方程r 2 +pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 1 1=、 x r e y 22=是方程的两个线性无关的解. 这是因为, 函数x r e y 11=、x r e y 22=是方程的解, 又 x r r x r x r e e e y y )(21212 1-==不是常数. 因此方程的通解为 x r x r e C e C y 2 1 21+=. (2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 1 1=、x r xe y 1 2=是二阶常系数齐次线性微分方程的两个线性无关的解. 这是因为, x r e y 1 1=是方程的解, 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 1 1 1 1 1 1 )1()2()()()(1211++++=+'+'' 0)()2(12111 1 =++++=q pr r xe p r e x r x r , 所以x r xe y 1 2=也是方程的解, 且x e xe y y x r x r ==1 11 2不是常数. 因此方程的通解为 x r x r xe C e C y 1 1 21+=. (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e ( α+i β)x 、

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,, ,n r -12ξξξ;

齐次和非齐次线性方程组的解法精编日

齐次和非齐次线性方程组的解法精编日 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

线性方程组的解法 注意:考试以非齐次线性方程组的无穷多解为主要考查点,但是同学们学得时候要系统,要全面,要完整。下面是解线性方程组各种情况的标准格式,请同学们以此为准,进行练习。 一、齐次线性方程组的解法 定理齐次线性方程组一定有解: (1) 若齐次线性方程组() =,则只有零解; r A n (2) 齐次线性方程组有非零解的充要条件是() r A n <.(注:当=时,齐次线性方程组有非零解的充要条件是它的系数行列式 m n A=.) 注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于() -. n r A 2、非齐次线性方程组AX B =的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组AX O =所对应的同解方程组。 由上面的定理可知,若m是系数矩阵的行数(也即方程的个数),n 是未知量的个数,则有:(1)当m n <时,() ≤<,此时齐次线性方 r A m n 程组一定有非零解,即齐次方程组中未知量的个数大于方程的个数就一定有非零解; (2)当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0 A=; (3)当m n A≠,故齐次线=且() =时,此时系数矩阵的行列式0 r A n 性方程组只有零解;

(4)当m n >时,此时()r A n ≤,故存在齐次线性方程组的同解方程组,使“m n ≤”. 例 解线性方程组12 341 23412341 2 3 4 2350,320,4360,2470. x x x x x x x x x x x x x x x x +-+=??++-=? ?+-+=??-+-=? 解法一:将系数矩阵A 化为阶梯形矩阵 显然有()4r A n ==,则方程组仅有零解,即12340x x x x ====. 解法二:由于方程组的个数等于未知量的个数(即m n =)(注意:方程组的个数不等于未知量的个数(即m n ≠),不可以用行列式的方法来判断),从而可计算系数矩阵A 的行列式: 231531 2132704 13 6 1247 A --= =≠---,知方程组仅有零解,即12340x x x x ====. 例 解线性方程组123 451 2 3452 34512 3 4 5 0,3230,2260,54330. x x x x x x x x x x x x x x x x x x x ++++=??+++-=??+++=??+++-=? 解:将系数矩阵A 化为简化阶梯形矩阵 可得()2r A n =<,则方程组有无穷多解,其同解方程组为 134523 4 55,226. x x x x x x x x =++??=---?(其中3x ,4x ,5x 为自由未知 量) 令31x =,40x =,50x =,得121,2x x ==-;令30x =,41x =,50x =,得121,2x x ==-;令30x =,40x =,51x =,得125,6x x ==-,于是得到原方程组的一个基础解系为

二阶常系数齐次线性微分方程的通解证明

二阶常系数齐次线性微分方程的通解证明 来源:文都教育 在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,文都网校的蔡老师下面对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。 一、二阶常系数齐次线性微分方程的通解分析 通解公式:设0y py qy '''++=,,p q 为常数,特征方程02 =++q p λλ的特征根为12,λλ,则 1)当12λλ≠且为实数时,通解为1212x x y C e C e λλ=+; 2)当12λλ=且为实数时,通解为1112x x y C e C xe λλ=+; 3)当12,i λλαβ=±时,通解为12(cos sin )x y e C x C x αββ=+; 证:若02=++q p λλ的特征根为12,λλ,则1212(),p q λλλλ=-+ =,将其代入方程0y py qy '''++=中得1212()y py qy y y y λλλλ''''''++=-++= 212212()()()0y y y y y y y y λλλλλλ'''''''=---=---=, 令2z y y λ'=-,则11110x dz z z z z c e dx λλλ'-=? =?=,于是121x y y c e λλ'-=,由一阶微分方程的通解公式得 221212()()()1212[][]dx dx x x x y e c e e dx C e c e dx C λλλλλλ----??=+=+?? …(1) 1)当12λλ≠且为实数时,由(1)式得原方程的通解为

非齐次线性微分方程的几种解法(DOC)

摘要 我在此论文中主要讨论长微分方程中的非齐次线性微分方程的几种解法。 关键词:线性相关,通解,特解,朗斯基行列式,拉普拉斯变换,线性无关, 目录 摘要 (1)

引言 (3) 1.n阶线性齐次微分方程的一般理论: (3) 2.n阶线性非齐次微分方程的一般理论: (6) 2.1常数变易法 (7) 2.2待定系数法: (9) 2.1.1第一类型非齐次方程特解的待定系数解法 (9) 2.2.2第二类型非齐次微分方程特解的待顶系数法 (12) 2.3拉普拉斯变换法 (13) 总结 (15) 参考文选 (16) 致谢 (17)

引言 非齐次线性微分方程是常微分方程中的重要概念之一。非齐次线性微分方程的通解等于对应齐次微分方程的通解与非齐次线性微分方程的一个特解的之和。这个毕业论文中关键的任务是求它的一个特解。下面我们主要介绍求特解的方法。 1.n 阶线性齐次微分方程的一般理论: ()(1)11()()()()n n n n y a x y a x y a x y f x --'++++= (1) ()(1)11()()()0n n n n y a x y a x y a x y --'++ ++= (2) 定理1:设方程(2)有n 个线性无关的解,这n 个线性无关的解称为方程的基本解组。 定理2:方程(2)的基本解组一定存在。方程(2)的基本解组的个数不能超过n 个。 定理3: n 阶线性非齐次微分方程的通解等于它的对应齐次方程的通解与它本身的一个特解之和。 定理4:齐次方程(2)的n 个解12,, ,n y y y 在其定义区间I 上线性无关的 充要条件是在I 上存在点0x ,使得它们的朗斯基行列式0()0W x ≠。 目前为止没有求方程(2)线性无关解的一般方法。下面我们研究几个例子。 例:方程2)(1220x y xy y '''--+=的两个解是 121, ln 121x x y x y x +== -- ∴ 它的通解为 12 1ln 121x x y C x C x +=+-- 定理5:设12,,,n y y y 是方程(2)的任意n 个解。()W x 是它的朗斯基行

齐次和非齐次线性方程组的解法整理定稿

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r(A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=+++1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

齐次和非齐次线性方程组的解法日

齐次和非齐次线性方程组 的解法日 This manuscript was revised by the office on December 10, 2020.

线性方程组的解法 注意:考试以非齐次线性方程组的无穷多解为主要考查点,但是同学们学得时候要系统,要全面,要完整。下面是解线性方程组各种情况的标准格式,请同学们以此为准,进行练习。 一、齐次线性方程组的解法 定理 齐次线性方程组一定有解: (1) 若齐次线性方程组()r A n =,则只有零解; (2) 齐次线性方程组有非零解的充要条件是()r A n <.(注:当m n =时, 齐次线性方程组有非零解的充要条件是它的系数行列式0A =.) 注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于()n r A -. 2、非齐次线性方程组AX B =的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组AX O =所对应的同解方程组。 由上面的定理可知,若m 是系数矩阵的行数(也即方程的个数),n 是未知量的个数,则有:(1)当m n <时,()r A m n ≤<,此时齐次线性方程组一定有非零解,即齐次方程组中未知量的个数大于方程的个数就一定有非零解; (2)当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式 0A =; (3)当m n =且()r A n =时,此时系数矩阵的行列式0A ≠,故齐次线性方程组只有零解; (4)当m n >时,此时()r A n ≤,故存在齐次线性方程组的同解方程组,使“m n ≤”. 例 解线性方程组12 341 23412341 2 3 4 2350,320,4360,2470. x x x x x x x x x x x x x x x x +-+=??++-=? ?+-+=??-+-=?

齐次和非齐次线性方程组的解法

线性方程组的解法 注意:考试以非齐次线性方程组的无穷多解为主要考查点,但是同学们学得时候要系统,要全面,要完整。下面是解线性方程组各种情况的标准格式,请同学们以此为准,进行练习。 一、齐次线性方程组的解法 定理齐次线性方程组一定有解: (1) 若齐次线性方程组() =,则只有零解; r A n (2) 齐次线性方程组有非零解的充要条件是() <.(注:当 r A n A=.)=时,齐次线性方程组有非零解的充要条件是它的系数行列式0 m n 注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于() -. n r A 2、非齐次线性方程组AX B =的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组AX O =所对应的同解方程组。 由上面的定理可知,若m是系数矩阵的行数(也即方程的个数),n是未知量的个数,则有:(1)当m n <时,() ≤<,此时齐次线性方程组 r A m n 一定有非零解,即齐次方程组中未知量的个数大于方程的个数就一定有非零解; (2)当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0 A=; (3)当m n A≠,故齐次线=且() =时,此时系数矩阵的行列式0 r A n 性方程组只有零解;

(4)当m n >时,此时()r A n ≤,故存在齐次线性方程组的同解方程组,使“m n ≤”. 例 解线性方程组1 2 341 23412341 2 3 4 2350,320,4360,2470. x x x x x x x x x x x x x x x x +-+=??++-=? ?+-+=??-+-=? 解法一:将系数矩阵A 化为阶梯形矩阵 显然有()4r A n ==,则方程组仅有零解,即12340x x x x ====. 解法二:由于方程组的个数等于未知量的个数(即m n =)(注意:方程组的个数不等于未知量的个数(即m n ≠),不可以用行列式的方法来判 断),从而可计算系数矩阵A 的行列式:2 31531 2132704 13 6 1247 A --= =≠---,知 方程组仅有零解,即12340x x x x ====. 例 解线性方程组12 3 451 2 3452 34512 3 4 5 0,3230,2260,54330. x x x x x x x x x x x x x x x x x x x ++++=??+++-=??+++=??+++-=? 解:将系数矩阵A 化为简化阶梯形矩阵 可得()2r A n =<,则方程组有无穷多解,其同解方程组为 134523 4 55,226. x x x x x x x x =++?? =---?(其中3x ,4x ,5x 为自由未知量) 令31x =,40x =,50x =,得121,2x x ==-;令30x =,41x =,50x =,得121,2x x ==-;令30x =,40x =,51x =,得125,6x x ==-,于是得到原方程组的一个基础解系为

相关文档
最新文档