地基承载力确定的土工表格法

地基承载力确定的土工表格法
地基承载力确定的土工表格法

地基承载力

第十章 地基承载力 第一节 概述 地基随建筑物荷载的作用后,内部应力发生变化,表现在两方面:一种是由于地基土在建筑物荷载作用下产生压缩变形,引起基础过大的沉降量或沉降差,使上部结构倾斜,造成建筑物沉降;另一种是由于建筑物的荷载过大,超过了基础下持力层土所能承受荷载的能力而使地基产生滑动破坏。 因此在设计建筑物基础时,必须满足下列条件: 地基: 强度——承载力——容许承载力 变形——变形量(沉降量)——容许沉降量 一、几个名词 1、地基承载力:指地基土单位面积上所能随荷载的能力。地基承载力问题属于地基的强度和稳定问题。 2、容许承载力:指同时兼顾地基强度、稳定性和变形要求这两个条件时的承载力。它是一个变量,是和建筑物允许变形值密切联系在一起。 3、地基承载力标准值:是根据野外鉴别结果确定的承载力值。包括:标贯试验、静力触探、旁压及其它原位测试得到的值。 4、地基承载力基本值:是根据室内物理、力学指标平均值,查表确定的承载力值,包括载荷试验得到的值)。 通常0f f f k ψ= 5、极限承载力:指地基即将丧失稳定性时的承载力。 二、地基承载力确定的途径 目前确定方法有: 1.根据原位试验确定:载荷试验、标准贯入、静力触探等。每种试验都有一定的适用条件。 2.根据地基承载力的理论公式确定。 3.根据《建筑地基基础设计规范》确定。 根据大量测试资料和建筑经验,通过统计分析,总结出各种类型的土在某种条件下的容许承载力,查表。 一般:一级建筑物:载荷试验,理论公式及原位测试确定f ; 二级建筑物:规范查出,原位测试;尚应结合理论公式; 三级建筑物:邻近建筑经验。 三、确定地基承载力应考虑的因素

【2017年整理】地基承载力计算方法

一.地基承载力计算方法:按《建筑地基基础设计规范》(GBJ7-89) 1.野外鉴别法 岩石承载力标准值f k(kpa) 注:1.对于微风化的硬质岩石,其承载力取大于4000kpa时,应由试验确定; 2.对于强风化的岩石,当与残积土难于区分时按土考虑。 碎石承载力标准值f k(kpa) 注:1.表中数值适用于骨架颗粒空隙全部由中砂、粗砂或硬塑、坚硬状态的粘土或稍湿的粉土所充填的情况; 2.当粗颗粒为中等风化或强风化时,可按其风化程度适当降低承载力,当颗粒间呈半胶结状时,可适当提高承载力; 3.对于砾石、砾石土均按角砾查承载力。 2.物理力学指标法 粉土承载力基本值f(kpa) 注:1.有括号者仅供内插用; 2.折算系数§=0。 粘性土承载力基本值f(kpa) 注:1.有括号者仅供内插用; 2.折算系数§=0.1。

沿海地区淤泥和淤泥质土承载力基本值f(kpa) 注:对于内陆淤涨和淤泥质土,可参照使用。 红粘土承载力基本值f(kpa) 注:1.本表仅适用于定义范围内的红粘土; 2.折算系数§=0.4。 素填土承载力基本值f(kpa) 注:本表只适用于堆填时间超过10年的粘性土,以及超过5年的粉土;所查承载需经修正计算。3.标准贯入试验法 砂土承载力标准值f k(kpa) 注:1.砾砂不给承载力; 2.粉细砂按粉砂项给承载力;3.中粗砂按中砂项给承载力; 4.细中砂按细砂项给承载力; 5.粗砾砂按粗砂项给承载力; 6.N63.5需修正后查承载力. 粘性土承载力标准值f k(kpa) 注:N63.5需经修正后查承载力。 花岗岩风化残积土承载力基本值f(kpa) 注:花岗岩风化残积土的定名: 2mm含量≥20%为砾质粘性土; 2mm含量<20%为砂质粘性; 2mm含量=0为粘性土

地基承载力计算公式

地基承载力计算公式-CAL-FENGHAI.-(YICAI)-Company One1

地基承载力计算公式 地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作 用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 a.太沙基公式 式中: P u——极限承载力,K a c ——土的粘聚力,KP a γ——土的重度,KN/m,注意地下水位下用浮重度; b,d——分别为基底宽及埋深,m; N c ,N q ,N r——承载力系数,可由图中实线查取。 图 2

对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为: 式中N c′,N q′,N r′——局部剪切破坏时的承载力系数,可由图中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表c,N q,N r值 N c N q N r N c N q N r 024 226 428 630 832 1034 1236 1438 1640 1842 2044 3

2246 S c,S q,S r——基础形状系数,可查表 表基础形状系数S c,S q,S r值 基础形状S c S q S r 条形 圆形和方形1+N q/N c1+tanφ 矩形(长为L,宽为b)1+b/L×N q/N c1+b/LtanφL d c,d q,d r——基础埋深系数,可查表 表埋深系数d c,d q,d r d/b 埋深系数 d c d q d r ≤ 〉 i c,i q,i r——荷载倾斜系数,可查表 i c i q i r 注: H,V——倾斜荷载的水平分力,垂直分力,KN ; F——基础有效面积,F=b'L'm; 当偏心荷载的偏心矩为e c和e b,则有效基底长度, L'=L-2e c;有效基底宽度:b'=b-2e b。 c.我国地基规范提供的承载力公式 当荷载偏心矩e≤时,可用下列公式: 4

浅谈地基岩土承载力确定方法

浅谈地基岩土承载力确定方法 摘要:本文就岩土工程勘察阶段划分,确定岩土勘察工作因素作了介绍,就确定建筑物地基承载力的方法和取值问题作了探讨。 关键词:地基承载力土工试验原位测试区域经验 岩土工程勘察要求正确反映建设场地的岩土工程条件,评价岩土工程问题,并提出解决岩土工程问题的方法和建议。因此,岩土工程勘察必须明确勘察工作的因素,按照勘察阶段进行工作,并且必须与各个设计阶段的相适应。地基承载力是工程建设的重要依据,它决定着地基形式及地基处理方案的形式,所以在岩土工程勘察过程中,承载力的确定是非常重要的环节。 1影响地基基础承载力确定的主要因素 1.1自然条件。主要指当地气象、水文,场地地形起伏变化情况,地貌单元与类型,地震烈度,不良地质现象。 1.2场地地质条件。地基的强度; 地基土变形量,以及对建筑地基作出岩土工程评价。 1.3当地建筑经验;目前各大城市都有现成的沉降观测资料,这些资料相当于原型载荷试验,通过这些资料的分析和工程地质比拟来确定地基承载力。 1.4地基的土性。地基土是经过漫长的地质年代形成的, 经历了各种各样的变化过程, 其土质特性表现出很大的变异性。大量的试验和统计结果表明, 土性参数的变异系数比一般的人工材料的变异系数要大。 1.5地基的荷载。荷载主要包括土体的自重和上部结构作用荷载, 土体自重的变异性较小, 上部结构作用荷载根据不同的情况, 变异系数可能会起较大的变化。 1.6地基的测试。岩土工程土性测试中需要控制的边界条件、初始条件和加荷条件都比较复杂, 实施起来比较困难,与实际情况的差别可能比较大, 因此, 测试结果常常不能确切地反映真实情况。 1.7计算方法。岩土工程中的各种力学计算方法不及其他工程结构的完善和成熟, 由计算方法不精确可能引起的误差较难精确估计。 2地基承载力取值方法 2.1原位测试。通过现场直接试验确定承载力的方法。包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等。其中用载荷试验法确定持力层承载力标准值是一种常用的方法。地基承载力问题属于土力学中的强度和稳定性的课

复合地基承载力试验

复合xx 力试验 复合xx 力试验 1 复合地基载荷试验用于测定承压板下应力主要影响范围内复合土层的承载力和变形参数。复合地基载荷试验承压板可用圆形和方形。面积为一根桩承担的处理面积,多桩复合地基载荷试验的承压板可用方形或矩形,其尺寸按实际桩数所承担的处理面积确定,桩的中心应与承压板中心保持一致,并与载荷试验点重合。 2 承压板底面标高应与桩顶设计标高相适应。承压板底面下宜铺设粗砂或中砂垫层,垫层厚度取50-150m m,桩身强度高时宜取大值。试验标高处的试坑长度和宽度,应不小于承压板尺寸的 3 倍。基准梁的支点应设在坑外。 3试验前应采取措施,防止试验场地地基土的含水量变化或地基土的扰动, 以免影响试验结果。 4加载等级为8-12级。最大加载压力不应小于设计值的 2 倍。 5每加一级荷载前后均应各记录承压板沉降量一次,以后每半小时记录一次,当1小时沉降量小于0.1mm时,即可加下一级荷载。 6当出现下列现象之一时可终止试验: 6.1沉降急剧增大,土被挤出或承压板周围有明显的隆起; 6.2承压板的累计沉降量已大于其宽度或直径的6%; 6.3当达不到极限荷载,而最大荷载已大于设计要求的 2 倍。 7卸载级数可为加载级数的一半,等量进行,每卸一级,间隔半小时,读记回弹量,待卸完全部荷载后间隔三小 时读记总回弹量。 8复合xx力特征值的确定

8.1 当压力-沉降曲线上极限荷载能确定,而其值不小于对应比例界限的 2 倍时,可取比例界限,当其值小于对应比例界限的 2 倍时,可取进行荷载的一半; 8.2 当压力-沉降曲线是平缓的光滑曲线时,可按相对变形值确定; 8.2.1 对砂石桩、振冲桩复合地基或强夯置换墩,当以粘性土为主的地基,可取s/b 或s/d 等于0.015 所对应的压力;当以粉土或砂土为主的地基,可取s/b 或s/d 等于0.01 所对应的压力。 822对土挤密桩、石灰桩或柱锤冲扩桩复合地基,可取s/b或s/d等于 0.012所对应的压力;对灰土挤密桩复合地基,可取s/b或s/d等于0.08所对应 的压力; 8.2.3对水泥粉煤灰碎石桩或夯实水泥土桩复合地基,当以卵石、圆砾、密实粗中砂为主的地基,可取s/b或s/d等于0.08所对应的压力;当以粘性土、粉土为主的地基,可取s/b或s/d等于0.01所对应的压力; 8.2.4对于水泥土搅拌桩或旋喷桩复合地基,可取s/b或s/d等于0.006所对应的压力; 8.2.5 对有经验的地区,也可按当地经验确定相对变形值。按相对变形值确定的承载力特征值不应大于最大加载 压力的一半。 9 试验点的数量不应少于 3 点,当满足极差不超过平均值的30%时,可取其平均值为复合地基承载力特征值。

地基承载力试验规定

湖南省公路工程路基地基承载力触探试验暂行规定 (试行) 一、总则 1、为规范我省公路工程建设中路基不适宜地基土(包括淤泥、淤泥质土、过湿土等)的清除行为,依据《公路路基设计规范》(JTG D30-2004)、《公路基施工技术 规范》(JTG F10-2006)、《公路工程地质勘察规范》(JTJ 064-98)等规定,结合我省实际,特别定本暂行规定。 2、本暂行规定适用于不适宜土埋深在3m以内拟作清除处理措施的判定依据和设计基础。 3、本暂行规定采用标准贯入仪作为设计勘察过程中的地基承载力参数采集手段,在施工过程中采用荷兰式轻型动力触探仪与标准轻型动力触探仪作为基本的试验工具。荷兰式轻型动力触探仪一般作为不适宜土清除后的地基承载力验算。 4、本暂行规定适用于湖南省境内所有等级公路的新、改建工程。各项目建设管理单位、设计单位、监理单位及施工单位均应遵照执行。 二、基本规定 1、路堤施工期荷载只考虑路堤自重;营运期荷载包括路堤、路面自重及行车荷载,其中行车荷载只考虑静荷载,并按等效静止土柱作用

考虑。 2、行车荷载:一级公路、高速公路按公路I级标准;二级及以下等级公路按公路Ⅱ级标准。路面结构:一级公路、高速公路按总厚度78cm 考虑;二级公路按总厚度55cm考虑;三级及以下等级公路按总厚度40cm 考虑。 3、填筑路堤地基承载力要求f0分析:当路堤高≤2.0m时,按公路路床稳定性压实度强度要求考虑。计算荷载:路堤高≤2.0m时,按营运期荷载计算;当路堤高〉2.0m时,按施工期荷载计算。路堤基底自重应力按最大应力考虑。 4、地基承载力测试采用下列三种常用的动力触探试验设备,其相关参数如下表:

确定地基承载力表格汇总wap

国内现有确定地基承载力表格资料汇总 根据轻型动力触探试验确定地基承载力标准值 N 10 (击) 15 20 25 30 f k(kPa) 105 145 190 230 备注依据老的《建筑地基基础设计规范》(7—89)。 N 10 (击) 6 10 20 30 40 50 60 70 80 90 f k(kPa) 51 69 114 159 204 249 294 339 384 429 备注依据广东省建筑设计研究院资料。 N 10 (击) 15~20 18~25 23~30 27~35 32~40 35~50 e ~~~~~< f k(kPa) 40~70 60~90 80~120 100~150 130~180 150~200 备注依据西安市资料。饱和度Sr>取下限,Sr<取上限。 N 10 (击) 10 20 30 40 f k(kPa) 85 115 135 160 备注依据老的《建筑地基基础设计规范》(7—89)。 根据重型动力触探试验确定地基承载力标准值 (击) 3 4 5 6 8 10 12 碎石土 f k(kPa) 140 170 200 240 320 400 480 中、粗、砾砂 f k(kPa) 120 150 200 240 320 400 备注1、依据原一机部勘察公司西南大队资料。 2、本表适用于冲、洪积成因的碎石土和砂土,对碎石土, d60不大于30mm,不均匀系数不大于120。对中、粗砂,不均匀系不大于6,对砾砂,不均匀系数不大于20。

(击) 1 2 3 4 5 6 7 8 9 10 粘土96 152 209 265 321 382 444 505 粉质粘土88 136 184 232 280 328 376 424 粉土80 107 136 165 195 (224) 素填土79 103 128 152 176 (201) 粉细砂(80) (110) 142 165 187 210 232 255 277 备注括号内值供内插用,依据《油气管道工程地质勘察技术规定》。 (击) 1 2 3 4 5 6 7 8 9 10 11 12 f k(kPa) 60 90 120 150 180 210 240 265 290 320 350 375 400 状态流塑软塑可塑硬塑~坚硬 备注依据广东省建筑设计研究院资料。 (击) 3 4 5 6 7 8 9 10 中、粗、砾砂f k (kPa) 120 160 200 240 280 320 360 400 粉、细砂很湿f k (kPa) 60 80 100 120 140 160 180 200 稍湿f k (kPa) 90 120 150 180 210 240 270 300 密实度松散稍密中密密实 备注依据广东省建筑设计研究院资料。 平均击数?(击) 3 4 5 6 7 8 9 10 12 14 碎石土140 170 200 240 280 320 360 400 470 540 中、粗、砾砂120 150 180 220 260 300 340 380 平均击数?(击) 16 18 20 22 24 26 28 30 35 40 碎石土600 660 720 780 830 870 900 930 970 1000 备注确定承载力时,锤击数为杆长修正后锤击数。 根据标准贯入试验确定地基承载力标准值 N(击) 3 5 7 9 11 13 15 17 19 21 23 f k(kPa) 105 145 190 220 295 325 370 430 515 600 680

地基承载力计算公式

地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。下面介绍三种典型的承载力公式。 a.太沙基公式 式中: Pu——极限承载力,Ka c ——土的粘聚力,KPa γ——土的重度,KN/m,注意地下水位下用浮重度; b,d——分别为基底宽及埋深,m; Nc,Nq,Nr——承载力系数,可由图8.4.1中实线查取。 图8.4.1

对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为: 式中Nc′,Nq′,Nr′——局部剪切破坏时的承载力系数,可由图8.4.1中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1 表8.4.1承载力系数Nc,Nq,Nr值 Nc Nq Nr Nc Nq Nr 0 5.14 1.00 0.00 24 19.32 9.60 6.90 2 5.6 3 1.20 0.01 26 22.25 11.85 9.53 4 6.19 1.43 0.0 5 28 25.80 14.72 13.13 6 6.81 1.72 0.14 30 30.14 18.40 18.09 8 7.53 2.06 0.27 32 35.49 23.18 24.95 10 8.35 2.47 0.47 34 42.16 29.44 34.54 12 9.28 2.97 0.76 36 50.59 37.75 48.06 14 10.37 3.59 1.16 38 61.35 48.93 67.40 16 11.63 4.34 1.72 40 75.31 64.20 95.51 18 13.10 5.26 2.49 42 93.71 85.38 136.76 20 14.83 6.40 3.54 44 118.37 115.31 198.70

地基承载力试验方法总括

地基土载荷实验 地基土载荷实验用于确定岩土的承载力和变形特征等,包括:载荷实验;现场浸水载荷实验;黄土湿陷实验;膨胀土现场浸水载荷实验等。检测内容:天然地基承载力, 检测数量不少于3点;复合地基承载力抽样检测数量为总桩数的0.5%~1.0%,且不 少于3点,重要建筑应增加检测点数。CFG桩和素混凝土桩应做完整性检测。 1.地基土载荷实验要点 用于确定地基土的承载力,依据《建筑地基基础设计规范》(GB50007)。 (1)基坑宽度不应小于压板宽度或直径的3倍。应注意保持实验土层的原状结构和天然湿度。宜在拟试压表面用不超过20mm厚的粗、中砂层找平。 (2)加荷等级不应少于8级。最大加载量不应少于荷载设计值的两倍。 (3)每级加载后,按间隔10、10、10、15、15min,以后为每隔0.5h读一次沉降,当连续2h内,每h的沉降量小于0.1mm时,则认为已趋稳定,可加下一级荷载。 (4)当出现下列情况之一时,即可终止加载:①承压板周围的土明显的侧向挤出; ②沉降s急骤增大,荷载-沉降(p-s)曲线出现陡降段; ③在某一荷载下,24h内沉降速度不能达到稳定标准;④ s/b≥0.06(b:承压板宽度或直径)(5)承载力基本值的确定: ①当p~s曲线上有明显的比例界限时,取该比例界限所对应的荷载值; ②当极限荷载能确定,且该值小于对应比例界限的荷载值的1.5倍时,取荷载极限值的一半; ③不能按上述二点确定时,如压板面积为0.25~0.50㎡,对低压缩性土和砂土,可取s/b=0.01~0.015所对应的荷载值;对中、高压缩性土可取s/b=0.02所对应的荷载值。 (6)同一土层参加统计的实验点不应少于3点,基本值的极差不得超过平均值的30%,取此平均值作为地基承载力标准值。 2. 现场试坑浸水试验 用于确定地基土的承载力和浸水时的膨胀变形量。依据《膨胀土地区建筑技术规范》(GBJ112)附录三“现场浸水载荷试验要点”。其操作重点: (1)承压板面积不应小于0.5㎡。 (2)分级加荷至设计荷载,当土的天然含水量大于或等于塑限含水量时,每级荷载可按

桩基地基承载力计算公式方法

地基承载力计算公式 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1 S c ,S q ,S r ——基础形状系数,可查表8.4.2

d c ,d q ,d r ——基础埋深系数,可查表8.4.3 c q r 注: H,V——倾斜荷载的水平分力,垂直分力,KN ; F——基础有效面积,F=b'L'm; 当偏心荷载的偏心矩为e c和e b,则有效基底长度, L'=L-2e c;有效基底宽度:b'=b-2e b。 地基承载力计算公式很多,有理论的、半理论半经验的和经验统计的,它们大都包括三项: 1. 反映粘聚力c的作用; 2. 反映基础宽度b的作用; 3. 反映基础埋深d的作用。 在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 a.太沙基公式

式中: P u ——极限承载力,K a c ——土的粘聚力,KP a γ——土的重度,KN/m,注意地下水位下用浮重度;b,d——分别为基底宽及埋深,m; N c ,N q ,N r ——承载力系数,可由图8.4.1中实线查取。 图8.4.1 对于松砂和软土,太沙基建议调整抗剪强度指标,采用 c′=1/3c , 此时,承载力公式为:

式中N c ′,在这三项中都含有一个数值不同的无量纲系数,称为承载力系数,它们都是内摩擦角φ的函数。 下面介绍三种典型的承载力公式。 N q ′,N r ′——局部剪切破坏时的承载力系数,可由 图8.4.1中虚线查得。 对于宽度为b的正方形基础 对于直径为b′的圆形基础 b.汉森承载力公式 式中Nr,Nq,Nr——无量纲承载力系数,仅与地基土的内摩擦角有关,可查表8.4.1

地基承载力(轻、重型计算公式)

小桥涵地基承载力检测 《公路桥涵施工技术规范》JTJ041-2000(P28)“小桥涵的地基检验可采用直观法或触探方法,必要时可进行土质试验”。就我国在建高速公路桥涵地基承载力而言,设计单位在施工图中多给出了地基承载力要求,如圆管涵基底承载力要求100kpa、箱涵250 kpa等等。因此承建单位一般采用(动力)触探法对基底进行检验。 触探法可分为静力触探试验、动力触探试验及标准贯入试验,那么它们分别是怎样定义的?适用范围又是什么呢?我想我们检测人 员是应该搞清楚的。 1、静力触探试验:指通过一定的机械装置,将某种规格的金属触探头用静力压入土层中,同时用传感器或直接量测仪表测试土层对触探头的贯入阻力,以此来判断、分析确定地基土的物理力学性质。静力触探试验适用于粘性土,粉土和砂土,主要用于划分土层,估算地基土的物理力学指标参数,评定地基土的承载力,估算单桩承载力及判定砂土地基的液化等级等。(多为设计单位采用)。 2、动力触探试验:指利用锤击功能,将一定规格的圆锥探头打入土中,根据打入土中的阻抗大小判别土层的变化,对土层进行力学分层,并确定土层的物理力学性质,对地基土作出工程地质评价。动力触探试验适用于强风化、全风化的硬质岩石,各种软质岩及各类土;动力触探分为轻型、重型及超重型三类。目前承建单位一般选用轻型和重型。①轻型触探仪适用于砂土、粉土及粘性土地基检测,(一般要求土中不含碎、卵石),轻型触探仪设备轻便,操作简单,省人省

力,记录每打入30cm的锤击次数,代用公式为R=(0.8×N-2)×9.8(R-地基容许承载力Kpa , N-轻型触探锤击数)。②重型触探仪:适用于各类土,是目前承建单位应用最广泛的一种地基承载力测试方法,该法是采用质量为63.5kg的穿心锤,以76cm的落距,将触探头打入土中,记录打入10cm的锤击数,代用公式为y=35.96x+23.8( y-地基容许承载力Kpa , x-重型触探锤击数)。 3、标准贯入试验:标准贯入试验是动力触探类型之一,其利用质量为63.5 kg的穿心锤,以76cm的恒定高度上自由落下,将一定规格的触探头打入土中15cm,然后开始记录锤击数目,接着将标准贯入器再打入土中30 cm,用此30 cm的锤击数(N)作为标准贯入试验指标,标准贯入试验是国内广泛应用的一种现场原位测试手段,它不仅可用于砂土的测试,也可用于粘性土的测试。锤击数(N)的结果不仅可用于判断砂土的密实度,粘性土的稠度,地基土的容许承载力,砂土的振动液化,桩基承载力,同时也是地基处理效果的一种重要方法。(多为测试中心及设计单位采用)。

动力触探试验检测地基承载力作业指导书

动力触探试验检测地基承载力作业指导书 一目的和适用范围及标准 本试验根据锤击能量分为轻型、重型和超重型3种。轻型动力触探适用于一般粘质土及素填土;重型动力触探适用于中、粗、砂砾和碎石土;超重型适用于卵石、砾石类土。一般用于确定各类土的容许承载力;还可用于划分土的力学分层、评价土层的均匀程度和确定桩基持力层。 试验依据《岩土工程勘察规范》(GB50021—2001) 二试验设备 试验设备由落锤、探杆、探头组成,具体规格见下表 三试验原理 是用一定质量的重锤,以一定高度的自由落距,将标准规格的圆锥形探头贯入土中,根据打入土中一定的距离所需的锤击数,判定土的力学特性,具有勘探和测试双重功能。 四试验步骤

(1)采用自由落锤方法;落距须严格控制在50cm。(规范没有找到) (2)轻型触探作业,先用轻便钻具钻至试验土层标高,然后对土层连续进行触探,使穿心锤自由落下将触探杆竖直打入土层中,记录每打入土层30cm的锤击数N10。当贯入30cm 的锤击数超过90 击或当贯入15cm 锤击数超过45 击时,可停止试验,并记录45 击的实际贯入深度,按下式换算成相当于30cm 的标准试验击数。 N10=30×45/△S 式中:△S——45 击时的贯入度(cm); N10——贯入30cm 的锤击数。 (3)重型触探作业,当连续三次N63.5>50 时,可停止试验或改用特重型动力触探。 (4)重型、特重型动力触探应每贯入10cm 记录其相应击数。地层松软时,可采用测量每阵击(一般为1~5 击)的贯入度,并按下式换算成相当于同类型动力触探贯入10cm 时的击数: N 63.5;N 120 =10n/△S 式中:N 63.5;N 120——贯入10cm 的重型、特重型动力触探锤击数; n ——每阵击的击数(击); △S——每阵击时相应的贯入度(cm)。 (5)试验技术要求 a、锤击能量是最重要的因素。规定落锤方式采用控制落距的自动落锤,使锤能量比较恒定,注意保持探杆垂直,探杆的偏斜度不超

地基承载力确定的土工表格法

----------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------------------------- 1 2允许变形值密切联系在一起。 3、地基承载力标准值:是根据野外鉴别结果确定的承载力值。包括:标贯试验、静力触探、旁压及其它原位测试得到的值。 4、地基承载力基本值:是根据室内物理、力学指标平均值,查表确定的承载力值,包括载荷试验得到的值)。 通常0f f f k ψ= 5、极限承载力:指地基即将丧失稳定性时的承载力。 二、地基承载力确定的途径 目前确定方法有: 1.根据原位试验确定:载荷试验、标准贯入、静力触探等。每种试验都有一定的适用条件。 2.根据地基承载力的理论公式确定。

3.根据《建筑地基基础设计规范》确定。 根据大量测试资料和建筑经验,通过统计分析,总结出各种类型的土在某种条件下的容许承载力,查表。一般:一级建筑物:载荷试验,理论公式及原位测试确定f; 一级建筑物:规范查出,原位测试;尚应结合理论公式; 一级建筑物:邻近建筑经验。 三、确定地基承载力应考虑的因素 地基承载力不仅决定于地基的性质,还受到以下影响因素的制约。 1.基础形状的影响:在用极限荷载理论公式计算地基承载力时是按条形基础考虑的,对于非条形基础应考虑形状不同地基承载的影响。 2.荷载倾斜与偏心的影响:在用理论公式计算地基承载力时,均是按中心受荷考虑的,但荷载的倾斜荷偏心对地基承载力是有影响的。 3 4 5 6 P275),当P 当P 1 段。 随着荷载的增大,并达到某一数值时,首先在基础边缘处的土开始出现剪切破坏,如图中a点。 随着荷载的增大,剪切破坏地区也相应的扩大,此时压力与沉降关系呈曲线形状,属弹性塑性变形阶段,如图ab段。 若荷载继续增大,越过b点,则处于塑性破坏阶段。 2.局部剪切破坏的特征: 局部剪切破坏的过程与整体剪切破坏相似,破坏也从基础边缘下开始,随着荷载增大,剪切破坏地区也相应地扩大。 区别:局部剪切破坏时,其压力与沉降的关系,从一开始就呈现非线性的变化,并且当达到破坏时,均无明显地出现转折现象。 对于这种情况,常取压力与沉降曲线上坡度发生显着变化的点所对应的压力,作为相应的地基承载力。3.冲剪破坏的特征:

2019年各地区计算地基承载力方法.doc

我们高速公路使用的是4.5X+24,设计院给的,是“铁”字辈的,。以前工程是8X-20。 N10型触探仪的适用范围是100~230KPa,在这个范围内用这个公式是对的,这个公式本来就是用这些数据回归出来的,所以出了这个范围就不能用这个公式,否则就不准确啦,但现在各个项目的地基承载力不一定在这个范围,为了方便检测,就用这个公式外延计算,我个人认为这样是不合理的. [/quote] 我也同意此观点,我觉得对于地基为粘土和亚粘土,并且呈可塑状或者硬塑状时是实用的,对其他土质只有指导作用,是不实用的。工地上为了达到简单,才使用N10型触探仪测试其承载力。 同意此意见,我们以前在高速公路中,有时业主也要求做空隙比,根据空隙比查看承载力,这样比较精确,操作上也不是很麻烦。 N10型触探仪的适用范围是100~230KPa,在这个范围内用这个公式是对的,这个公式本来就是用这些数据回归出来的,所以出了这个范围就不能用这个公式,否则就不准确啦,但现在各个项目的地基承载力不一定在这个范围,为了方便检测,就用这个公式外延计算,我个人认为这样是不合理的. 近几年,我国高速公路发展迅猛,由于高速公路是全封闭的,所以需要修建许多的构造物,如机耕通道、人行通道及排水涵、盖板涵等。因为地基承载力不足,结构物局部不均匀沉降时有发生。因此应该引起高度重视。以下结合本人多年从事公路工程试验检测工作的切身体会,片面地谈谈非桩基础的小桥涵地基承载力检测。 1、小桥涵地基承载力的检测方法(仅针对土质地基)小桥涵地基检测方法是多种多样的,建设单位一般建议采用标准贯入法,该法是采用质量为63.5Kg穿心锤,以76cm的落距,将一定规格的标准贯入器先打入土中15cm,然后开始记录锤击数目,将标准贯入器再打入土中30cm,用此30cm的锤击数作为标准贯入试验的指标。而目前施工单位更多的采用一种叫N10的轻型触探仪,此方法更为方便经济,适用于砂类土、粘性土地基,代用公式为R=(0.8×N-2)×9.8(R-地基容许承载力Kpa , N-轻型触探锤击数)。 2、为确保地基承载力质量,基坑开挖应注意哪些?⑴基坑开挖一定要结合当地天气预报,基坑开挖至基底30-50cm时,可根据天气情况来安排下一步工序,在天气晴朗时,将预留部分挖除,随即进行基坑检查,检验合格后马上进行基础的施工。⑵挖至标高的土质基坑不得长期暴露、拢动或浸泡,并应及时检查基坑尺寸、高程、基地承载力,符合要求后,应立即进行基础施工。⑶应避免超挖。如超挖,应将松动部分清除,其处理方案应报监理、设计单位批准。 3、土质地基达不到承载力要求时如何处理? 一般采用换填法加固(本节3条引自公路桥涵施工技术规范实施手册P46) ⑴深度小于2m的基坑中淤泥、淤泥质土、湿陷性黄土等,宜全部挖除,挖除宽度应比基础各边宽出0.5m。当渗水难以排干时,则应换填水稳性好的中砂、粗砂、砂砾石、碎石等材料,并分层夯实,压实度应达到90%-95%;当渗水能排干时,可换填强度较高的土或灰土。 ⑵单独使用砂砾垫层、矿渣垫层或灰土垫层,其厚度应由软弱下卧土层的允许

地基承载力试验

地基承载力检测 一、地基土载荷实验 地基土载荷实验用于确定岩土的承载力和变形特征等,包括:载荷实验;现场浸水载荷实验;黄土湿陷实验;膨胀土现场浸水载荷实验等。检测内容:天然地基承载力,检测数量不少于3点;复合地基承载力抽样检测数量为总桩数的0.5%~1.0%,且不少于3点,重要建筑应增加检测点数。CFG桩和素混凝土桩应做完整性检测。 1.地基土载荷实验要点 用于确定地基土的承载力,依据《建筑地基基础设计规范》(GB50007)。(1)基坑宽度不应小于压板宽度或直径的3倍。应注意保持实验土层的原状结构和天然湿度。宜在拟试压表面用不超过20mm厚的粗、中砂层找平。 (2)加荷等级不应少于8级。最大加载量不应少于荷载设计值的两倍。 (3)每级加载后,按间隔10、10、10、15、15min,以后为每隔0.5h读一次沉降,当连续2h内,每h的沉降量小于0.1mm时,则认为已趋稳定,可加下一级荷载。 (4)当出现下列情况之一时,即可终止加载: ①承压板周围的土明显的侧向挤出; ②沉降s急骤增大,荷载-沉降(p-s)曲线出现陡降段; ③在某一荷载下,24h内沉降速度不能达到稳定标准;

④ s/b≥0.06(b:承压板宽度或直径) (5)承载力基本值的确定: ①当p~s曲线上有明显的比例界限时,取该比例界限所对应的荷载值; ②当极限荷载能确定,且该值小于对应比例界限的荷载值的1.5倍时,取荷载极限值的一半; ③不能按上述二点确定时,如压板面积为0.25~0.50㎡,对低压缩性土和砂土,可取s/b=0.01~0.015所对应的荷载值;对中、高压缩性土可取s/b=0.02所对应的荷载值。 (6)同一土层参加统计的实验点不应少于3点,基本值的极差不得超过平均值的30%,取此平均值作为地基承载力标准值。 2. 现场试坑浸水试验 用于确定地基土的承载力和浸水时的膨胀变形量。依据《膨胀土地区建筑技术规范》(GBJ112)附录三“现场浸水载荷试验要点”。其操作重点: (1)承压板面积不应小于0.5㎡。 (2)分级加荷至设计荷载,当土的天然含水量大于或等于塑限含水量时,每级荷载可按25kPa增加。每组荷载施加后,按0.5h、1h各观察沉降一次,以后每隔1h或更长时间观察一次,直到沉降达到相对稳定后再加下一级荷载。 (3)连续2h的沉降量不大于0.1mm/2h时,即可认为沉降稳定。(4)浸水水面不应高于承压板底面,浸水期间每隔3d或3d以

确定地基承载力表格汇总

国内现有确定地基承载力表格资料汇总 1.1根据轻型动力触探试验确定地基承载力标准值 确定粘性土地基承载力标准值 N 10 (击) 15 20 25 30 f k(kPa) 105 145 190 230 备注依据老的《建筑地基基础设计规范》(7—89)。 确定粘性土地基承载力标准值 N 10 (击) 6 10 20 30 40 50 60 70 80 90 f k(kPa) 51 69 114 159 204 249 294 339 384 429 备注依据广东省建筑设计研究院资料。 确定含少量杂物的杂填土地基承载力标准值 N 10 (击) 15~20 18~25 23~30 27~35 32~40 35~50 e 1.25~1.15 1.20~1.10 1.15~1.00 1.05~0.90 0.95~0.80 <0.80 f k(kPa) 40~70 60~90 80~120 100~150 130~180 150~200 备注依据西安市资料。饱和度Sr>0.60取下限,Sr<0.50取上限。 确定素填土地基承载力标准值 N 10 (击) 10 20 30 40 f k(kPa) 85 115 135 160 备注依据老的《建筑地基基础设计规范》(7—89)。 1.2根据重型动力触探试验确定地基承载力标准值 确定碎石土、砂土地基承载力标准值 N 63.5 (击) 3 4 5 6 8 10 12 碎石土 f k(kPa) 140 170 200 240 320 400 480 中、粗、砾砂 f k(kPa) 120 150 200 240 320 400 备注1、依据原一机部勘察公司西南大队资料。 2、本表适用于冲、洪积成因的碎石土和砂土,对碎石土, d60不大于30mm,不均匀系数不大于120。对中、粗砂,不均匀系不大于6,对砾砂,不均匀系数不大于20。

地基承载力计算公式

地基承载力计算公式的说明:f=fk+ηbγ(b-3)+ηdγο(d-0.5) fk——垫层底面处软弱土层的承载力标准值(kN/m2) ηb、ηd——分别为基础宽度和埋深的承载力修正系数 b--基础宽度(m) d——基础埋置深度(m) γ--基底下底重度(kN/m3) γ0——基底上底平均重度(kN/m3) 地基的处理方法 利用软弱土层作为持力层时,可按下列规定执行:1)淤泥和淤泥质土,宜利用其上覆较好土层作为持力层,当上覆土层较薄,应采取避免施工时对淤泥和淤泥质土扰动的措施;2)冲填土、建筑垃圾和性能稳定的工业废料,当均匀性和密实度较好时,均可利用作为持力层;3)对于有机质含量较多的生活垃圾和对基础有侵蚀性的工业废料等杂填土,未经处理不宜作为持力层。局部软弱土层以及暗塘、暗沟等,可采用基础梁、换土、桩基或其他方法处理。在选择地基处理方法时,应综合考虑场地工程地质和水文地质条件、建筑物对地基要求、建筑结构类型和基础型式、周围环境条件、材料供应情况、施工条件等因素,经过技术经济指标比较分析后择优采用。 地基处理设计时,应考虑上部结构,基础和地基的共同作用,必要时应采取有效措施,加强上部结构的刚度和强度,以增加建筑物对地基不均匀变形的适应能力。对已选定的地基处理方法,宜按建筑物地基基础设计等级,选择代表性场地进行相应的现场试验,并进行必要的测试,以检验设计参数和加固效果,同时为施工质量检验提供相关依据。 经处理后的地基,当按地基承载力确定基础底面积及埋深而需要对地基承载力特征值进行修正时,基础宽度的地基承载力修正系数取零,基础埋深的地基承载力修正系数取1.0;在受力范围内仍存在软弱下卧层时,应验算软弱下卧层的地基承载力。对受较大水平荷载或建造在斜坡上的建筑物或构筑物,以及钢油罐、堆料场等,地基处理后应进行地基稳定性计算。结构工程师需根据有关规范分别提供用于地基承载力验算和地基变形验算的荷载值;根据建筑物荷载差异大小、建筑物之间的联系方法、施工顺序等,按有关规范和地区经验对地基变形允许值合理提出设计要求。地基处理后,建筑物的地基变形应满足现行有关规范的要求,并在施工期间进行沉降观测,必要时尚应在使用期间继续观测,用以评价地基加固效果和作为使用维护依据。复合地基设计应满足建筑物承载力和变形要求。地基土为欠固结土、膨胀土、湿陷性黄土、可液化土等特殊土时,设计要综合考虑土体的特殊性质,选用适当的增强体和施工工艺。复合地基承载力特征值应通过现场复合地基载荷试验确定,或采用增强体的载荷试验结果和其周边土的承载力特征值结合经验确定。 常用的地基处理方法有:换填垫层法、强夯法、砂石桩法、振冲法、水泥土搅拌法、高压喷射注浆法、预压法、夯实水泥土桩法、水泥粉煤灰碎石桩法、石灰桩法、灰土挤密桩法和土挤密桩法、柱锤冲扩桩法、单液硅化法和碱液法等。 1、换填垫层法适用于浅层软弱地基及不均匀地基的处理。其主要作用是提高地基承载力,减少沉降量,加速软弱土层的排水固结,防止冻胀和消除膨胀土的胀缩。

地基承载力规范及方法

1简介 地基承载力:地基满足变形和强度的条件下,单位面积所受力的最大荷载。 2概述 地基承载力(subgrade bearing capacity)是指地基承担荷载的能力。 在荷载作用下,地基要产生变形。随着荷载的增大,地基变形逐渐增大,初始阶段地基土中应力处在弹性平衡状态,具有安全承载能力。当荷载增大到地基中开始出现某点或小区域内各点在其某一方向平面上的剪应力达到土的抗剪强度时,该点或小区域内各点就发生剪切破坏而处在极限平衡状态,土中应力将发生重分布。这种小范围的剪切破坏区,称为塑性区(plastic zone)。地基小范围的极限平衡状态大都可以恢复到弹性平衡状态,地基尚能趋于稳定,仍具有安全的承载能力。但此时地基变形稍大,必须验算变形的计算值不允许超过允许值。当荷载继续增大,地基出现较大范围的塑性区时,将显示地基承载力不足而失去稳定。此时地基达到极限承载力。 3确定方法 (1)原位试验法(in-situ testing method):是一种通过现场直接试验确定承载力的方法。包括(静)载荷试验、静力触探试验、标准贯入试验、旁压试验等,其中以载荷试验法为最可靠的基本的原位测试法。 (2)理论公式法(theoretical equation method):是根据土的抗剪强度指标计算的理论公式确定承载力的方法。 (3)规范表格法(code table method):是根据室内试验指标、现场测试指标或野外鉴别指标,通过查规范所列表格得到承载力的方法。规范不同(包括不同部门、不同行业、不同地区的规范),其承载力不会完全相同,应用时需注意各自的使用条件。 (4)当地经验法(local empirical method):是一种基于地区的使用经验,进行类比判断确定承载力的方法,它是一种宏观辅助方法。 4注意问题 定义 (1)地基承载力:地基所能承受荷载的能力。 (2)地基容许承载力:保证满足地基稳定性的要求与地基变形不超过允许值,地基单位面积上所能承受的荷载。

地基承载力计算.docx

地基承载力计算 5. 2.1 基础底面的压力,应符合下列规定: 1 当轴心荷载作用时 p k ≤ f a ( 5.2.1-1) 式中: p k ——相应于作用的标准组合时,基础底面处的平均压力值( f a ——修正后的地基承载力特征值( kPa )。 kPa ); 2 当偏心荷载作用时,除符合式(5.2.1-1 )要求外,尚应符合下式规定: p kmax ≤ 1.2f a ( 5.2.1-2) 式中: p kmax ——相应于作用的标准组合时,基础底面边缘的最大压力值( kPa )。 5. 2.2 基础底面的压力,可按下列公式确定: 1当轴心荷载作用时 F k G k ( 5.2.2-1) p k A 式中: F k ——相应于作用的标准组合时,上部结构传至基础顶面的竖向力值( kN ); G k ——基础自重和基础上的土重( kN ); A ——基础底面面积( m 2)。 2 当偏心荷载作用时 F k G k M k (5.2.2-2) p k max A W F k G k M k (5.2.2-3) p k min W A 式中: M k ——相应于作用的标准组合时,作用于基础底面的力矩值( kN · m ); W ——基础底面的抵抗矩( m 3); p kmin ——相应于作用的标准组合时,基础底面边缘的最小压力值( kPa )。 3 当基础底面形状为矩形且偏心距e >b/6 时(图 5.2.2 )时, p kmax 应按下式计算: 2(F k G k ) (5.2.2-4) p k max 3la 式中: l ——垂直于力矩作用方向的基础底面边长( m ); a ——合力作用点至基础底面最大压力边缘的距离( m )。

相关文档
最新文档