浸矿微生物鉴定研究进展

浸矿微生物鉴定研究进展
浸矿微生物鉴定研究进展

 第16卷第9期 2007年9月

中 国 矿 业

CHINA MINING MAG AZINE

 Vol.16,No.9

September 2007

浸矿微生物鉴定研究进展

陈勃伟,温建康,刘文彦

(北京有色金属研究总院生物冶金国家工程实验室,北京100088)

摘 要:为了探明浸矿过程中微生物的组成,通过比较浸矿微生物鉴定的常规方法、免疫学方法和分子生物学方法的优缺点,并参考研究现状,指出利用现代分子生态学的方法可快速鉴定浸矿微生物,多种方法组合使用可获得更加全面的浸矿微生物组成演替信息。 关键词:浸矿微生物;生物冶金;分子生物学方法;免疫学方法

中图分类号:TF111131+1 文献标识码:A 文章编号:1004-4051(2007)09-0103-04

Progress in identif ication of bioleaching microorganisms

CH EN Bo 2wei ,WEN Jian 2kang ,L IU Wen 2yan

(National Engineering Laboratory of Biohydrometallurgy ,G eneral Research

Institute for Nonferrous Metals ,Beijing 100088,China )

Abstract :In order to explore the composition of microorganisms in the bioleaching process ,in terms of

present research situation ,advantages and disadvantages of conventional methods 、immunological methods and molecular biological methods for identification of bioleaching microorganisms is compared 1It is pointed out that the use of modern molecular ecological methods can quickly identify bioleaching microorganisms ,while the integration of several methods can get more comprehensive information about constitution and suc 2cession of bioleaching microorganisms 1

K ey w ords :bioleaching microorganisms ;biohydrometallurgy ;molecular biological methods ;immuno 2

logical methods

收稿日期:2007-05-11

基金项目:“973”课题(2004CB619205)资助项目

作者简介:陈勃伟(1984-),男,汉,陕西乾人,硕士研究生,主要研究方向为生物冶金。

随着我国矿产资源的不断开发利用,富矿资源日趋贫乏,以贫、细、杂为突出特点的难选冶矿石,所占比例不断上升,致使常规的选冶方法,在技术和经济两方面都面临严峻的挑战。对于铜、金、铀等金属需求量的不断增加以及成本的节约化,促使冶金技术的不断进步,由此产生了生物冶金技术。生物冶金技术具有工艺简单、流程短、装备简单、投资小、成本低、污染轻、资源消耗量小以及能够处理低品位矿等诸多优点,适合社会可持续发展的要求,因此,生物冶金技术的开发研究,己经成为矿产资源利用领域的前沿研究课题。随着生物冶金技术研究的不断深入,学者对在生物浸矿体系中起关键作用的浸矿微生物的研究越来越多。本文将对浸矿微生物鉴定的常用方法进行综述,为

浸矿微生物的鉴定提供一定的参考,以便能更好的利用生物冶金技术。1 常规方法

微生物鉴定的常规方法,是指通过纯培养,获得纯菌株后,将测定的细胞的形态学、生理学、生态学的各种指标,与权威性的菌种鉴定手册比较,获得菌种的分类信息〔1〕。早期的鉴定,就是通过此方法进行的,但是,这种方法需要的时间长,而且有些浸矿微生物难以获得纯培养。Johnson 〔2〕曾通过平板培养的方式,发现有机物对专性自养菌

A ci dit hiobacill us f erroox i dans 有毒害作用,导致

它很难在固体琼脂培养基上生长,但通过夹层培养或引入异养菌A ci di p hil um ,可获得纯的A t 1f er 2

roox i dans 。由此可以推断,早期获得的纯的A t 1f erroox i dans ,有可能是A t 1f erroox i d ans 和A ci 2di p hil um 的混合菌株。

2 免疫学方法211 免疫荧光法

中国矿业第16卷

免疫荧光法是一种使结合有荧光素的抗体与抗原进行反应,借以提高免疫反应灵敏度和适合显微镜观察的免疫标记技术。Baker和Mills〔3〕将荧光抗体(Fluorescent antibody,FA)和22(p2Iodo2 p henyl)232(p2Nit rop henyl)252Phenyltet razolium Chloride(IN T)结合,此技术又称为FA IN T。他们利用FA IN T技术研究了酸性和非酸性环境中T hiobacill us f erroox i d ans的分布。通过比较FA IN T技术,荧光抗体染色和M PN(Most Prob2 able Number),结果表明,M PN低估活细胞数12 3个数量级,而荧光抗体染色估计过高。

212 斑点免疫测定法

该方法是J erez〔4〕提出来的,可以快速特异性鉴定T1f erroox i dans、L1f erroox i d ans和T hio2 bacill us t hioox i dans。该方法的基本过程为:首先,将要鉴定的细菌以硝酸纤维素滤膜过滤,使细菌呈点状分布在膜上。然后,用一次抗体和细胞反应,再与酶结合的可以和一次抗体特异结合的二次抗体反应。酶通过催化无色底物产生有色底物,斑点中要鉴定细菌的数量与有色底物的多少成正比。同时,做一细菌数已知的对照试验,通过计算机图像分析软件,来确定斑点中细菌的数量。该方法可以检测的最低限为每个斑点103个细胞。

3 分子生物学方法

对于浸矿微生物的检测,免疫学方法是针对某一种已知菌或多个菌种的检测。但是,随着人们对于浸矿微生物的认识逐渐加深,发现能够浸矿的细菌种类很多,而且存在一些未知的菌种。因此,针对单一菌种或者多个菌种的检测,已不能说明浸矿环境中的微生物种群的问题,便逐渐发展出了可以检测微生物种群的技术,这也是随着现代分子生物学的技术而发展起来的,特别是PCR技术。通过PCR扩增后,原有的DNA可以扩增106倍以上,因此,对于分析微量且浓度低的样品特别有效。311 16S rRNA基因序列分析

由于16S rRNA作为原核生物分类的一个标准,因此,将16S rRNA基因全长测序后与现有的数据库比较,就可知道原核生物的分类信息。Okibe等〔5〕用此方法研究了搅拌罐浸出操作中的微生物群落,共分离到4种菌:A t1cal d us、L e pto2 s pi rill um sp1、S ul f obacill us sp1和Ferropl asm a。这些原核生物的相对数量,在三个采样的反应器中是变化的。随着矿物的氧化,Ferropl asm a成为优势菌,而且在第三个反应器中,占到了平板分离的99%以上。证明混合铁氧化菌和硫氧化菌,可加速硫化矿物的氧化,也表明随着矿物的溶解,微生物种群也会随着改变。

312 构建克隆文库

克隆文库的构建分为以下几步:首先提取样品核酸,PCR扩增16S rRNA基因,扩增产物与载体相连,然后将载体转入大肠杆菌,通过固体平板培养的方式,挑选阳性菌落,组成克隆文库。再提取阳性克隆的质粒,测序后与NCB I中的数据库进行比较,就可知道文库中的菌种及数量。郝春博〔6〕通过16S rRNA基因文库的构建,对浸矿微生物生态学进行研究。表明某反应器内嗜酸菌的组成,主要包括五种嗜酸细菌L1f erri p hil um,A1cal d us, S ul f obacill us sp1,A licyclobacill us sp1和革兰氏阳性嗜酸铁氧化菌,其中前三种是稳定存在的。313 PCR2SSCP(PCR2Single St randed Confor2 mation Polymorp hism)

单链构象多态性(Single Stranded Conforma2 tion Polymorp hism)的原理,是基于不同单链DNA的不同折叠构象会影响电泳进程中的迁移率。通过PCR扩增出的DNA,经变性产生两条互补的DNA单链,由于碱基序列及空间构象的不同,在非变性聚丙烯酰胺凝胶中呈现不同的带型。Foucher等〔7〕应用SSCP研究了含钴黄铁矿柱浸和搅拌罐浸出中细菌种群演化,分别研究了吸附在矿石上以及浸出液中的细菌组成。浸出液中,在实验的第一阶段,优势菌为T1cal d us,之后被L1 f erroox i dans代替。吸附在矿石上的优势菌始终为是L1f erroox i dans。S ul f obacill us t hermos ul f i2 doox i dans不是很恒定,似乎在柱浸时生长更好。314 PCR2D GGE(PCR2Denat ured Gradient Gel Elect rop horesis)

变性梯度凝胶电泳(Denat ured Gradient Gel Elect rop horesis)的基本原理,基于当双链DNA 在变性梯度凝胶中进行到与DNA变性湿度一致的凝胶位置时,DNA发生部分解链,电泳迁移率下降,当解链的DNA链中有一个碱基改变时,会在不同的时间发生解链,因影响电泳速度变化过程而被分离。Demergasso等〔8〕采用D GGE对智利的一个低品位粗制硫化铜矿堆浸中的微生物群落进行了一年的监测。第一阶段主要是A t1f erroox i d ans 和古细菌S ul f uris p haera。第二阶段(从2252338天)主要是L eptos pi rill um和Ferropl asm a。第三阶段(从598到749d)S ul f obacill us成为优势菌,Ferropl asm a是唯一检测到的古细菌。

315 荧光原位杂交(Fluorescent In Sit u Hybrid2

401

第9期陈勃伟等:浸矿微生物鉴定研究进展

izatio n,FISH)

FISH技术的基本原理为:将寡核苷酸探针用荧光染料标记,再使之与固定在载玻片上的微生物样品杂交,将未杂交的荧光探针洗去后,用共聚焦激光扫描显微镜或普通荧光显微镜进行观察和摄像。用这一方法,可以避免细菌的培养,清楚并方便地观察到样品中细菌的细胞数量和空间位置,而且可以利用不同的寡核苷酸探针,同时对不同类群的细菌,在细胞水平上进行原位的定性定量分析和空间位置识别。Bond等〔9〕应用FISH技术,研究了美国Richmond矿酸性矿山排水中的微生物群落,结果表明,在极低的p H值及高离子强度的地方,Ferropl asm a spp1为优势菌。在许多矿泥中检测到L e ptos pi rill um spp1,而S ul f obacill us spp1在温度较高的地方是优势菌。

316 多种方法组合应用

为了全面了解微生物群落组成、演替的信息,可将多种方法组合应用,这样可以避免方法本身所带来的不可避免的偏差。K innunen和Puhakka〔10〕应用FISH和D GGE,研究了产生Fe3+的流化床反应器中微生物组成,结果表明,L1f erri p hil um 为优势菌,古细菌Ferropl asm a aci di p hil um只有不到1%。

4 讨论

生物冶金技术具有传统的选冶方法不可比拟的优点,尤其是生物堆浸技术在金属的提取方面具有巨大的优势,但对于堆浸中的微生物学却知之较少。最近有人提出:“提高生物堆浸技术商业应用的关键,是理解矿堆中的微生物学”。因此,对浸矿环境中微生物的鉴定,不管对于生物冶金的基础研究,还是对于工业应用的指导,都具有重大的作用。

浸矿微生物鉴定的常规方法,由于需要的时间长,不能及时的提供浸矿过程中微生物方面的信息,因此,只适合做初步的认识或者分类使用。而免疫学的鉴定是针对已知细菌,首先要获得纯菌种的抗血清,然后用抗血清鉴定浸矿环境中该种细菌的数量。然而,同一种细菌会有多种血清型,用同一种抗体进行检测时,就会低估细菌的数量〔11〕,虽然说可以选用一种细菌的通用抗原,但总的来说,这种方法有一定的局限性。

分子生物学方法的出现,使得浸矿环境中的微生物基本都可以引入鉴定范围。但是,现有的关于浸矿微生物的各种数据库有限,分子生物学方法主要利用现有数据库作参考,当存在一些未知的微生物时,核酸探针杂交就不能鉴定出来。一些基于rRNA的方法,由于受现有数据库信息量所限,也不能快速的鉴定出来。而PCR2SSCP和PCR2 D GGE,是针对DNA的序列差异经电泳进行区分,可将差别很小的DNA序列区分开来,存在未知微生物时,可将电泳条带直接测序,获得可靠的组成分类信息。利用条带的信号强度估计不同种群的相对丰度,进而获得浸矿过程中微生物动力学的粗略信息,但这个结果,只是大概的趋势,而不是微生物群落结构详细的定量估计。

由此可见,浸矿微生物鉴定的方法很多,现在多采用分子生物学的方法进行鉴定,但由于方法原理本身的不同,采用一种方法往往不能够说明问题,因此,多种方法的组合应用,可以获得更全面的微生物群落组成演替信息。

5 结语

浸矿微生物的鉴定,就是要搞清楚浸矿过程中微生物群落的组成以及演替情况。浸矿环境中的微生物,由于受环境因子的影响,组成复杂,有时存在一些未知的微生物。现在通常采用现代分子生态学方法,对浸矿微生物进行鉴定,PCR2SSCP、PCR2D GGE和FISH是现在应用最广的三种方法,已成功应用于堆浸、柱浸、搅拌罐浸出中细菌的鉴定。PCR2SSCP和PCR2D GGE可以快速检测和鉴定环境中数量比例大于1%的细菌,FISH虽不能鉴定未知微生物,但可以更加直观的反映原位的微生物组成分布情况,可对微生物群落进行定量估计,而多种方法的组合使用,可获得详细的微生物的群落结构信息。

参考文献

〔1〕 周德庆.微生物学教程(第二版)[M].北京:高等教育出版社,2002.

〔2〕 Johnson D B.Selective solid media for isolating and enumer2 ating acidophilic bacteria[J].J.Microbiol.Met hods,

1995,23:205-218.

〔3〕 Bakert K H and Mills A L.Determination of t he number of respiring T hiobacill us f errooxi dans cells in water samples by

using combined fluorescent antibody222(p2iodophenyl)232

(p2nitrophenyl)252phenyltetrazolium chloride staining[J].

Appl.Environ.Microbiol.,1982,43(2):338-344.

〔4〕 Arredondo R and J erez C A.Specific dot2immunobinding as2 say for detection and enumeration of T hiobacill us f erroox i2

dans[J].Appl.Environ.Microbiol.,1989,55(8):2025

-2029.

〔5〕 Okibe N,Gericke M,Hallberg K B,et al.Enumeration and characterization of acidophilic microorganisms isolated

from a pilot plant stirred2tank bioleaching operation[J].

Appl.Environ.Microbiol.,2003,69(4):1936-1943.

501

中国矿业

第16卷

〔6〕 郝春博.嗜酸菌微生物生态学研究[D ].北京:中国科学院研究生院,2006.

〔7〕 Foucher S ,Battaglia 2Brunet F ,d ’Hugues P ,et al.Evo 2

lution of t he bacterial population during t he batch bioleaching of a cobaltiferous pyrite in a suspended 2solids bubble column and comparison wit h a mechanically agitated reactor [J ].Hydrometallurgy ,2003,(71):5-12.

〔8〕 Demergasso C S ,Galleguillos P A P ,Escudero L V G ,et

al.Molecular characterization of microbial populations in a low 2grade copper ore bioleaching test heap [J ].Hydromet 2allurgy ,2005,80:241-253.

〔9〕 Bond P L ,Druschel G K and Banfield J https://www.360docs.net/doc/3a18094379.html,parison of

acid mine drainage microbial communities in physically and

geochemically distinct ecosystems [J ].Appl.Environ.Mi 2

crobiol.,2000,66(11):4962-4971.

〔10〕 K innunen P H M ,Puhakka J A.High 2rate ferric sulfate

generation by a L eptos pi rill um f erri p hil um 2dominated bio 2film

and t he role of jarosite in biomass retainment in a fluid 2ized 2bed reactor [J ].Biotechnol.Bioeng.,2004,85

(7):697-705.

〔11〕 Hallberg K B and Lindstr m E B.Multiple serotypes of t he

moderate t hermophile T hiobacill us cal dus ,a limitation of immunological assays for biomining microorganisms [J ].Appl.Environ.

Microbiol.,1996,62(11):4243-

4246.

(上接第99页)

度的统计。本文在分析系统建设必要性的基础上,对系统的设计原则、系统的功能、系统的总体设计和数据流程进行了详细的分析,并对系统实现中的关键技术及其实现方法进行了论述。

参考文献

〔1〕 Fabio Claudio ,Ferracchiati ,J ay G lynn 等著;毛尧飞译.

N ET 数据服务C #高级编程[M ].北京:清华大学出版社,2002.

〔2〕 原东方,魏峰远,等.矿山测量信息管理及数据处理系统

[J ].焦作工学院学报,1999,(1).

〔3〕 兰小机,骆永正.矿山测量信息系统的功能设计与数据组织

[J ].中国有色金属学报,1998,(9).

〔4〕 刘桥喜,毛善君.地质数据库管理系统的设计与实现[J ].

煤炭技术,2000,(8).

6

01

浸矿微生物技术

课程结业论文 题目浸矿微生物技术 姓名李诚 所在学院化工学院 专业班级化学工程与工艺09级2班 学号 2009301767 指导教师张东晨 二〇一 1 年 4 月28 日

学年论文指导教师评阅意见

浸矿微生物技术 摘要:概述了将微生物技术应用于矿业加工技术之中的原理,其中涉及到的菌种极其培养条件和各种石矿运用这种技术进行浸出的实例应用 关键词:矿业、微生物、浸出 大多数金属硫化矿如黄铜矿、辉铜矿、黄铁矿、黝铜矿、闪锌矿和某些金属氧化矿如铀矿、氧化锰矿难溶于稀硫酸等一般工业浸出剂。但人们可利用某些特殊微生物,在合适条件下将上述矿物中的金属用稀硫酸浸出。 生物浸出的基本原理 生物浸出是利用微生物在生命活动中自身的氧化和还原特性,使资源中的有用成分氧化或还原,以水溶液中离子态或沉淀的形式与原物质分离,或靠微生物的代谢产物与矿物作用,溶解提取矿物有用成分。 矿石(硫化矿)的生物浸出是水溶液中多相体系的一个复杂过程,它同时包含了化学氧化、生物氧化和电化学氧化反应。一般认为,在生物浸出过程中,微生物的作用表现在两方面,即直接氧化作用和间接氧化作用。 1、微生物的直接氧化作用 直接氧化作用是指微生物与目的矿物直接接触,加速固体矿物被氧化成可溶性盐的反应过程,如许多金属硫化矿物在浸矿微生物的直接氧化作用下会发生浸出反应。 直接氧化作用中细菌的“催化”功能是通过酶催化溶解机制来完成的,细菌在酶解矿物晶格的过程中获得生长所需的能量。 2、微生物的间接氧化作用 间接氧化作用是指通过微生物代谢产生的化学氧化剂溶解矿物的作用,如上述反应产生的硫酸亚铁又可作为能源被细菌氧化为硫酸高铁。 硫酸铁是一种强氧化剂,可通过化学氧化作用溶解矿物。 间接氧化作用是细菌代谢产物的化学溶解作用,细菌在其中的作用是再生氧化剂———硫酸高铁,完成生物化学循环,细菌可不与矿物接触。 在实际细菌浸出过程中,既有直接氧化作用,又有间接氧化作用,属于一种耦合作用。生物浸出应用的菌种 用于生物浸出的微生物种类繁多,但主要可分为两大类:化能无机自养型和化能有机异养型。化能无机自养型细菌主要用于有色金属硫化物的氧化浸出,化能有机异养型中的真菌、藻类等主要用于从硅酸盐和碳酸盐矿物中提取金属,如浸金。 已研究过用于生物浸出的微生物有20多种,分布于硫杆菌属、钩端螺菌属、硫化杆菌属、硫化叶菌属、酸菌属、生金球菌属和硫球菌属等。其中比较重要的有以下几种: 1、硫杆菌属 硫杆菌属中最为重要的3个种为氧化亚铁硫杆菌、氧化硫硫杆菌和排硫硫杆菌。 (1)氧化亚铁硫杆菌

微生物常规鉴定技术

微生物常规鉴定技术 一、形态结构和培养特性观察 1、微生物的形态结构观察主要是通过染色,在显微镜下对其形状、大小、排列方式、细胞结构(包括细胞壁、细胞膜、细胞核、鞭毛、芽孢等)及染色特性进行观察,直观地了解细菌在形态结构上特性,根据不同微生物在形态结构上的不同达到区别、鉴定微生物的目的。 2、细菌细胞在固体培养基表面形成的细胞群体叫菌落(colony)。不同微生物在某种培养基中生长繁殖,所形成的菌落特征有很大差异,而同一种的细菌在一定条件下,培养特征却有一定稳定性。,以此可以对不同微生物加以区别鉴定。因此,微生物培养特性的观察也是微生物检验鉴别中的一项重要内容。 1)细菌的培养特征包括以下内容:在固体培养基上,观察菌落大小、形态、颜色(色素是水溶性还是脂溶性)、光泽度、透明度、质地、隆起形状、边缘特征及迁移性等。在液体培养中的表面生长情况(菌膜、环)混浊度及沉淀等。半固体培养基穿刺接种观察运动、扩散情况。 2)霉菌酵母菌的培养特征:大多数酵母菌没有丝状体,在固体培养基上形成的菌落和细菌的很相似,只是比细菌菌落大且厚。液体培养也和细菌相似,有均匀生长、沉淀或在液面形成菌膜。霉菌有分支的丝状体,菌丝粗长,在条件适宜的培养基里,菌丝无限伸长沿培养基表面蔓延。霉菌的基内菌丝、气生菌丝和孢子丝都常带有不同颜色,因而菌落边缘和中心,正面和背面颜色常常不同,如青霉菌:孢子青绿色,气生菌丝无色,基内菌丝褐色。霉菌在固体培养表面形成絮状、绒毛状和蜘蛛网状菌落。

革兰氏染色: 革兰氏染色法是1884年由丹麦病理学家C.Gram所创立的。革兰氏染色法可将所有的细菌区分为革兰氏阳性菌(G+)和革兰氏阴性菌(G—)两大类,是细菌学上最常用的鉴别染色法。 该染色法所以能将细菌分为G+菌和G—菌,是由这两类菌的细胞壁结构和成分的不同所决定的。G—菌的细胞壁中含有较多易被乙醇溶解的类脂质,而且肽聚糖层较薄、交联度低,故用乙醇或丙酮脱色时溶解了类脂质,增加了细胞壁的通透性,使初染的结晶紫和碘的复合物易于渗出,结果细菌就被脱色,再经蕃红复染后就成红色。G+菌细胞壁中肽聚糖层厚且交联度高,类脂质含量少,经脱色剂处理后反而使肽聚糖层的孔径缩小,通透性降低,因此细菌仍保留初染时的颜色步骤: (1)涂片:涂片方法与简单染色涂片相同。 (2)晾干:与简单染色法相同。 (3)固定,与简单染色法相同 (4)结晶紫色染色:将玻片置于废液缸玻片搁架上,加适量(以盖满细菌涂面)的结晶紫染色液染色1分钟。 (5)水洗:倾去染色液,用水小心地冲洗。 (6)媒染:滴加卢哥氏碘液,媒染1min。 (7)水洗:用水洗去碘液。 (8)脱色:将玻片倾斜,连续滴加95%乙醇脱色20—25s至流出液无色,立即水洗。 (9)复染:滴加蕃红复染5min。 (10)水洗:用水洗去涂片上的蕃红染色液。 (11)晾干:将染好的涂片放空气中晾干或者用吸水纸吸干。 (12)镜检:镜检时先用低倍,再用高倍,最后用油镜观察,并判断菌体的革兰氏染色反应性。 (13)实验完毕后的处理: ①将浸过油的镜头按下述方法擦拭干净,a.先用擦镜纸将油镜头上的油擦 去。b.用擦镜纸沾少许二甲苯将镜头擦2—3次。c.再用干净的擦镜纸将 镜头擦2—3次。注意擦镜头时向一个方向擦拭。 ②看后的染色玻片用废纸将香柏油擦干

新版GMP与快速微生物检测鉴定技术

A B C D 高鹃 新版GMP 与快速微生物检测鉴定技术新版GMP 与 快速微生物检测鉴定技术 3.快速鉴定技术 4.法规与药典要求 第一部分引言无菌药品生产要求的大幅度提高 新版GMP 无菌药品附录 以上各级别空气悬浮粒子的标准规定如下表: 洁净度级别 悬浮粒子最大允许数静态 ≥0.5μm ≥5.0μm A 级(1) 352020B 级352029C 级3520002900D 级 3520000 29000 洁净级别 浮游菌cfu/m 3 沉降菌(φ90mm )cfu /4小时 表面微生物 接触cfu /碟(φ55m m ) 5指手套cfu /手套A 级<1<1<1<1B 级10555C 级1005025 - D 级 200 100 50- 洁净区微生物监测的动态标准 工业工程技术要求隔离装置隔离器Rabs RTP 公用工程 水系统空调系统氮气压缩 空气真空传送系统动态环境监测系统粒子监测沉降菌浮游菌

动态环境监测带来的新课题 1、大量数据的管理和分析 2、面对细菌培养阳性结果发生争执 是生产管理方面的问题? 是QC 的OOS ?3、细菌培养阳性结果的后续处理明确what where who how 革兰氏染色无法判定 无菌药品生产要求的大幅度提高 未污染 ? 无菌药品生产要求的大幅度提高 无菌药品附录: 产品的无菌或其它质量特性绝不能只依赖 于任何形式的最终处理或成品检验(包括无菌检查)。 微生物检测技术的飞跃发展 快速检测技术(不需进行培养PAT )快速鉴定技术(属种株)为无菌药品生产和质量管理提供了先进技术手段及时发现污染,追溯污染源 案例: 爱吃桔子的员工 一直难以去除的革兰氏阳性短棒状菌燃烧麦秸杆与无菌药品生产车间

微生物制药技术介绍

微生物制药技术介绍 工业微生物技术是可持续发展的一个重要支撑,是解决资源危机、生态环境危机和改造传统产业的根本技术依托。工业微生物的发展使现代生物技术渗透到包括医药、农业、能源、化工、环保等几乎所有的工业领域,并扮演着重要角色。欧美日等国已不同程度地制定了今后几十年内用生物过程取代化学过程的战略计划,可以看出工业微生物技术在未来社会发展过程中重要地位。 微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其 衍生物。(有人曾建议将动植物的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。)近年来,由于基础生命科学的发展和各种新的生物技术的应用,报道的微生物产生的除了抗感染、抗肿瘤以外的其他生物活性物质日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。但这些物质均为微生物次级代谢产物,其在生物合成机制、筛选研究程序及生产工艺等方面和抗生素都有共同的特点,但把它们通称为抗生素显然是不恰当的,于是不少学者就把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为微生物药物。微生物药物的生产技术就是微生物制药技术。可以认为包括五个方面的内容:

根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。 分离思路新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法, 快速、准确地把所需要的菌种挑选出来。实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。具体分离操作从以下几个方面展开。 定方案:首先要查阅资料,了解所需菌种的生长培养特性。 采样:有针对性地采集样品。 增殖:人为地通过控制养分或培条件,使所需菌种增殖培养后,在数量上占优势。 分离:利用分离技术得到纯种。 发酵性能测定:进行生产性能测定。这些特性包括形态、培养特征、营养要求、生理生化特性、发酵周期、产品品种和产量、耐受最高温度、生长和发酵最适温度、最适pH值、提取工艺等。 工业上生产用菌株都是经过选育过的。工业菌种的育种是运用遗传学原理和技术对某个用于特定生物技术目的的菌株进行的多方位的改造。通过改造,可使现存的优良性状强化,或去除不良性质或增加新的性状。 工业菌种育种的方法:诱变、基因转移、基因重组。

微生物检验常规鉴定技术

第一章微生物检验常规鉴定技术 课堂教学计划(1学时) 第一章微生物检验基本知识 包括显微镜、染色技术、培养基制备技术、接种、分离纯化和培养技术等。 接种、分离纯化和培养技术

一、接种 将微生物接到适于它生长繁殖的人工培养基上或活的生物体内的过程叫做接种。 1、接种工具和方法 接种和分离工具 1.接种针 2.接种环 3.接种钩 4.5.玻璃涂棒 6.接种圈 7.接种锄 8.小解剖刀 常用的接种方法有以下几种: 1)划线接种这是最常用的接种方法。即在固体培养基表面作来回直线形的移动,就可达到接种的作用。常用的接种工具有接种环,接种针等。在斜面接种和平板划线中就常用此法。 2)三点接种在研究霉菌形态时常用此法。此法即把少量的微生物接种在平板表面上,成等边三角形的三点,让它各自独立形成菌落后,来观察、研究它们的形态。除三点外,也有一点或多点进行接种的。 3)穿刺接种在保藏厌氧菌种或研究微生物的动力时常采用此法。做穿刺接种时,用的接种工具是接种针。用的培养基一般是半固体培养基。它的做法是:用接种针蘸取少量的菌种,沿半固体培养基中心向管底作直线穿刺,如某细菌具有鞭毛而能运动,则在穿刺线周围能够生长。 4)浇混接种该法是将待接的微生物先放入培养皿中,然后再倒入冷却至45°C 左右的固体培养基,迅速轻轻摇匀,这样菌液就达到稀释的目的。待平板凝固之后,置合适温度下培养,就可长出单个的微生物菌落。 5)涂布接种与浇混接种略有不同,就是先倒好平板,让其凝固,然后再将菌液倒入平板上面,迅速用涂布棒在表面作来回左右的涂布,让菌液均匀分布,就可长出单个的微生物的菌落。 6)液体接种从固体培养基中将菌洗下,倒入液体培养基中,或者从液体培养物中,用移液管将菌液接至液体培养基中,或从液体培养物中将菌液移至

溶浸-采矿

溶浸-采矿

溶浸采矿技术现状与发展趋势 姓名:汪惊奇学号:115514006 专业:采矿工程 摘要:阐述了我国金属矿产资源的三大特点:品位低、复杂难处理、中小型矿多,认为溶浸采矿技术能有效处理二次资源,提高资源综合利用率,缓解我国矿产资源紧缺的局面。主要介绍了废石堆浸、矿石堆浸、地下浸出三类溶浸采矿技术特点,并综述了溶浸技术在国内外铜、金、铀等矿山的应用情况,总结了强化溶浸过程的主要技术措施:浸矿微生物选育、强制通风、物理手段、表面活性剂、金属离子催化等,分析了目前溶浸采矿面临的四大技术问题:矿堆渗透性差、堆内溶液分布不均、堆内氧气浓度低、温度分布不均,并指出了溶浸技术在我国应用趋势及理论研究展望。 关键词:溶浸采矿;应用现状;强化技术;技术问题;发展趋势 我国矿产资源总量丰富,矿种较为齐全,但人均占有矿产资源量相对不足,铜、铁、铝等主要金属资源探明储量严重不足或短缺,我国矿产资源的显著特点是: (1)品位低。我国铁矿平均品位为33.5%,比世界平均品位低10%以上,澳大利亚、巴西等国一般在65%以上;锰矿平均品位22%,世界平均品位为48%;在全国已探明的铜资源中,平均地质品位只有0.87%,远低于智利等主要产铜国,其中品位大于2%的铜矿仅占总储量的6.4%,品位大于1%的铜矿占总储量的35.9%。 (2)复杂难处理。我国80%的有色矿床中都有共伴生元素,尤以铝、铜、铅、锌矿产为多。铜矿床中综合型共伴生矿占了72.8%,我国西部地区赋存丰富的复杂难选铜矿和含砷铜矿,铜金属量在几百万吨以上;金矿总储量中伴生金占28%;银总储量中伴生矿占60%;共伴生的汞、锑、钼则分别占到各自总储量的20%~33%,共生伴生矿因矿石组份复杂,造成选冶难度增加,加大建设投资和生产经营成本。 (3)中小型矿居多。超大型矿床少,中小型矿床多,利用成本高。迄今发现的铜矿900个矿产地,大型矿床占2.7%,中型矿床占8.9%,小型矿床多达到88.4%。在已探明的15000个矿床中,66%为小型,23%为中型,11%为大矿。此外,我国有色金属矿山在采、选过程中产生了大量的表外矿、

梅里埃全自动微生物鉴定仪参数

设备名称:全自动微生物鉴定及药敏分析系统 一、具体用途:对食品,环境中的微生物进行快速,全自动的鉴定及药物敏感性测试。 二、技术参数与性能要求: 1. 系统可同时处理》30个标本,系统具有扩容功能,至少可以两台联机; 2. 分析组件可对环境中和食品中的细菌进行全自动鉴定,种类包括革兰阴性菌、革兰阳性 球菌、革兰氏阳性杆菌、酵母样真菌、假丝酵母类真菌、苛养菌、厌氧菌及棒状杆菌等的 鉴定; 3. ★分析组件可对芽孢杆菌进行全自动鉴定; 4. ★大于500种可鉴定细菌,鉴定结果通过美国FDA认证,细菌鉴定采用GB推荐生化鉴定 显色法,药敏检测采用比浊法,并且鉴定方法原理可在GB4789中查询(提供具体细菌库); 5. ^分析组件可自动进行革兰阴性菌、革兰阳性菌、酵母样真菌、肺炎链球菌等药敏试验, 以上所有药敏试验均得到美国FDA批准用于临床应用(提供FDA证明资料); 6. ★在对标本的鉴定及药敏试验过程中,无需添加任何额外附加试剂; 7. 快速全自动对细菌进行鉴定和药敏试验,采用实时检测系统,系统每隔15分钟对试剂卡 进行一次扫描读数,一旦确认结果,可马上出报告; & ★细菌最快鉴定时间V 4个小时,平均鉴定时间不超过5小时; 9?最快药敏实验时间5小时,平均药敏实验时间不大于6小时; 10. ★系统可同时进行鉴定和药敏实验,并且可同时上机的鉴定试剂卡种类不少于4种,可 同时上机的药敏试剂卡的种类不少于6种; 11. ★系统自动填充悬浮液至试剂卡,自动密封拭卡,并自动将拭卡装载于设备内置读数系 统/孵育系统,测试结束时可自动丢弃拭卡,操作都在仪器内部自动进行,不需要额外设 备; 12. 卡片填充菌液后为封闭式卡片,不会造成污染; 13. ★鉴定卡和药敏卡必须独立包装; 14. 鉴定卡应至少提供3种不同试剂的SFDA注册证; 15. 药敏卡应至少提供5种不同试剂的SFDA注册证; 16. 测试完成后,经分析软件分析后得出结果并可自动打印报告,并保存结果; 17. 具备中文报告软件系统; 18?双向联网软件,可传输报告结果;

2020年(生物科技行业)微生物常规鉴定技术

(生物科技行业)微生物常 规鉴定技术

微生物常规鉴定技术 壹、形态结构和培养特性观察 1、微生物的形态结构观察主要是通过染色,在显微镜下对其形状、大小、排列方式、细胞结构(包括细胞壁、细胞膜、细胞核、鞭毛、芽孢等)及染色特性进行观察,直观地了解细菌在形态结构上特性,根据不同微生物在形态结构上的不同达到区别、鉴定微生物的目的。 2、细菌细胞在固体培养基表面形成的细胞群体叫菌落(colony)。不同微生物在某种培养基中生长繁殖,所形成的菌落特征有很大差异,而同壹种的细菌在壹定条件下,培养特征却有壹定稳定性。,以此能够对不同微生物加以区别鉴定。因此,微生物培养特性的观察也是微生物检验鉴别中的壹项重要内容。 1)细菌的培养特征包括以下内容:在固体培养基上,观察菌落大小、形态、颜色(色素是水溶性仍是脂溶性)、光泽度、透明度、质地、隆起形状、边缘特征及迁移性等。在液体培养中的表面生长情况(菌膜、环)混浊度及沉淀等。半固体培养基穿刺接种观察运动、扩散情况。 2)霉菌酵母菌的培养特征:大多数酵母菌没有丝状体,在固体培养基上形成的菌落和细菌的很相似,只是比细菌菌落大且厚。液体培养也和细菌相似,有均匀生长、沉淀或在液面形成菌膜。霉菌有分支的丝状体,菌丝粗长,在条件适宜的培养基里,菌丝无限伸长沿培养基表面蔓延。霉菌的基内菌丝、气生菌丝和孢子丝都常带有不同颜色,因而菌落边缘和中心,正面和背面颜色常常不同,如

青霉菌:孢子青绿色,气生菌丝无色,基内菌丝褐色。霉菌在固体培养表面形成絮状、绒毛状和蜘蛛网状菌落。 革兰氏染色: 革兰氏染色法是1884年由丹麦病理学家C.Gram所创立的。革兰氏染色法可将所有的细菌区分为革兰氏阳性菌(G+)和革兰氏阴性菌(G—)俩大类,是细菌学上最常用的鉴别染色法。 该染色法所以能将细菌分为G+菌和G—菌,是由这俩类菌的细胞壁结构和成分的不同所决定的。G—菌的细胞壁中含有较多易被乙醇溶解的类脂质,而且肽聚糖层较薄、交联度低,故用乙醇或丙酮脱色时溶解了类脂质,增加了细胞壁的通透性,使初染的结晶紫和碘的复合物易于渗出,结果细菌就被脱色,再经蕃红复染后就成红色。G+菌细胞壁中肽聚糖层厚且交联度高,类脂质含量少,经脱色剂处理后反而使肽聚糖层的孔径缩小,通透性降低,因此细菌仍保留初染时的颜色步骤: (1)涂片:涂片方法和简单染色涂片相同。 (2)晾干:和简单染色法相同。 (3)固定,和简单染色法相同 (4)结晶紫色染色:将玻片置于废液缸玻片搁架上,加适量(以盖满细菌涂面)的结晶紫染色液染色1分钟。 (5)水洗:倾去染色液,用水小心地冲洗。 (6)媒染:滴加卢哥氏碘液,媒染1min。 (7)水洗:用水洗去碘液。

微生物自动化鉴定系统的工作原理

微生物自动化鉴定系统的工作原理 微生物鉴定的自动化技术近十几年得到了快速发展。数码分类技术集数学、计算机、信息及自动化分析为一体,采用商品化和标准化的配 套鉴定和抗菌药物敏感试验卡或条板,可快速准确地对临床数百种常见分离菌进行自动分析鉴定和药敏试验。目前自动化微生物鉴定和药 敏分析系统已在世界范围内临床实验室中广泛应用。 一、微生物数码鉴定法 早在七十年代中期,一些国外公司就研究出借助生物信息编码鉴定细菌的新方法。这些技术的应用,为医学微生物检验工作 提供了一个简便、科学的细菌鉴定程序,大大提高了细菌鉴定的准确性。目前,微生物编码鉴定技术已经得到普遍应用,并早已商品化和 形成独特的不同细菌鉴定系统。如、、、和等系统。这种鉴定系统是自动化鉴定系统的基础。 ( 一)数码鉴定法基本原理 数码鉴定是指通过数学的编码技术将细菌的生化反应模式转换成数学模式,给每种细菌的反应模式赋予一组数码,建立数据库或编成检索 本。通过对未知菌进行有关生化试验并将生化反应结果转换成数字(编码),查阅检索本或数据库,得到细菌名称。其基本原理是计算并 比较数据库内每个细菌条目对系统中每个生化反应出现的频率总和。随着电脑技术的进步,这一过程已变得非常容易。 1.简要介绍计算步骤: (1)出现频率(概率)的计算:将记录成阳性或阴性结果转换成出现频率:①对阳性特征,则除以100即得。②对阴性特征,除以1

00的商被1减去即可。③说明:对“0”和“100”,因这2个数太超量,为了使结果不出现过小或过大,而用相似值0.01或0 .99值代替。 (2)在每一个分类单位中,将所有测定项目的出现频率相乘,得出总出现频率。 (3)在每个分类菌群中的所有菌的总出现频率相加,除以一个分类单位的总出现频率,乘100,即得鉴定%() (4)在每个菌群中,再按值大小顺序重新排列。将未知菌单次总发生频率除以最典型反应模式单次总发生频率,得到模式频率T 值,代表个体与总体的近似值。T值越接近1,个体与总体越接近,鉴定价值越大。按大小排序,将相邻两项的之比为R, 代表着首选条目与次选条目的差距,差距越大,价值越大。如果≥80,参考T及R值可作出鉴定。 2.在编码检索本中检索数据谱得出的结果有以下几种形式(以鉴定系统为例)。 (1)有此数码谱:①有一个或几个菌名条目及相应的鉴定值(和T值)。②对鉴定结果好坏的评价,最佳……等。 ③用小括号列出关键的生化结果及阳性百分率。④有时,鉴定结果不佳或有多条菌名条目,需进一步补充试验项目才能得出良好的鉴定结 果。⑤指出某些注意要点,需用“推测性鉴定”,并将此菌送至参考实验室;需用“血清学鉴定”,作进一步的证实等。 (2)无此数码谱:可能有以下原因:①此生化谱太不典型。②不能接受,鉴定值低(<80.0)。③可疑。需进一步确认是否 纯培养,重新鉴定,可与供应商技术服务部联系。 3. 结果解释

浸矿微生物鉴定研究进展

第16卷第9期 2007年9月 中 国 矿 业 CHINA MINING MAG AZINE  Vol.16,No.9 September 2007 浸矿微生物鉴定研究进展 陈勃伟,温建康,刘文彦 (北京有色金属研究总院生物冶金国家工程实验室,北京100088) 摘 要:为了探明浸矿过程中微生物的组成,通过比较浸矿微生物鉴定的常规方法、免疫学方法和分子生物学方法的优缺点,并参考研究现状,指出利用现代分子生态学的方法可快速鉴定浸矿微生物,多种方法组合使用可获得更加全面的浸矿微生物组成演替信息。 关键词:浸矿微生物;生物冶金;分子生物学方法;免疫学方法 中图分类号:TF111131+1 文献标识码:A 文章编号:1004-4051(2007)09-0103-04 Progress in identif ication of bioleaching microorganisms CH EN Bo 2wei ,WEN Jian 2kang ,L IU Wen 2yan (National Engineering Laboratory of Biohydrometallurgy ,G eneral Research Institute for Nonferrous Metals ,Beijing 100088,China ) Abstract :In order to explore the composition of microorganisms in the bioleaching process ,in terms of present research situation ,advantages and disadvantages of conventional methods 、immunological methods and molecular biological methods for identification of bioleaching microorganisms is compared 1It is pointed out that the use of modern molecular ecological methods can quickly identify bioleaching microorganisms ,while the integration of several methods can get more comprehensive information about constitution and suc 2cession of bioleaching microorganisms 1 K ey w ords :bioleaching microorganisms ;biohydrometallurgy ;molecular biological methods ;immuno 2 logical methods 收稿日期:2007-05-11 基金项目:“973”课题(2004CB619205)资助项目 作者简介:陈勃伟(1984-),男,汉,陕西乾人,硕士研究生,主要研究方向为生物冶金。 随着我国矿产资源的不断开发利用,富矿资源日趋贫乏,以贫、细、杂为突出特点的难选冶矿石,所占比例不断上升,致使常规的选冶方法,在技术和经济两方面都面临严峻的挑战。对于铜、金、铀等金属需求量的不断增加以及成本的节约化,促使冶金技术的不断进步,由此产生了生物冶金技术。生物冶金技术具有工艺简单、流程短、装备简单、投资小、成本低、污染轻、资源消耗量小以及能够处理低品位矿等诸多优点,适合社会可持续发展的要求,因此,生物冶金技术的开发研究,己经成为矿产资源利用领域的前沿研究课题。随着生物冶金技术研究的不断深入,学者对在生物浸矿体系中起关键作用的浸矿微生物的研究越来越多。本文将对浸矿微生物鉴定的常用方法进行综述,为 浸矿微生物的鉴定提供一定的参考,以便能更好的利用生物冶金技术。1 常规方法 微生物鉴定的常规方法,是指通过纯培养,获得纯菌株后,将测定的细胞的形态学、生理学、生态学的各种指标,与权威性的菌种鉴定手册比较,获得菌种的分类信息〔1〕。早期的鉴定,就是通过此方法进行的,但是,这种方法需要的时间长,而且有些浸矿微生物难以获得纯培养。Johnson 〔2〕曾通过平板培养的方式,发现有机物对专性自养菌 A ci dit hiobacill us f erroox i dans 有毒害作用,导致 它很难在固体琼脂培养基上生长,但通过夹层培养或引入异养菌A ci di p hil um ,可获得纯的A t 1f er 2 roox i dans 。由此可以推断,早期获得的纯的A t 1f erroox i dans ,有可能是A t 1f erroox i d ans 和A ci 2di p hil um 的混合菌株。 2 免疫学方法211 免疫荧光法

微生物浸矿菌群的选育及培养

2013年第1期广东化工 第40卷总第243期https://www.360docs.net/doc/3a18094379.html, · 65 · 微生物浸矿菌群的选育及培养 彭阳,严国俊 (东华理工大学,江西抚州 344000) [摘要]微生物浸矿技术是以湿法冶金和微生物学为基础的一门交叉学科,具有环境友好,反应温和,流程短,能耗低的优势。但是由于在使用微生物浸矿时菌群易受到特殊毒害因素或环境条件的影响,从而降低矿石的浸出率。因此在微生物浸矿技术中,针对性菌群的选育及培养技术占据了比较重要的地位。文章对浸矿菌群的选育及培养的方法进行了综合性地介绍和评述。 [关键词]浸矿微生物;选育;培养 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2013)01-0065-02 Breeding and Culture of Microbial Leaching Microflora Peng Yang, Yan Guojun (East China Institute of Technology, Fuzhou 344000, China) Abstract: Microbial leaching technology is an interdisciplinary based on hydrometallurgy and microbiology with advantages of environment-friendly, mild reaction short process, and low power consumption. However, the leaching rate of the ore is reduced because the microbial leaching microflora is susceptible to the influence of special poison factors or environmental conditions. Therefore in microbial leaching technology, the breeding and culture of targeted microflora technology occupy a more important position. The paper comprehensely introduced the breeding and culture of leaching microflora. Keywords: bioleaching microorganisms;breeding;culture 微生物浸矿技术是利用细菌或其代谢产物所引起的生物化学氧化过程对矿物进行的生物化学氧化等化学作用并从矿石中溶浸目的矿物的过程。该技术反应温和,环境友好,能耗低,流程短。在矿石的日益贫杂及环境问题日益突出的今天,微生物浸矿技术将是金属元素提取、环境保护及废物利用的有效手段。由于很多矿石中含有某些特殊元素,如氟、砷、钼等元素,在用微生物浸矿技术时菌群易受到毒害影响从而降低矿石的浸出率,因此在微生物浸矿技术中,针对性菌群的选育及培养技术占据了比较重要的地位。 1 浸矿细菌的选育 浸矿细菌的的常见选育方法主要包括菌种的筛选、驯化、诱变和基因工程等。 1.1 浸矿细菌菌种的筛选 目前在浸矿过程中使用的菌种约有二十几种,但其中直接有效用于浸出的仅有数种,其它多为伴生种,起促进作用。将这些菌种按温度划分,可分为中温菌种(mosophiles,温度为20~35 ℃),如嗜硫杆菌(Thiobacillus)和微螺旋菌(Leptospirillum);中等嗜高温菌种(mederate thermophiles,温度为40~55 ℃),如硫杆菌(Sulfobacillus);高温菌种(thermophiles,温度为55 ℃以上),如硫化裂片菌属(Sulfolobus)[1]。对于低品位硫化矿生物堆浸,由于含硫量极少,氧化能少,堆温低,因而中温菌种更有效;而对于高品位硫化精矿的生物槽浸,由于含硫量大,氧化能大,温度高,适于用嗜高温菌种[2]。目前,人们所开发的天然菌种仅约占微生物种类总量的5 %,因此,有望通过广泛筛选,获得更多更高效的菌种。 1.2 浸矿细菌的驯化 浸矿细菌在投入生产使用之前要进行驯化,使之适应浸矿过程中可能对细菌不利的工艺条件或对细菌具有毒害作用的物质成分。对于高氟铀矿来说,有害的物质成分主要是氟,对于难浸出金精矿的细菌氧化工艺,不利于细菌生长的因素是矿浆的含固量和溶解的砷等物质。细菌驯化的办法是逐渐提高不利因素的强度之后对细菌进行转移培养,在驯化过程中,那些对新环境不适应的细菌受到抑制被淘汰掉,而某些活力较强的细菌会通过变异等途径,转变成耐受性较强的细菌而存活下来,形成对新环境具有耐性的菌株。 比如培养细菌耐氟能力的方法是:首先在装有一定体积培养基的锥心瓶中加入较低浓度的氟离子,然后接种要驯化的菌进行培养,开始是菌不适应,要较长时间才能生长繁殖,待细菌适应了此浓度的含氟离子培养基后,再将它转移到含更高氟离子浓度的培养基中继续培养,使用目的矿物不断转代培养或增加有毒离子的转代培养。刘亚洁等报道[3]氧化亚铁硫杆菌经过较高浓度含氟离子培养基长时间培养驯化后,筛选到的菌株可在含氟1148 g/L的溶浸液中一昼夜即可将5 g/L Fe2 +完全氧化。吴为荣等报道[4]对T.t进行耐氟驯化试验经过多代接种驯化后,T.t的耐氟能力得到明显提高。王清良等[5]报道采用经过初步驯化的细菌进行了细菌耐酸耐氟驯化培养试验,经驯化的细菌的耐酸浓度由30 g/L提高到80 g/L,耐氟浓度由100 mg/L提高到850 mg/L。 细菌对矿浆含固量的驯化也可采用类似的方法。吴为荣等报导[6]的氧化硫硫杆菌对721矿铀矿石的适应性驯化中,经过15代驯化培养,细菌的耐氟能力达到350 mg/L,固液比可达1∶3。1.3 浸矿细菌的诱变育种 诱变育种利用自然突变原理,通过使用诱变剂人为地提高生物的突变频率,并对人们所需性状的正突变个体加以选择和利用。对于浸矿细菌来说,大多突变研究仅限于为了选择一些有特性的菌株,或基因工程育种的原始材料,或为该菌的分子遗传学积累基本知识。利用物理或化学的因素(如紫外线、亚硝基胍、微波等诱变剂) 处理微生物群体,促使少数个体细胞的遗传物质(主要是DNA) 的分子结构发生改变,使基因内部的碱基配对发生差错,从而引起微生物的遗传性状发生突变[7]。根据应用的要求,可以从突变株中筛选出某些具有优良性状的菌株供科研和生产使用。一般育种程序包括菌株的选择、菌悬液的制备、诱变处理和变异株的筛选。目前在育种实践中应用较多的诱变剂有紫外线、微波、氮芥、乙基磺酸乙脂、N —甲基—N —硝基—N —亚硝基胍和N —甲基—N—亚硝基脲,后两种的诱变效果最好。在处理方法上,往往将许多诱变剂同时使用,或一种诱变剂多次重复使用[8-9]。目前这方面的报道较多,采用的诱变手段各异,均取得较好效果。如徐晓军等报道了[10]经紫外线诱变的浸矿细菌对黄铜矿的浸出率比原始菌提高了46 %以上,到达浸出终点的时间也缩短了5~10 天。李广悦等[11]以氧化亚铁硫杆菌作为出发菌,经紫外线诱变,考察不同诱变时间对氧化亚铁硫杆菌耐酸和耐氟性能的影响。试验结果表明,经45~60 min的紫外线处理,菌株对酸的耐受性增强到pH为1.2,对氟离子的耐受性达到0.6 g/L。 1.4 浸矿细菌的基因工程育种 来源不同的氧化亚铁硫杆菌菌株对于金属硫化矿物的浸出效果是不一样的,说明氧化亚铁硫杆菌具有复杂的遗传特性。对氧化亚铁硫杆菌进行基因工程改良的研究己见较多报导,是今后浸矿细菌育种的一个重要方向。但目前为止,国内外所有工作都是自养菌基因工程的前期探索。其主要原因是研究这些自养菌困难程度很大:没有足够的可供筛选的带遗传标志的菌株材料;难以转化和表达外源的DNA--氧化亚铁硫杆菌基因能在大肠杆菌中表达(Homesetal,1983;Rawingseta,1983),而重组子返回来却难在氧化亚铁硫杆菌中表达(Homes et al,1984;Rawingsetal,1984);在传代过程中易丢失其性能;可供能量的基质有限,难以固体培养[12]。在这方面,南华大学的潘文俊通过分子生物学技术,克隆抗氟基因flr-4,将其导入T.f1中,以期获得稳定遗传的抗氟基因工程菌。最终构建了pJRD215-fir-4表达载体,通过接合转移将载体 [收稿日期] 2012-11-25 [作者简介] 彭阳(1987-),女,平度人,硕士研究生,主要研究方向为溶浸水文地质。

微生物的鉴定方法总结2020

微生物的鉴定方法总结2020 微生物鉴定技术新技术新方法 32、1 细胞壁组分分析 32、2 红外光谱IR 32、3 气相色谱GC 42、4 高效液相色谱HPLC 42、5 质谱分析MS43 微生物鉴别方法传统方法在传统的分类鉴定中,微生物分类鉴定的主要依据是形态学特征、生理生化反应特征、生态学特征以及血清学反应、对噬菌体的敏感性等。在鉴定时,我们把这些依据作为鉴定项目,进行一系列的观察和鉴定工作。 1、1 细菌微菌落技术细菌的形态、大小、颜色及其它特征与细菌的基本生物学特性如代谢类型、分裂方式、繁殖速度等有密切关系。肉眼所见菌落,即大菌落是由大量的菌体紧密堆积而成,有不少生物学特性不能辨别;微菌落则是指细菌生长繁殖早期在固相载体上形成的只能借助显微镜进行观察的细菌集落。与大菌落相比,微菌落边缘及中央有明显不同的表形特征。可据此对微生物的种类进行鉴定。缺点:受操作人员主观性影响大。(1)细胞形态在显微镜下观察细胞外形大小、形状、排列等,细胞构造,革兰氏染色反应,能否运动、鞭毛着生部位和数目,有无芽孢和荚膜、芽孢的大小和位置,放线菌和真菌的繁殖器官

的形状、构造,孢子的数目、形状、大小、颜色和表面特征等。(2)群体形态群体形态通常是指以下情况的特征:在一定的固体培养基上生长的菌落特征,包括外形、大小、光泽、黏稠度、透明度、边缘、隆起情况、正反面颜色、质地、气味、是否分泌水溶性色素等;在一定的斜面培养基上生长的菌苔特征,包括生长程度、形状、边缘、隆起、颜色等;在半固体培养基上经穿刺接种后的生长情况;在液体培养基中生长情况,包括是否产生菌膜,均匀浑浊还是发生沉淀,有无气泡,培养基的颜色等。如是酵母菌,还要注意是成醭状、环状还是岛状。 1、2 生理生化反应特征(1)利用物质的能力包括对各种碳源利用的能力(能否以CO2为唯一碳源、各种糖类的利用情况等)、对各种氮源的利用能力(能否固氮、硝酸盐和铵盐利用情况等)、能源的要求(光能还是化能、氧化无机物还是氧化有机物等)、对生长因子的要求(是否需要生长因子以及需要什么生长因子等)。(2)代谢产物的特殊性这方面的鉴定项目非常多,如是否产生H2S、吲哚、CO 2、醇、有机酸,能否还原硝酸盐,能否使牛奶凝固、冻化等。(3)与温度和氧气的关系测出适合某种微生物生长的温度范围以及它的最适生长温度、最低生长温度和最高生长温度。对氧气的关系,看它是好氧、微量好氧、兼性好氧、耐氧还是专性厌氧。

9204 微生物鉴定指导原则

9204
微生物鉴定指导原则
本指导原则为非无菌产品微生物限度控制菌检查中疑似菌的鉴定, 以及药物 原料、辅料、制药用水、生产环境、中间体和终产品中检出微生物的鉴定提供指 导。当微生物的鉴定结果有争议时,以《伯杰氏系统细菌学手册》 (《Bergey, s Manual of Systematic Bacteriology》)现行版的鉴定结果为准。 微生物鉴定是指借助现有的分类系统,通过对未知微生物的特征测定,对其 进行细菌、酵母菌和霉菌大类的区分,或属、种及菌株水平确定的过程,它是药 品微生物检验中的重要环节, 药典附录相应章节中对检出微生物的鉴定做了明确 规定,如“非无菌产品的微生物检查:控制菌检查” (通则 1106)中选择培养 基或指示培养基上发现的疑似菌落需进行鉴定; 对“无菌检查法” (通则 1101) 的阳性实验结果中分离的微生物进行鉴定,以判定试验是否重试;药品洁净实验 室微生物监测和控制指导原则(通则 9203)建议对洁净室和其他受控环境分离 到的微生物进行鉴定,以掌握环境微生物污染情况,有助于污染调查。此外,在 药品生产中,有时亦需对药物原料、辅料、制药用水、生产环境、中间产物和终 产品中检出的微生物进行适当水平的鉴定。 微生物鉴定需达到的水平视情况而定,包括种、属鉴定和菌株分型。大多数 非无菌药品生产过程和部分无菌生产环境的风险评估中, 对所检出微生物的常规 特征包括菌落形态学、细胞形态学(杆状、球状、细胞群、孢子形成模式等)、革 兰染色或其它染色法,某些能够给出鉴定结论的关键生化反应(如氧化酶、过氧 化氢酶和凝固酶反应)进行分析,一般即可满足需要;非无菌药品产品的控制菌 检查应达到种的水平;无菌试验结果阳性和无菌生产模拟工艺(如培养基灌装) 失败时,对检出的微生物鉴定一般需达到菌株水平。 一、微生物的鉴定程序 微生物鉴定的基本程序包括分离纯化和鉴定,鉴定时,一般先将待检菌进行 初步的分类。鉴定的方法有表型微生物鉴定和基因型微生物鉴定,根据所需达到 的鉴定水平选择鉴定方法。微生物鉴定系统是基于不同的分析方法,其局限性与 方法和数据库的局限性息息相关, 未知菌鉴定时通过与微生物鉴定系统中的标准 微生物(模式菌株)的特征(基因型和/或表型)相匹配来完成。如果数据库中没 有此模式菌株,就无法获得正确的鉴定结果。在日常的微生物鉴定试验中,用户
1

浸矿微生物选育及鉴定

题目: 浸矿微生物的选育及鉴定 浸矿微生物的选育及鉴定 摘要 本综述结合当今生物冶金的研究现状,介绍了国内外浸矿微生物的选育方法,及应用各种技术对各种浸矿微生物进行鉴定和群落结构分析,这些方法的应用对生物冶金领域的研究及生产实践具有重要意义。

关键词:浸矿微生物选育鉴定 随着我国矿产资源的不断开发利用,富矿资源日趋贫乏,以贫、细、杂为突出特点的难选冶矿石,所占比例不断上升,致使常规的选冶方法,在技术和经济两方面都面临严峻的挑战。对于铜、金、铀等金属需求量的不断增加以及成本的节约化,促使冶金技术的不断进步,由此产生了生物冶金技术。生物冶金技术具有工艺简单、流程短、装备简单、投资小、成本低、污染轻、资源消耗量小以及能够理低品位矿等诸多优点,适合社会可持续发展的要求,因此,生物冶金技术的开发研究,己经成为矿产资源利用领域的前沿研究课题。随着生物冶金技术研究的不断深入,学者对在生物浸矿体系中起关键作用的浸矿微生物的研究越来越多。本文将对浸矿微生物的选育和鉴定技术进行综述,为浸矿微生物的研究提供一定的参考,以便能更好的利用生物冶金技术。 1 浸矿微生物 浸矿微生物是可以直接或间接地参与金属硫化矿或氧化物的氧化和溶解过程的微生物。细菌对矿物分离的作用主要来源于:1)微生物代谢的分泌物对目标矿物的选择性吸附、中和、氧化还原等作用;2)微生物选择性地将目标矿物成分吸收进入代谢环节,然后以另外一种形态或价态将矿物成分释放于环境中;3)微生物本身对目标矿物的选择性吸附、中和等作用;4)微生物分泌物及代谢过程对目标矿物复杂的吸附、氧化还原等物化作用。 根据温度范围,在生物冶金过程中起作用的浸矿菌主要可分为以下3类:(1)嗜中温细菌(Mesophile)。最佳生长温度30~45℃,主要包括Thiobadllus ferrooxidans,Thiobadllas thiooxidans,Leptospirillum ferrooxidans。(2)中等嗜热细菌(Moderate thermophile)。最佳生长温度45~ 55℃,主要有Sulfobacillus菌属;已鉴定的有Acidimicrobium ferrooxidans,Sulfobacillus thermosulfidooxidans,Sulfobacillus acidophilus。 (3).高温嗜热菌(Extreme thermophile)。最佳生长温度60~ 85℃,包括Sulfolobus:60~ 70℃;Sulfolobus likearchaea:65~ 85C。 其中,嗜中温菌和中等嗜热菌已成功应用于硫化矿的生物氧化中,在低于45℃时以嗜中温菌为主;在45~ 60℃范围内,以中等嗜热细菌为主;在40~45℃的范围内可能有些重叠。高温嗜热细菌在实验室已进行了扩大试验,但还未进行大规模的工业应用。 2. 浸矿微生物选育的意义与方法 2.1 选育的意义 菌种选育包括选种和育种。选种即根据微生物的特性,应用各种筛选方法从自然界和生产中选择需要的菌种;育种即进一步提高已有菌种的某种性能,使其更符合需要,一般通过诱变和杂交来实现。变异菌株中通常只有少数在某些性能方面比初始菌株有所提高,育种工作中也存在选种问题,选出的新菌种有待通过

相关文档
最新文档