注塑概述

注塑概述
注塑概述

注塑概述

塑料制品的质量取决于原料的选择和加工条件,塑料的成型加工是控制制品结构和性能的中心环节,其任务是:了解原料的加工特性,确定最适宜的加工条件,制备最佳性能的产品。它是一门学科交叉,科学与工程紧密结合的学科,内容涉及化学、物理、力学、机械、数理逻辑、计算机等多学科。

注塑是一种以高压高速将塑料熔体注入闭合的模具型腔内,经冷却定型后,得到和模具型腔一致的塑料制品的一种成型方法。因此,注塑的必要条件为:一是塑料必须是以熔体的状态进入模腔;二是塑料熔体必须具有足够的压力和流速,以保证能及时充满模腔。所以注塑机必须具备塑化、注射、和成型三个基本职能。.

注塑机分类:

以螺杆的形式分为:螺杆式和注塞式两大类。

以机体外形可分为:立式、卧式、多角式、转盘式等。

以注射塑料类别分:热塑性注塑机和热固性塑料注塑机。

注塑原理

注塑中的塑化过程是将固体状的塑料颗粒或粉料经过加热、压实、混炼,从而使之转变为均化的粘流态的过程。所谓均化是指将熔体混合,使之温度达到均匀分布,并使塑料熔体具有均匀的密度、粘度和组分。

塑化过程中热能的来源有三种方式:

1.热从外部导入:如电热,塑料靠自身导热性进行传递。

精密注塑成型段安明

2.螺杆转动时的摩擦力所产生的功转化热量:剪切热和摩擦热3.靠摩擦及剪切所消耗的机械功转化而来的热能。

在塑化过程中,影响塑化质量的主要因素来自三个方面:塑化过程的

工艺参数,如料筒加热温度、注射量、计量时间、螺杆转速、背压等;与塑料物理性能、热性能和流变性能有关的参数:如比热容、热导率、比体积、熔点、粘度等;与机器结构的关的参数:如料筒厚度、柱塞式注塑机的分流梭结构、螺杆的几何尺寸等。

螺杆式塑化过程

熔体在螺杆的转动作用下被推至螺杆头部并储存在料筒前端(即存料区),存料区中的熔体具有一定的压力,熔体压力作用于螺杆上推动螺杆往后退,螺杆能否后退及后退速度的大小取决于后退时要克服的各种阻力的大小,如摩擦力、背压等。

改变螺杆的背压,也就改变了螺杆头部的熔体压力,塑化情况得到了相应的调整。当背压增加时,熔料在螺槽内的倒流增加,这样便增加了塑化时间,同时由剪切产生的热量也相应增加。所以提高背压,可以改善熔料的均化程度,但相应的熔料温度会提高,而螺杆的输送能力则下降。

按照塑料在螺杆中所处的不同状态,注射螺杆可分为三段:

加料段;熔融段;计量段。

注射螺杆的塑化能力随螺杆有效工作长度的缩短而下降,同时塑化了的熔体温度沿螺杆轴向长度上分布是不均匀的。

注塑螺杆在周期性的工作中,其塑化过程包括两个阶段:转动塑化阶

段和螺杆静止阶段。

精密注塑成型段安明

实际注塑中,若要强调背压调节作用,则不宜选用计量段螺槽深度大的螺杆,否则塑化时螺杆难以后退。

注塑过程

熔料能否充满模腔,主要取决于注射压力、注射速率、熔料温度、模具温度、浇口及喷咀的形状与尺寸等因素。在其它工艺条件一定的情况下,熔料所能流过的路程长短,主要取决于熔料的压力和流动速度。流动速度越快,注射压力越高熔料流经路程越长。

1.熔料在喷咀区中的流动

熔料流经喷咀时其压力会下降,而温度则会升高。在注塑中,熔体的注射压力取决于熔体的温度和流经喷咀的速率。若当喷咀直径和剪切速率一定的情况下,利用熔体温度来确定喷咀压力可以求得各种材料的成型加工温度范围。实验结果证明:采用高于分解温度和低于最低注射温度的温度进行注射,将会破坏注塑条件的稳定性,在温度低于最低注射温度时,温度的微量变化都会引起很大的压力波动,从而使充模条件改变,使制品的性能下降。

2.熔体在模腔中的流动

成型制品的质量与熔料在注射充模时的状态有密切的联系,模腔压力则是描述熔料流动及状态变化的重要参数。根据注射过程中模腔压力的变化情况把注射过程分为如下五个阶段:

A.充模阶段

B.压实阶段

C.保压阶段

精密注塑成型段安明

精密注塑成型段安明D . 倒流阶段 E . 冷却阶段

(1).充模过程:充模过程是指熔体从浇口进入模腔时至模腔被充满时为止。如果浇口位置设置在制品厚度的中心线上,并且浇口尺寸很小,在充模速度很高的情况下,模腔内将会出现不稳定的射流流动。当浇口尺寸比制品厚度略小,这时射流就不易形成。如下图示:

1.高速时 2.中速时

3.低速转高速时

4.低速时 ( 不同充模速率的充模情况与制品射流关系)

根据前沿面形状及运动特性的不同,将充模流动过程划分为浇口区、充分发展区和前沿区。

(矩形模腔内的充模流动)

浇口区:最终使熔体流动前沿由圆弧形向直线形过渡。

充分发展区:充分发展区的流动性质决定了充模时间、制品芯层的取向以及是否产生欠注(缺胶)。

前沿区:前沿区的流动性质决定着制品的机械性能(取向和内应力)、表面质量及熔接线的性质。

研究表明:提高熔体温度,减少注射速率、增大模腔厚度,能提高模腔中压力分布的均匀性,模腔内制品的密度随注射压力的增大而增大、随熔体温度与模具温度的增加而降低。

(2).保压阶段

保压阶段是指模腔压力出现最大点开始至浇口点封闭点止。在保压阶段,模腔内物料在模壁的冷却作用下产生收缩,在保压压力的作用下,少量的熔体进入模腔内以填补收缩空间,使模腔内的制品密度增大,这一补料过程熔体的流动速度远远小于充模阶段和压实阶段的流动速度。在模具浇口封闭前,保压压力的作用一直持续至浇口封闭,则这一过程为增密过程;若保压压力的作用时间提前结束,则会发生倒流现象,使模腔内制品密度减小,从而使制品发生缩孔等缺陷。所以保压压力的大小,保压时间的长短及多级保压形式等,对模腔的压力历程及其变化影响很大,也影响着产品的质量。

模腔压力随着模具温度的升高而上升,随模具温度的降低而下降。当

模温较高时冷却速度就慢,熔体压力传递得到改善,从而反映较高的模腔精密注塑成型段安明

压力。在保压阶段,由于模腔压力的作用,模腔中平均密度随时间的增加而增大,当时间接近浇口封闭时间时,平均密度的增加速度变慢,因为在这一时间段,浇口快要封闭,熔料的补料比较困难。

4.倒流阶段

如果保压时间比浇口封闭时间短,则此时模腔的高压熔体会发生倒流,熔体发生倒流使模腔内熔胶量减少,平均密度下降,倒流持久至浇口封闭为止,这时成品的密度低,容易产生缩孔或收缩变形而影响制品的表面质量和机械性能,所以实际生产中要控制倒流现象。

5.冷却阶段

冷却阶段是指浇口封闭时刻至开始至模腔压力为零时止。

在恒定质量、恒定模腔容积下压力自然释放的冷却收缩过程。一方面在模壁的冷却作用下,模腔内各层物料的温度随时间的增加而降低,比容逐渐缩小即密度变大。另一方面,由于比容的变化而引起压力的处自然释放,导致模腔压力下降。当模温低时,表明冷却速度加快,物料的收缩也加快。零模腔压力时间也相对提前。

开模顶出是冷却阶段结束的标志,开模顶出时间是注塑机生产效率的关键因素之一,同时对制品顶出后的后续变形和尺寸稳定性有着重要的影响。所以对非结晶型材料,确定开模顶出制品的时间应同时满足两个条件:压力条件和温度条件。

精密注塑成型段安明

注塑用材料

塑料的成形工艺性及在注塑中的影响因素

一、热塑性塑料的成型工艺性及在注塑中的影响因素

热塑性塑料是指在一定温度范围内可软化至熔融流动,冷却后固化定形,再加热又能软化熔融、再固化定形,可反复这样进行的材料。塑料的工艺性能对正确设计注塑制品结构、尺寸、确保制品品质有重要的意义。

1.热塑性塑料的流动性

注塑料在一定温度与压力作用下,能够充满模具型腔各部分的性能称为流动性。测量流动性的方法有三种:一是用流变仪测量其粘度,以粘度来定性其流动必性;二是以流动速率试验法来表征流动性;三是螺旋线的流动长度来测量流动性。

注塑料必须有一定的流动性,流动性太差则难以充模,流动性太好则容易在充模时产生飞边。还可能浪费材料,出现粘模现象等。影响塑料流动性的因素有:聚合物的性质、注塑工艺条件、和模具结构等。

A.随分子量的增加,树脂的流动性大大降低。

B.机筒的温度越高,聚合物的流动性越好,但要防止物料分解。

C.注射压力越大,试样的流动性越好。随压力的逐渐增大,流动性的增加会逐渐减小。因为冷却程度增加,熔体粘度增加。

D.模具温度对流动性的影响较大,模具温度高时,流动性会相

对增加,如所加工的塑料粘度对温度较敏感无法通过提高熔精密注塑成型段安明

料温度来满足流动性的话,可以提高模具温度来解决。

2.热塑性塑料的结晶性

塑料在成形过程中的结晶度和结晶速度取决于其本身结构和成形工艺条件,从工艺上考虑主要有冷却速度和剪切作用。冷却速度高,结晶时间缩短,结晶度低;浇口附近温度高,受热时间长,结晶度高,而远离浇口处结晶度低。熔体压力高,浇口尺寸小,提高剪切作用,加速结晶过程。

3.热塑性塑料的取向性

在注射过程中,受压力和剪切作用的影响,大分子物质容易发生取向,取向不仅可导致流动中的熔体粘度降低,还可引起注塑制品的各项异性。影响取向的因素主要有注射的工艺条件、浇口尺寸、制品尺寸等。

A.随着熔体温度的增加,分子布朗运动加剧,解取向作用加大,取向降低。

B.提高注射压力可增加剪切作用,使取向程度提高,

C.慢速充模会延长流动时间,加快冷却速度,增加剪切力,制品中心取向水平提高。对于制品表面,充模快时也可得

到较大取向。

D.模具温度高,熔体冷却慢,取向水平低。

E.浇口尺寸大时,浇口封闭时间长,制品松驰时间短,取向水平高,若提高熔体温度会使取向降低。浇口尺寸小,取

向较低。

F.制品厚度越大,取向水平越低。

精密注塑成型段安明

4.热塑性塑料的成形收缩率

注塑料的收缩率是指:制品在成形温度下的尺寸与制品在室温下的尺寸

差。结晶塑料的收缩率一般为 1.2-4%,非结晶塑料制品的收缩率为0.3-1.0%.。

(1)收缩机理

A.热收缩:物料的热胀冷缩,提高模具温度有利于减小收缩成形,但模温提高导致材料的温度提高,加上成形材料的经膨

胀系数远大于模具材料的线膨胀系数,这样成形收缩反而会

增加。故注塑时不宜使用太高模温。

B.相变收缩:结晶型塑料在定型过程中伴随着大分子的结晶化,比容减小而引起的收缩称相变收缩。结晶度越高,收缩

率越大。

C.取向收缩:物料在一定温度和压力条件下注入模腔,分子会在流动方向上取向,同时大分子有恢复卷曲的趋势,因而在

取向方向上产生收缩。制品厚度越大,模腔内压力梯度也就

越大,取向收缩也就越大。

D.压缩收缩与弹性恢复:塑料有一定压缩性,在一定压力下,比容会发生一定变化而收缩,成型材料还具有弹性恢复作

用,脱出模腔时,制品体积因弹性恢复而减小收缩。

(2)收缩过程

注塑过程收缩分三个阶段:一是浇口背凝固以前,这时熔体温度不断

降低而密度不断提高,这时保压时间越长、保压压力越大,制品的收缩率精密注塑成型段安明

越低;第二阶段是从浇口凝固开始到开始脱模,这一阶段模温越低、冷却

速度越快,收缩率也就越低;第三阶段是从脱模开始到使用时期的收缩,又叫后收缩。

(3)影响收缩的因素

影响制品收缩的主要因素有注射工艺参数、制品结构、模具结构、塑料性能等。在注射工艺方面,其它条件相同的情况下,注射压力增大,收缩率减小;熔体温度提高、模具温度提高,收缩率增大。注射速度提高,收缩率减小。在制品结构方面,厚壁制品比薄壁制品收缩率大,带嵌件比不带嵌件的制品收缩率大,内孔收缩率大,外形收缩率小。

模具结构方面,浇口尺寸大,收缩率小;远离浇口比近离浇口收缩率小。在塑料性能方面,结晶塑料收缩率大,无定型塑料收缩率小。流动性好的塑料收缩率小,加入填料,塑料的收缩率明显下降。

5.热塑性塑料的热稳定性

塑料的热稳定性是指塑料受热时性能发生变化的程度,如:变色、降解等。塑料的降解在下列条件下发生:高温加热、长时间加热、熔体通过喷嘴、流道时受到高剪切应力作用、氧化或水解。这取决于塑料结构及分解温度范围的大小。

6.塑料的吸湿性

吸湿性是指塑料对水的亲疏程度。根据这种程度可将塑料分成两大娄:一类是吸湿性的塑料,如:PA 、PC、PPO、ABS、PET、另一类是吸湿性很小的塑料,如:PP、PS 、等。如果水份超过一定限度,成型

前必须干燥处理。

精密注塑成型段安明

注塑成型技术系统培训教材注塑概述与注塑用材料SANSEI精密注塑成型- 11 - 段安明

SANSEI精密注塑成型- 12 - 段安明

SANSEI精密注塑成型- 13 - 段安明

SANSEI精密注塑成型- 14 - 段安明

薄壁注塑成型技术的研究进展

薄壁注塑成型技术的研究进展 摘要:由于3C产品向轻、薄、短、小方向发展得越来越快,所以薄壁注塑成型技术也受到人们的高度重视,而薄壁注塑成型数值模拟技术是薄壁注塑成型技术得以应用的重要保证。本文介绍了薄壁注塑成型技术产生的背景和科学意义,综述了薄壁注塑成型中的制品设计、模具设计、注塑机和材料选用以及薄壁注塑成型数值模拟技术的研究与应用概况,探讨了薄壁注塑成型数值模拟技术发展中所面临的一些关键问题,指出了薄壁注塑成型数值模拟技术的研究发展方向。关键词:薄壁注塑成型;模具设计;数值模拟;流长厚度比;冷凝层。近年来,笔记本电脑和移动电话等3C(Computer, Communication and Consumer)产品更新换代的速度非常快,这类产品的设计理念正朝着“轻、薄、短、小”方向发展,同时人们对这些产品的需求也在快速增长,于是在常规注塑成型(Conventional Injection Molding, CIM)技术的基础上,薄壁注塑成型(Thin-Wall Injection Molding , TWIM)技术迅速发展起来。薄壁化因具有减小产品重量及外形尺寸、便于集成设计及装配、缩短生产周期、节约材料和降低成本等优点成为塑料消费行业追求的目标,已成为塑料成型行业中新的研究热点。薄壁注塑成型技术是一种仅有十几年发展历史的新兴技术,其理论体系尚未形成,缺少系统性的研究,而薄壁注塑成型数值模拟研究也只是近几年才提出的,还有许多理论上和实践中的问题尚待解决。薄壁注塑成型技术的概念目前关于薄壁注塑成型还没有统一的定义,Mahishi 和Maloney把其定义为流长厚度比L/T(L:Length,流动长度;T:Thickness,塑件厚度;L/T也简称为流长比)在100或者150以上的注塑为薄壁注塑;而Whetten和Fasset是这样定义薄壁注塑成型的:所成型塑件的厚度小于1mm,同时塑件的投影面积在50cm2以上的注塑成型。由此可见要给出一个统一的定义还是比较困难的;同时随着技术的发展,薄壁注塑成型定义的临界值也将发生变化,它应该是一个相对的概念。常规注塑成型工艺已为人们所熟悉,但薄壁注塑成型则不然,因为随着壁厚的减薄,聚合物熔体在型腔中的冷却速度加剧,在很短的时间内就会固化,这使得成型过程变得复杂,成型难度加大,常规的注塑成型工艺条件已不能满足需要。常规注塑成型的一个不足就是填充过程和冷却过程往往是交织在一起的,但由于常规塑件的尺寸比较大,所以对成型过程影响不大,但在薄壁注塑成型中这个不足就成为致命的问题。所以,不能把常规注塑成型中的理论和操作简单地照搬到薄壁注塑成型中去。薄壁注塑成型中的制品设计、模具设计、注塑机及材料选用薄壁制品的设计思想和方法更为复杂,并进一步受到成型局限及材料选择的影响。薄壁制品要求应该具有高的冲击强度、良好的外观质量和尺寸稳定性,并能承受大的静态载荷,成型材料的流动性要好。设计过程中要重点考虑制品的刚性、抗冲击性和可制造性。成型薄壁制品时一般需要专门设计的薄壁制品专用模具。与常规制品的标准化模具相比,薄壁制品的模具从模具结构、浇注系统、冷却系统、排气系统和脱模系统等都发生了重大变化。主要表现在以下几个方面:(1)模具结构:为承受成型时的高压,薄壁成型模具的刚度要大、强度要高。因此模具的动、定模板及其支承板重量较大,厚度通常比传统模具的模板要厚。支撑柱要多,模具内可能要多设置内锁,以保证精确定位和良好的侧支撑,防止弯曲和偏移。另外,高速射出速度增加了模具的磨损,因此模具要采用较高硬度的工具钢,高磨损、高冲蚀区(如浇口处)硬度应大于HRC55。(2)浇注系统:成型薄壁制品,特别是制品厚度非常小时,要使用大浇口,而且浇口应该大于壁厚。如是直浇口应设置冷料井,以减少浇口应力,协助填充,减少制品去除浇口时的损坏。为保证有足够的压力充填薄的模腔,流道系统中应尽可能减少压力降。为此,流道设计要比传统的大一些,同时要限制熔体的驻留时间,以防止树脂降解劣化。当是一模多腔时,浇注系统的平衡性要求远高于常规模具的要求。值得注意的是薄壁制品模具的浇注系统中还引入了两项先进技术,即热流道技术和顺序阀式浇口(SVG)技术。(3)冷却系统:薄壁制品不像传统壁厚件那样可以承受较大的因传

常用透明塑料的特性及注塑工艺

常用透明塑料的特性及注塑工艺 透明塑料必须有高透明度,一定的强度和耐磨性,能抗冲击,耐热件要好,耐化学性要优,吸水率要小,只有这样才能在使用中能满足透明度的要求而长久不变,常用的透明塑料有: 1.聚甲基丙烯酸甲酯(即俗称亚加力或有机玻璃,代号PMMA), 2.聚碳酸酯(代号PC), 3.聚对苯二甲酸乙二醇脂(代号PET), 4.透明尼龙, ABS 5.AS(丙烯睛一苯乙烯共聚物), 6.聚砜(代号PSF) 1)性能比较 材料\性能透明度J/m2 热形温度℃收缩率 PMMA 92 95 0.5 PC 90 137 0.6 PET 86 120 2 一般要求的制品仍以选用PMMA为主,而PET由于要经过拉伸才能得到好的机械性能,所以多在包装、容器中使用。 2)注塑过程中工艺特性 i. PMMA的工艺特性 PMMA粘度大,流动性稍差,因此必须高料温、高注射压力注塑才行,其中注射温度的影响大于注射压力,但注射压力提高,有利于改善产品的收缩率。注射温度范围较宽,熔融温度为160℃,而分解温度达270℃,因此料温调节范围宽,工艺性较好。故改善流动性,可从注射温度着手。冲击性差,耐磨性不好,易划花,易脆裂,故应提高模温,改善冷凝过程,去克服这些缺陷。 ii. PC的工艺特性 PC粘度大,融料温度高,流动性差,回此必须以较高温度注塑(270-320T之间),相对来说料温调节范围较窄,工艺性不如PMMA。注射压力对流动性影响较小,但因粘度大,仍要较大注射压力,相应为了防止内应力产生,保压时间要尽量短。收缩率大,尺寸稳定,但产品内应力大,易开裂,所以宜用提高温度而不是压力去改善流动性,并且从提高模具温度,改善模具结构和后处理去减少开裂的可能。当注射速度低时,浇口处易生波纹等缺陷,放射咀温度要单独控制,模具温度要高,流道、浇口阻力要小。 iii. PET的工艺特性 PET成型温度高,且料温调节范围窄(260-300℃),但熔化后,流动性好,故工艺性差,且往往在射咀中要加防延流装置。机械强度及性能注射后不高,必须通过拉伸工序和改性才能改善性能。模具温度准确控制,是防止翘曲。变形的重要回素,回此建议采用热流道模具。模具温度官高,否则会引起表面光泽差和脱模回难。 3)透明塑料件的缺陷和解决办法 i.银纹:由充模和冷凝过程中,内应力各向异性影响,垂直方向产生的应力,使树脂发生流动上取向,而和非流动取向产生折光率不同而生闪光丝纹,当其扩展后,可能使产品出现裂纹。除了在注塑工艺和模具上注意外,最好产品作退火处理。如PC料可加热到160℃以上保持3-5分钟,再自然冷却即可。 ii.气泡:由于树脂内的水气和其他气体排不出去,或因充模不足,冷凝表面又过快冷凝而形成“真空泡”。

常用塑料注塑工艺参数表样本

常见塑料注塑工艺参数表:

常见塑料注塑工艺参数( 2) -06-16 20:02:13| 分类: 个人日记 | 标签: |字号大中小订阅聚甲醛加工参数聚甲醛的成型收缩率聚甲醛的后收缩九、 PC注塑工艺特性与工艺参数的设定1、聚集态特性属于无定型塑料, Tg为149~150℃; Tf为215~225℃; 成型温度为250~310℃; 2、热稳定性较好, 并随分子量的增大而提高。但PC高温下遇水易降解, 成型时要求水分含量在0.02%以下。高温下水分对PC特别有害。在成型前, PC树脂必须进行充分干燥( 而且应当充分注意防止干燥过的物料再吸湿) 。干燥效果的快速检验法, 是在注塑机上采用”对空

注射”。3、熔体粘度高, 流动性较差, 其流动特性接近于牛顿流体, 熔体粘度受剪切速率影响较小, 而对温度的变化十分敏感, 在适宜的成型加工温度范围内调节加工温度, 能有效地控制PC的粘度。4、由于粘度高, 注射压力较高, 一般控制在80~120MPa。对于薄壁长流程、形状复杂、浇口尺寸较小的制品, 为使熔体顺利、及时充模, 注射压力要适当提高至120~150MPa。保压压力为80~100MPa。5、成型时, 冷却固化快, 为延迟物料冷凝, 需控制模温为80~120℃。6、 PC分子主链中有大量苯环, 分子链的刚性大, 注塑中易产生较大的内应力, 使制品开裂或影响制品的尺寸稳定性; ( 在100℃以上作长时间热处理, 它的刚硬性增加, 内应力降低) 。PC的典型干燥曲线台湾奇美典型牌号加工参数: 十、 PA及玻纤增强PA注塑工艺特性与工艺参数设定1、常见品种及其熔点: q 品种: 尼龙-66; 尼龙-610; 尼龙-1010; 尼龙-1212; 尼龙-46尼龙-6; 尼龙-7; 尼龙-9; 尼龙-11; 尼龙-12; 尼龙-66/6、尼龙-66/610; 尼龙-6∕66∕1010; 尼龙-66/6/610q 熔点: 尼龙n系列: 尼龙-6 215~220℃; 尼龙-12为178℃; 尼龙m,n系列: 尼龙- 46 295 ℃; 尼龙-66 255~265℃; 尼龙-610 215~223℃; 尼龙-1010 200℃; 共缩聚尼龙: 由于分子链的规整性较差, 结晶性和熔点一般较低, 如尼龙-6∕66∕1010的熔点仅为155~175℃, 但其有较好的透明性和弹性。2、熔点高, 熔化范围窄( 约10℃) 。考虑到PA熔点高、热稳定性较差, 故加工温度不宜太高, 一般高于熔点30℃左右即可。3、吸湿性大, 且酰胺基易于高温水解, 引起分子量严重降低; ( 须严格干燥至含水量低于0.05%, 特别是回料使用时更应严格干燥, 必要时可添加”增粘剂”。) 4、熔体粘度低, 表观粘度对温度敏感, 由于熔体的冷却速率快, 要防止塑料堵塞喷孔、流道、浇口等。为阻止熔体逆流, 螺杆头应装有止逆环; 另外, 为防止喷嘴处熔体的”流涎”现象, 应选用自锁式喷嘴。5、注射PA时不需高的注射压力, 一般选取范围为70~100MPa, 一般不超过120MPa。注射速率宜略快些, 这样可防止因冷却速率快而造成波纹及充模不足等问题。6、模具温度一般控制在40~90℃。模具温度对制品的性能影响较大。7、酰胺基在高温下

ABS塑料特性、注塑工艺、各力学物理性能等[1]

ABS塑料特性以及成型工艺 ABS塑料化学名称:丙烯腈-丁二烯-苯乙烯共聚物 英文名称:Acrylonitrile Butadiene Styrene ABS为丙烯腈A、丁二烯B和苯乙烯S三种单体共聚而成的聚合物,简称ABS。每种单体都具有不同特性,从形态上看,ABS是非结晶性材料。这就决定了ABS材料的耐低温性、抗冲击性,外观特性,低蠕变性,优异的尺寸稳定性及易加工性等多种特性。且表面硬度高、耐化学性好,同时通过改变上述三种组分的比例,可改变ABS的各种性能,故ABS工程塑料具有广泛用途。合成的ABS有中冲击型、高冲击型、超高冲击型及耐热型四类。由于其具有韧、刚、硬的优点,应用范围已远远超过PS,成为一种独立的塑料品种。ABS既可用于普通塑料又可用于工程塑料。ABS树脂(丙烯腈-苯乙烯-丁二烯共聚物,ABS是Acrylonitrile Butadiene Styrene的首字母缩写)是一种强度高、韧性好、易于加工成型的热塑型高分子材料。 ABS树脂是丙烯腈(Acrylonitrile)、1,3-丁二烯(Butadiene)、苯乙烯(Styrene)三种单体的接枝共聚物。它的分子式可以写为(C8H8·C4H6·C3H3N)x,但实际上往往是含丁二烯的接枝共聚物与丙烯腈-苯乙烯共聚物的混合物,其中,丙烯腈占15%~35%,丁二烯占5%~30%,苯乙烯占40%~60%,最常见的比例是 A:B:S=20:30:50。ABS塑料的成型温度为180-250℃,但是最好不要超过240℃,此时树脂会有分解。 随着三种成分比例的调整,树脂的物理性能会有一定的变化: 1,3-丁二烯为ABS树脂提供低温延展性和抗冲击性,但是过多的丁二烯会降低树脂的硬度、光泽及流动性; 丙烯腈为ABS树脂提供硬度、耐热性、耐酸碱盐等化学腐蚀的性质; 苯乙烯为ABS树脂提供硬度、加工的流动性及产品表面的光洁度。 性质 ABS树脂是微黄色固体,有一定的韧性,密度约为1.04~1.06 g/cm3。它抗酸、碱、盐的腐蚀能力比较强,也可在一定程度上耐受有机溶剂溶解。 ABS树脂可以在-25℃~60℃的环境下表现正常,而且有很好的成型性,加工出的产品表面光洁,易于染色和电镀。因此它可以被用于家电外壳、玩具等日常用品。常见的乐高积木就是ABS制品。 ABS树脂可与多种树脂配混成共混物,如PC/ABS、ABS/PVC、PA/ABS、PBT/ABS 等,产生新性能和新的应用领域,如:将ABS树脂和PMMA混合,可制造出透明ABS 树脂。 生产 ABS有两种主要的工业生产方法: 将丙烯腈-苯乙烯共聚物(AS)与聚丁二烯(B)混合,或这将两种胶乳混合后再共聚; 在聚丁二烯胶乳中加入丙烯腈及苯乙烯单体进行接枝共聚。 生产1公斤ABS树脂需要的原料和能源大约相当于生产2公斤石油。

PPO塑料特性聚苯醚注塑工艺

PPO塑料特性(聚苯醚注塑工艺) 关键字:聚苯醚PPO 美国GE PPO 基础创新塑料(美国) EXCP5183-BK1066 PPO 典型应用范围: 家庭用品(洗碗机、洗衣机等),电气设备如控制器壳体、光纤联接器等。 注塑模工艺条件: 干燥处理:建议在加工前进行2~4小时、100℃的干燥处理。 熔化温度:240~320℃。 模具温度:60~105℃。 注射压力:600~1500bar。 流道和浇口:可以使用所有类型的浇口。特别适合于使用柄形浇口和扇形浇口。 化学和物理特性: 通常,商业上提供的PPE或PPO材料一般都混入了其它热塑型材料例如PS、PA 等。 这些混合材料一般仍称之为PPE或PPO。 混合型的PPE或PPO比纯净的材料有好得多的加工特性。 特性的变化依赖于混合物如PPO和PS的比率。 混入了PA 66的混合材料在高温下具有更强的化学稳定性。 这种材料的吸湿性很小,其制品具有优良的几何稳定性。 混入了PS的材料是非结晶性的,而混入了PA的材料是结晶性的。 加入玻璃纤维添加剂可以使收缩率减小到0.2%。这种材料还具有优良的电绝缘特性和很低的热膨胀系数。 其黏性取决于材料中混合物的比率,PPO的比率增大将导致黏性增加。

LED点阵模阵壳体, (1)PPO的成型加工性能 1) PPO的吸水率很低,但水分会使制品表面出现银丝、气泡等缺陷,为此,可将原料置于80~100℃的烘箱中,干燥1~21h后使用。 2) PPO的分子键刚性大,玻璃化转化温度高,不易取向,但强迫取向后很难松弛。所以制品内残余内应力较高,一般要经过后处理。 3) PPO为无定型材料,在熔融状态下的流变性接近于牛顿流体,但随温度的升高偏离牛顿流体的程度越大。 4) PPO熔体的粘度大,因此加工时应提高温度,并适当提高注射压力,以提高充模能力。 5) PPO的回料可重复使用,一般重复使用3次,其性能没有明显降低。 6) 对PPO熔体宜采用螺杆式注塑机成型,喷嘴采用直通式为佳,孔径为3~6mm。 7) 在PPO注塑成型时,宜采取高压、高速注射,保压及冷却时间不能太长。 8) 模具的主流道宜采用较大的锥度或采用拉料钩,浇道以短粗为好。 9) 浇口宜采用直接式、扇形或扁平形,采用针状浇口时直径应适当加大,对于长浇道可采用热流道结构。 10) PPO的成型收缩率较小,一般为0.2%~0.7%,因而制品尺寸稳定性能优良。 (2) PPO的主要注塑成型条件 1) 料筒温度。PPO具有很高的耐热性,热分解温度达350℃,在300℃以内无明显热降解现象。通常,料筒温度 控制在260~290℃,喷嘴温度低于料筒温度10℃左右。 2) 模具温度。由于PPO熔体粘度大,因在注塑成型时应采用较高模温。通常,模温控制在100~150℃。模温低于100℃时,薄壁塑件易出现充满不足及分层;而高于150℃时,易出现气泡、银丝、翘曲等缺陷。 3) 注射压力。提高注射压力,有利于熔料的充模,一般注射压控制在100~140MPa.

常用塑料的注塑工艺参数

常用塑料的注塑工艺参数 一、高密度聚乙烯(HDPE) 料筒温度喂料区30~50℃(50℃) 区1 160~250℃(200℃) 区2 200~300℃(210℃) 区3 220~300℃(230℃) 区4 220~300℃(240℃) 区5 220~300℃(240℃) 喷嘴220~300℃(240℃) 括号内的温度建议作为基本设定值,行程利用率为35%和65%,模件流长与壁 厚之比为50:1到100:1 熔料温度220~280℃ 料筒恒温220℃ 模具温度20~60℃ 注射压力具有很好的流动性能,避免采用过高的注射压力80~140MPa(800~1400bar); 一些薄壁包装容器除外可达到180MPa (1800bar) 保压压力收缩程度较高,需要长时间对制品进行保压,尺寸精度是关键因素,约为注射压力的30%~60% 背压5~20MPa(50~200bar);背压太低的地方易造成制品重量和色散不均 注射速度对薄壁包装容器需要高注射速度,中等注射速度往往比较适用于其它类的塑料制品 螺杆转速高螺杆转速(线速度为1.3m/s)是允许的,只要满足冷却时间结束前就完成塑化过程就可以;螺杆的扭矩要求为低 计量行程0.5~4D(最小值~最大值);4D的计量行程为熔料提供足够长的驻留时间是很重要的 残料量2~8mm,取决于计量行程和螺杆直径 预烘干不需要;如果贮藏条件不好,在80℃的温度下烘干1h就可以 回收率可达到100%回收 收缩率 1.2~2.5%;容易扭曲;收缩程度高;24h后不会再收缩(成型后收缩) 浇口系统点式浇口;加热式热流道,保温式热流道,内浇套;横截面面积相对小,对薄截面制品已足够 机器停工时段无需用其它材料进行专门的清洗工作;PE耐温升 料筒设备标准螺杆,标准使用的三段式螺杆;对包装容器类制品,混合段和切变段几何外形特殊(L:D=25:1),直通喷嘴,止逆阀 二、聚丙烯(PP) 料筒温度喂料区30~50℃(50℃) 区1 160~250℃(200℃) 区2 200~300℃(220℃) 区3 220~300℃(240℃) 区4 220~300℃(240℃) 区5 220~300℃(240℃) 喷嘴220~300℃(240℃)

常用塑料注塑工艺参数表

常用塑料注塑工艺参数表:

常用塑料注塑工艺参数(2)?? 2010-06-16 20:02:13|??分类:个人日记|??标签:|字号大中小?订阅 聚甲醛加工参数聚甲醛的成型收缩率聚甲醛的后收缩九、PC注塑工艺特性与工艺参数的设定1、聚集态特性属于无定型塑料,Tg 为149~150℃;Tf为215~225℃;成型温度为250~310℃;?2、热稳定性较好,并随分子量的增大而提高。?但PC高温下遇水易降解,成型时要求水分含量在0.02%以下。高温下水分对PC特别有害。在成型前,PC树脂必须进行充分干燥(并且应当充分注意防止干燥过的物料再吸湿)。干燥效果的快速检验法,是在注塑机上采用“对空注射”。??3、熔体粘度高,流动性较差,其流动特性接近于牛顿流体,熔体粘度受剪切速率影响较小,而对温度的变化十分敏感,在适宜的成型加工温度范围内调节加工温度,能有效地控制PC的粘度。4、由于粘度高,注射压力较高,一般控制在80~120MPa。对于薄壁长流程、形状复杂、浇口尺寸较小的制品,为使熔体顺利、及时充模,注射压力要适当提高至120~150MPa。保压压力为80~100MPa。?5、成型时,冷却固化快,为延迟物料冷凝,需控制模温为80~120℃。6、PC分子主链中有大量苯环,分子链的刚性大,注塑中易产生较大的内应力,使制品开裂或影响制品的尺寸稳定性;(在100℃以上作长时间热处理,它的刚硬性增加,内应力降低)?。PC的典型干燥曲线?台湾奇美典型牌号加工参数:十、PA及玻纤增强PA注塑工艺特性与工艺参数设定?1、常用品种及其熔点:q??品种:尼龙-66;尼龙-610;尼龙-1010;尼龙-1212;尼龙-46尼龙-6;尼龙-7;尼龙-9;尼龙-11;尼龙-12;尼龙-66/6、尼龙-66/610;尼龙-6∕66∕1010?;尼龙-66/6/610q??熔点:尼龙n系列:尼龙-6?215~220℃;尼龙-12为178℃;尼龙m,n系列:尼龙-46?295?℃;尼龙-66?255~265℃;尼龙-610?215~223℃;尼龙-1010?200℃;共缩聚尼龙:由于分子链的规整性较差,结晶性和熔点一般较低,如尼龙-6∕66∕1010的熔点仅为155~175℃,但其有较好的透明性和弹性。2、熔点高,熔化范围窄(约10℃)?。考虑到PA熔点高、热稳定性较差,故加工温度不宜太高,一般高于熔点30℃左右即可。?3、吸湿性大,且酰胺基易于高温水解,引起分子量严重降低;(须严格干燥至含水量低于0.05%,尤其是回料使用时更应严格干燥,必要时可添加“增粘剂”。)4、熔体粘度低,表观粘度对温度敏感,由于熔体的冷却速率快,要防止塑料堵塞喷孔、流道、浇口等。为阻止熔体逆流,螺杆头应装有止逆环;另外,为防止喷嘴处熔体的“流涎”现象,应选用自锁式喷嘴。5、注射PA时不需高的注射压力,一般选取范围为70~100MPa,通常不超过120MPa。注射速率宜略快些,这样可防止因冷却速率快而造成波纹及充模不足等问题。?6、模具温度一般控制在40~90℃。模具温度对制品的性能影响较大?。?7、酰胺基在高温下对氧敏感,容易发生氧化变色(必要时可添加尼龙专用的热稳定剂);?8、高结晶性,成型收缩率大,易产生结晶应力,并且明显随制品的厚度增大而增加;9、成型后制品的缓慢吸湿易引起尺寸精度的较大变化。这点也被利用来进行调湿处理,通常可在沸水或醋酸钾水溶液(醋酸钾与水的比例为1.25∶1,沸点为121℃)中进行。?10、熔体着色所适用的有机颜料品种较少(酰胺基具有还原性,加之成型温度高)。尼龙吸水率尼龙及玻纤增强尼龙成型温度?PA46安全加工温度-时间组合图玻璃纤维增强尼龙(GF-PA)工艺特性1、GF-PA中由于含大量玻纤,注塑中存在四大问题:(1)流动性差。(2)收缩率小,且各向异性明显。(3)制品性能易出现波动。(4)制品表面粗糙度数值大。?2、由于流动性差,且加入玻纤后的熔体冷凝硬化快,需要比未加玻纤时提高温度约10-30?℃;3、应采用较大的注射速率和较高的注射压力;?4、由于大量玻纤引起的高粘度,增强尼龙可用通用喷嘴;5、对机筒的磨损大;6、为使增强尼龙制品有较高的强度,需要注意尽可能地保护玻纤的长度,减少玻纤损伤;(从螺杆、喷嘴、浇口等装备因素到注塑工艺条件)7、玻纤增强料成型加工中最常有缺陷:“浮纤”或称“玻纤外露”;玻纤取向引起的各向异性;熔接痕处强度特低;?纤维取向不同厚度处的取向状况皮-芯效应与熔接痕前锋料遇到障碍后分流-合流-熔接玻纤含量与熔接痕强度十一、PMMA注塑工艺特性与工艺参数的设定?PMMA树脂俗称“压克力”,国内着名商品牌号有372#(实为MS)1、PMMA无定形聚合物,Tg为105℃,熔融温度大于160℃,而分解温度高达270℃以上,成型的温度范围较宽;2、PMMA树脂颗粒易吸收水份,而这些水分的存在,在成型过程中由于受热挥发,导致熔体起泡、膨胀、使制品出现银丝、气泡、透明度变差、有糊斑等问题。PMMA在热风循环干燥设备上的干燥,其干燥工艺参数:温度为70~80℃,时间为2~4h;3、?PMMA熔体粘度对温度变化比较敏感。注射温度的改变对熔体流动长度的影响要比注射压力与比注射速率明显些,更比模具温度显着得多。故在成型时改变PMMA的流动性主要是从注射温度着手。

注塑成型技术手册

常用膠粒及特性 一.ABS ABS是簡稱,全名:Acrylonitrle -butadiene-styrene plastics, 中文名:丙烯錛---丁二烯---笨乙烯塑膠 ABS特性: 1.簡易分辨法: 易燃燒,火焰拿走后不熄滅 火焰的顏色-----黃色黑煙 燃燒后的狀態-----熔融落下 氣味-----------------橡膠味..辣味 2.成形條件 加熱溫度(。C):190-260 模具溫度(。C):50-70 射出壓力(kg/cm2):500-1500 收縮率(1/1000):3~8 3.特征與用途: 特征:乳白色半透明,沖擊性比PS差,流動性佳,化學電鍍密著佳,耐熱性佳。 用途: 電氣-------電氣零件,機身外殼 機械-------機械之構造體.金屬化用品 建筑-------陳列櫥 日用品----文具.容器.吸塵機零件 4.射出成形時注意事項 (1).有吸濕性,成形時須預備干燥(80。C-- 90。C之溫度約4-8小時,以后需間隙烘干,建議烘干15分鐘,間 隙45分鐘)。 (2).流動性佳,可制各種成品。 (3).成形性因其組成之成分不同而有極大差異,須特別注意。 (4).加熱溫度依成分不同而異,須特別注意。 (5).熔融時流動性比PS差,因此注道流道須較大。 (6).超過260 。C則熱分解會變質。 (7).為防止凹入情形宜加大射出壓力并保壓。 (8).離型性不良宜多用離型劑 二.PC PC是簡稱,PC的英文名:Polycarbonate,PC的中文名:聚碳酸酯 PC特性: 1.成形條件: 加熱溫度(。C):260~320 模具溫度(。C):80~120 射出壓力(kg/cm2):1000~1500 收縮率(1/1000):5~8 2.特征與用途: 特征:高低溫之機械性良,特別耐沖墼,低溫安定性好,耐候.透明 用途: 電氣-------計算機零件.電氣零件

塑胶成型工艺处理

塑胶成型工艺 ※热塑性塑料成型 热塑性塑料品种每繁多,即使同一品种也由于树脂分子及附加物配比不同而使其使用及工艺特性也有所不同。另外,为了改变原有品种的特性,常用共聚、交联等各种化学方法在原有的树脂结构中导入一定百分比量的其它单体或高分子等,以改变原有树脂的结构成为具有新的改进物性和加工性的改性产品。例如,ABS即为在聚苯乙烯分子中导入了丙烯腈、丁二烯等第二和第三单体后成为改性共聚物,可看作称改性聚苯乙烯,具有比聚苯乙烯优异综合性能,工艺特性。由于热塑性塑料品种多、性能复杂,即使同一类的塑料也有仅供

注塑用和挤出用之分,故本章节主要介绍各种注塑用的热塑性塑料。 1、收缩率 热塑性塑料成型收缩的形式及计算如前所述,影响热塑性塑料成型收缩的因素如下:1.1塑料品种热塑性塑料成型过程中由于还存在结晶化形起的体积变化,内应力强,冻结在塑件内的残余应力大,分子取向性强等因素,因此与热固性塑料相比则收缩率较大,收缩率范围宽、方向性明显,另外成型后的收缩、退火或调湿处理后的收缩率一般也都比热固性塑料大。 1.2塑件特性成型时熔融料与型腔表面接触外层立即冷却形成低密度的固态外壳。由于塑料的导热性差,3使塑件内层缓慢冷却而形成

收缩大的高密度固态层。所以壁厚、冷却慢、高密度层厚的则收缩大。另外,有无嵌件及嵌件布局、数量都直接影响料流方向,密度分布及收缩阻力大小等,所以塑件的特性对收缩大小、方向性影响较大。 1.3进料口形式、尺寸、分布这些因素直接影响料流方向、密度分布、保压补缩作用及成型时间。直接进料口、进料口截面大(尤其截面较厚的)则收缩小但方向性大,进料口宽及长度短的则方向性小。距进料口近的或与料流方向平行的则收缩大。 1.4成型条件模具温度高,熔融料冷却慢、密度高、收缩大,尤其对结晶料则因结晶度高,体积变化大,故收缩更大。模温分布与塑件内外冷却及密度均匀性也有关,直接影响到各部

常用塑料的注塑工艺

常用塑料的注塑工艺 —、聚乙烯-PE 1物理特性:一般常用聚乙烯为高密聚乙烯(HDPE )密度0.95熔点130C,低密聚乙烯(LDPE) 密度0.92熔点120C。 2.工艺特性: ①结晶型聚合物,有明显的熔点,软化温度范围窄(3—5C) ②注塑压力的变化对聚乙烯的流动性的影响比料筒温度的影响要明显,所以在注塑成型时先 从注塑压力方面考虑。但过高的剪切速率会出现熔体破裂现象,在制品表面出现毛糙、斑纹 等熔体破裂现象? ③乙烯吸水性低,含水小于0.01%,生产时可以不进行干燥处理?如储藏不当引起水分过量可在70-80C温度下干燥1-2h。 ④收缩率大且方向性明显,制品易翘曲变形。HDPE收缩率1.5-5%丄DPE收缩率2-5%收缩率一般视制品壁厚而定,制品壁厚越大收缩率越大。 ⑤聚乙烯对注塑机无特殊要求,一般均可使用。 3.制品与模具 ①制品制品的壁厚与熔体的流动长度有关,而聚乙烯的流动性又随密度的不同有所不 同,因此在选择制品厚度时需充分考虑流动比,低密聚乙烯的流长比为280:1,高密度聚乙 烯的流长比为230:1。在选择制品的壁厚时,应考率收缩率的影响,从有利于熔体流动、减少制品收缩的角度出发,一般聚乙烯的壁厚应在1-3.5mm之间。 ②模具的排气孔槽深度应控制在0.03mm以下。 4.树脂准备 注塑用的聚乙烯为了保证制品有一定的机械强度,通常选用熔体指数稍底的品级,而对于强 度要求不高、薄壁、长流程的制品,熔体指数相应选择大些,熔体指数(Ml )是在温度为190C,负荷为2160g下,10分钟内熔体通过孔径为 2.1mm,长度为8mm孔的克数。熔体指数值越小,树脂的分子量就越大,流动性就越差。 5.成型工艺 ①注塑温度注塑温度应根据注塑制品实际情况来确定,一般低密聚乙烯料筒温度在 160-220C之间,高密聚乙烯在175-240C之间。在料筒温度分布上喷嘴和加料段温度低一些,比计量段和压缩段低20C左右,如果加料段温度过高,有可能造成物料粘附在螺杆上,造成加料不畅。高的料筒温度可以改善熔体的流动性,但能造成制品大的收缩。 ②注塑压力和注塑速度 一般聚乙烯对注塑压力和注塑速度无特殊要求,一般选择视制品情况而定,但大的注射速度会造成熔体破裂现象。 ③模具温度模具温度的高低对聚乙烯制品有较大的影响,即模具温度高,熔体冷却速度慢,制品的结晶度高,硬度、刚性均有提高,但制品的收缩相应加大,易出现缩痕。模具温度低,熔体冷却速度快,所得制品结晶度低,透明性增加,呈现柔韧性,但相应内应力增 加,收缩的各向异性明显,易出现翘曲变形。通常低密聚乙烯的模具温度为35-55高密聚乙

注塑成型工艺培训资料

注塑成型技术培训资料 一、如何解决注塑产品存在的品质缺陷 1、注塑产品存在的品质缺陷: 塑料制品的成型加工过程中,由于加工设备不一,成型性能各异,原料品种繁多,加之设备的运行状态,模具的型腔结构、物料的流变性筹多种因素错综变化的影响,使得塑料的内在及外观质量经常会出现各种各样的成型缺陷。常见的外观缺陷有:缩水、飞边、黑点、流纹、熔接线、亮纹、缺胶、气泡、料花等。 2、如何解决缩水 ●缩水产生的原因 制件在模具中冷却时,由于制件的胶厚不一致而导致塑胶收缩不均匀而引起的凹痕。解决缩水的原理是:在制件冷却过程中,熔胶不断补充制件收缩引起的空缺。因此在正常情况下要保证熔胶补充的通道不受阻和足够的补充压力。 ●在注塑工艺上的解决办法: (1)注塑条件问题: ①注射量不足; ②提高注射压力; ③增加注射时间; ④增加保压压力或时间; ⑤提高注射速度; ⑥增加注射周期; ⑦操作原因造成的注射周期反常。 (2)温度问题: ①物料太热造成过量收缩; ②物料太冷造成充料压实不足; ③模温太高造成模壁处物料不能很快固化; ④模温太低造成充模不足; ⑤模子有局部过热点; ⑥改变冷却方案。 (3)模具问题: ①增大浇口;

②增大分流道; ③增大主流道; ④增大喷嘴孔; ⑤改进模子排气; ⑥平衡充模速率; ⑦避免充模料流中断; ⑧浇口进料安排在制品厚壁部位; ⑨如果有可能,减少制品壁厚差异; ⑩模子造成的注射周期反常。 (4)设备问题: ①增大注压机的塑化容量; ②使注射周期正常; (5)冷却条件问题: ①部件在模内冷却过长,避免由外往里收缩,缩短模子冷却时间; ②将制件在热水中冷却。 3、如何解决飞边 ●产生飞边的原因: 产品溢边往往由于模子的缺陷造成,其他原因有:注射力大于锁模力、物料温度太高、排气不足、加料过量、模子上沾有异物等。 ●如何判断产生飞边的原因: 在一般情况下,采用短射的办法。即在注塑压力速度较低、不用保压的情况下注塑出制件90%的样板,检查样板是否出现飞边,如果出现,则是模具没有配好或注塑机的锁模压力不足,如果没有出现,则是由于注塑条件变化而引起的飞边,比如:保压太大、注射速度太快等。 ●常见的飞边产生的原因及解决飞边的办法 ⑴模具问题: ①型腔和型芯未闭紧; ②型腔和型芯偏移; ③模板不平行; ④模板变形;

常见透明塑料的性能及注塑工艺

常见透明塑料的性能及注塑工艺 由于塑料具有重量轻、韧性好、成型易、成本低等优点,因此在现代工业和日用产品中,越来越多用塑料代替玻璃,特别应用于光学仪器和包装工业方面,发展尤为迅速。但是由于要求其透明性要好,耐磨性要高,抗冲击韧件要好,因此对塑料的成份,注塑整个过程的工艺、设备、模具等,都要做大量工作,以保证这些用于代替玻璃的塑料(以下简称透明塑料),表面质量良好,从而达到使用的要求。 目前市场上一般使用的透明塑料有聚甲基丙烯酸甲酯(PMMA,即俗称压克力或有机玻璃,)、聚碳酸酯(PC)、聚对苯二甲酸乙二醇脂(PET)、透明尼龙、丙烯睛一苯乙烯共聚物(AS)、聚砜(PSF)等,其中我们接触得最多的是PMMA、PC 和PET三种塑料,下面就以这三种塑料为例,讨论透明塑料的特性和注塑工艺。 一、透明塑料的性能 透明塑料首先必须有高透明度,其次要有一定的强度和耐磨性,能抗冲击,耐热性要好,耐化学性要优,吸水率要小,只有这样才能在使用中,能满足透明度的要求而长久不变,下面列出表l,比较一下 PMMA、PC和PET的性能。 表1:透明塑料性能比较 注:(1)因品种繁多,这只是取平均值,实际不同品种数据有异。 (2)PET数据(机械方面)为经拉伸后的数据。 从表1数据可知PC是较理想的选择,但由于其原料价贵和注塑工艺较难,所以仍以选用PMMA为主,(对一般要求的制品),而PET由于要经过拉伸才能得到

好的机械性能,所以多在包装、容器中使用。 二、透明塑料注塑过程中应注意的共同问题 透明塑料由于透光率要高,必然要求塑料制品表面质量要求严格,不能有任何斑纹、气孔、泛白、雾晕、黑点、变色、光泽不佳等缺陷,因而在整个注塑过程对原料、设备、模具、甚至产品的设计,都要十分注意和提出严格甚至特殊的要求。其次由于透明塑料多为熔点高、流动性差,因此为保证产品的表面质量,往往要在较高温度、注射压力、注射速度等工艺参数作细微调整,使注塑料时既能充满模,又不会产生内应力而引起产品变形和开裂。 下面就其在原料准备、对设备和模具要求、注塑工艺和产品的原料处理几方面,谈谈应注意的事项。 (一)原料的准备与干燥由于在塑料中含有任何一点杂质,都可能影响产品的透明度,因此和储存、运输、加料过程中,必须注意密封,保证原料干净。特别是原料中含有水分,加热后会引起原料变质,所以一定要干燥,并在注塑时,加料必须使用干燥料斗。还要注意一点的是干燥过程中,输入的空气最好应经过滤、除湿,以便保证不会污染原料。其干燥工艺如表2。 表2:透明塑料的干燥工艺: (二)机筒、螺杆及其附件的清洁 为防止原料污染和在螺杆及附件凹陷处存有旧料或杂质,特别热稳定性差的树脂存在,因此在使用前、停机后都应用螺杆清洗剂清洗干净各件,使其不得粘有杂质,当没有螺杆清洗剂时,可用PE、PS等树脂清洗螺杆。当临时停机时,为防止原料在高温下停留时间长,引起解降,应将干燥机和机筒温度降低,如 PC、

八大塑料注塑成型技术及特点

八大塑料注塑成型技术及特点气辅注塑(GAIM) 成型原理: 气辅成型(GAIM)是指在塑胶充填到型腔适当的时候(90%~99%)注入高压惰性气体,气体推动融熔塑胶继续充填满型腔,用气体保压来代替塑胶保压过程的一种新兴的注塑成型技术。 特点: ?减少残余应力、降低翘曲问题; ?消除凹陷痕迹; ?降低锁模力; ?减少流道长度; ?节省材料; ?缩短生产周期时间; ?延长模具寿命; ?降低注塑机机械损耗; ?应用于厚度变化大之成品。 GAIM可用于生产管状和棒状制品、板状制品以及厚薄不均的复杂制品。 水辅注塑(WAIM) 成型原理: 水辅注塑(WAIM)是在GAIM 基础上发展起来的一种辅助注塑技术,其原理和过程与GAIM类似。WAIM用水代替GAIM的N2做为排空、穿透熔体和传递压力的介质。

特点: 与GAIM相比,WAIM具有不少优势 ?水的热传导率和热容量比N2大得多,故制品冷却时间短,可缩短成型周期; ?水比N2更便宜,且可循环使用; ?水具有不可压缩性,不容易出现手指效应,制品壁厚也较均匀; ?气体易渗入或溶入熔体而使制品内壁变粗糙,其至在内壁产生气泡,而水不易渗入或溶入熔体,故可制得内壁光滑的制品。 精密注塑 成型原理: 精密注塑是指能成型内在质量、尺寸精度和表面质量均要求很高的产品的一类注塑技术。其生产出来的塑胶制品的尺寸精度,可以达到0.01mm 以下,通常在0.01~0.001mm之间。 特点: ?制件的尺寸精度高,公差范围小,即有高精度的尺寸界限精密塑胶制件的尺寸偏差会在0.03mm以内,有的甚至小到微米级,检测工具依赖于投影仪。 ?制品重复精度高 主要表现在制件重量偏差小,重量偏差通常在0.7%以下。 ?模具的材料好,刚性足,型腔的尺寸精度、光洁度以及模板间的定位精度高 ?采用精密注射机设备 ?采用精密注射成型工艺 精确控制模具温度、成型周期、制件重量、成型生产工艺。

常用塑料注塑成型缺陷及解决方案设计

第一章注塑成型缺陷及解决方法 第一节欠注 一.名词解释 熔料进入型腔后没有充填完全,导致产品缺料叫做欠注或短射。如图所示。 二. 故障分析及排除方法: 1.设备选型不当。在选用注塑设备时,注塑机的最大注射量必须大于塑件重量。在验核时,注射总量(包括塑件、浇道及飞边)不能超出注射机塑化量的85%。 2. 供料不足,加料口底部可能有“架桥”现象。可适当增加射料杆注射行程,增加供料量。 3. 原料流动性能太差。应设法改善模具浇注系统的滞流缺陷,如合理设置浇道位置、扩大浇口、流道和注料口尺寸以及采用较大的喷嘴等。同时,可在原料配方中增加适量助剂,改善树脂的流动性能。 4. 润滑剂超量。应减少润滑剂用量及调整料筒与射料杆间隙,修复设备。 5.冷料杂质阻塞流道。应将喷嘴拆卸清理或扩大模具冷料穴和流道的截面。 6. 浇注系统设计不合理。设计浇注系统时,要注意浇口平衡,各型腔塑件的重量要与浇口大小成正比,是各型腔能同时充满,浇口位置要选择在厚壁部位,也可采用分流道平衡布置的设计方案。若浇口或流道小、薄、长,熔料的压力在流动过程中沿程损失太大,流动受阻,容易产生填充不良。对此应扩大流道截面和浇口面积,必要时可采用多点进料的方法。 图5-1 制品缺料示意图

7. 模具排气不良。应检查有无冷料穴,或其位置是否正确,对于型腔较深的模具,应在欠注部位增设排气沟槽或排气孔,在合理面上,可开设0.02-0.04mm,宽度为5-10mm的排气槽,排气孔应设置在型腔的最终充填处。使用水分及易挥发物含量超标的原料时也会产生大量气体,导致模具排气不良,此时应对原料进行干燥及清除易挥发物。此外,在模具系统的工艺操作方面,可通过提高模具温度,降低注射速度、减小浇注系统流动阻力,以及减小合模力,加大模具间隙等辅助措施改善排气不良。 8. 模具温度太低。开机前必须将模具预热至工艺要求的温度。刚开机时,应适当节制模具冷却剂的通过量。若模具温度升不上去,应检查模具冷却系统设计是否合理。 9. 熔料温度太低。在适当的成型围,料温与充模长度接近于正比例关系,低温熔料的流动性能下降,式的充模长度减短。应注意将料筒加热到仪表温度后还需恒温一段时间才能开机。如果为了防止熔料分解不得不采取低温注射时,可适当延长注射循环时间,克服欠注。 10. 喷嘴温度太低。在开模时应使喷嘴与模具分离。减少模温对喷嘴温度的影响,使喷嘴处的温度保持在工艺要求的围。 11. 注射压力或保压不足。注射压力与充模长度接近于正比例关系,注射压力太小,充模长度短,型腔充填不满。对此,可通过减慢射料杆前进速度,适当延长注射时间等办法来提高注射压力。 12. 注射速度太慢。注射速度与充模速度直接相关。如果注射速度太慢,熔料充模缓慢,而低速流动的熔体很容易冷却,使其流动性能进一步下降产生欠注。对此,应适当提高注射速度。 13. 塑件结构设计不合理。当塑件厚度与长度不成比例,形体十分复杂且成 图5-2 流道过细而凝固 图5-3 困气产生背压阻料

注塑工艺对塑料性能的影响综述

注射成型工艺对塑料性能的影响 摘要:塑料有很多种成型方法,其中注塑成型是最重要的成型方法之一。注塑成型过程中主要由三方面的工艺条件控制。其中,与温度有关的条件有:机筒温度、模具温度以及由于摩擦引起的温度升高;与时间有关的条件有:塑化时间、注射速率、保压时间以及冷却时间等;与压力有关的条件有:塑化压力、注射压力和保压压力。本文主要论述注塑压力,注塑时间,冷却时间,保压时间,保压压力,模温以及后处理条件等对塑料拉伸或冲击等性能影响。 关键词:注射成型、成型工艺、塑料性能、温度、压力、时间 塑料成型是一门工程技术,它所涉及的内容是将塑料转变为具有使用价值并能保持原有性能,甚至超过原有性能的材料和制品。塑料有很多种成型方法,其中注塑成型是最重要的成型方法之一。注塑成型亦可称之为注射成型,或者简称为注塑。注塑成型过程是一个典型的间歇操作的循环过程,其基本过程是:颗粒状的高分子材料经过注塑机螺杆的挤压和加热成为熔融状态的可以流动的熔体,在螺杆的推动下,塑料熔体通过注塑机喷嘴、模具的主流道、分流道和浇口进入模具型腔,成型出具有一定形状和尺寸制品的过程。注塑周期主要由闭模、注射座前进、注射、保压、预塑、冷却、开模、顶出制品等程序组成。 在注塑成型过程中,注塑机的工艺参数会对注塑制件的性能有较大的影响,使塑件不可避免得产生这样或那样的缺陷,影响其力学性能。要研究注塑工艺对塑料制品性能的影响,首先要了解塑料成型的理论基础。 一、塑料成型的理论基础 1.聚合物的加热与冷却 聚合物在成型加工中为使流动和成型,加热和冷却是必须的。任何物料加热与冷却的难易是由温度或热量在物料中的传递速度决定的,而传递速度又决定于物料的固有性能——热扩散系数α,这一系数的定义为:/p k c αρ=?。 聚合物在加热时不能将推动传热效率的温差提得过高,因为聚合物的传热不好,局部温度就可能过高,会引起降解。聚合物熔体在冷却时不能使冷却介质与与熔体之间温差头太大,否则就会因为冷却过快而使其内部产生内应力。因为聚合物熔体在快速冷却时,皮层的降解速率远比内层快,此时皮层坚硬。当内层获得进一步冷却时,必会因为收缩而使其处于拉伸的状态,同时也使皮层受到应力作用。这种情况下的聚合物制品,其物理性能都比应有数值低。 2.聚合物的结晶

常用塑料注塑工艺参数

浅述冷/热模注塑成型技术 2010-2-25 来源:网络文摘 【全球塑胶网2010年2月25日网讯】 所谓的“冷/热模注塑成型”技术,是一种可在注塑成型周期内,使模腔表面温度实现冷热循环的工艺。其特点是:在注射前,先加热模腔,使其表面温度达到加工材料的玻璃化转变温度(Tg)以上;当模腔填满后,迅速冷却模具,以使制件在脱模前完全冷却。 这种冷/热模注塑成型工艺可以大幅度地改善注塑制品的外观质量,而且可以省去某些二次加工(如旨在掩盖表面缺陷的底漆和磨砂处理)过程,从而降低整体生产成本。在某些情况下,甚至还可以省去上漆或粉末涂布工艺。在那些对表面光泽度有较高要求的应用中,冷/热模注塑成型工艺还允许使用玻纤增强材料。该工艺的其他优势还包括:降低注塑内应力、减少甚至消除喷射痕和可见的熔接线,以及增强树脂的流动性,从而生产出薄壁产品等。 通常情况下,冷/热模注塑成型工艺适用于所有的传统注塑机。但是,如果希望模具表面得到快速加热或冷却,还需要配合使用特定的辅助系统,目前常用的辅助系统是高温热水系统和高温蒸汽系统。这些辅助系统中的蒸汽,要么来自外部锅炉,要么由其自身的控制设备产生。早在几年前,沙伯基础创新塑料就开始在日本研究冷/热模注塑成型技术。目前,该公司在其亚太区的开发中心中使用的是高温蒸汽系统,而在位于马萨诸塞州匹兹菲尔德的聚合物加工开发中心(PP DC)中,该公司则使用了德国Single Temperiertechnik公司的高温热水系统,它可以提供200℃的高温热水。 为了实现有效的工艺控制,模具必须配备热电偶,并且热电偶最好被安置在靠近模腔表面的位置,以便监控温度。为了确保工艺的稳定性,注塑模具、注塑机和冷/热控制器还必须集成在一起。沙伯基础创新塑料在该工艺的生产体系中配备了一台控制设备,以将各个要素有效地集成在一起。 在该工艺的开始阶段,利用在模内循环的蒸汽或高温热水来加热模腔表面,使其温度达到高于被加工树脂的玻璃化转变温度10~30℃的水平。一旦模腔表面达到这一温度值,系统便向注塑机发出信号,以将塑料注射到模腔中。当模腔被填满(注射阶段完成)后,冷水开始在模具中循环流动,以快速带走热量,从而使注塑部件在脱模前完全冷却。利用一个阀站,即可方便地实现从蒸汽或高温热水到冷水的切换,反之亦然。当部件冷却后,模具打开,部件被顶出,然后重复上述过程。 工艺优化:模具的设计和构造 冷/热模注塑成型技术的循环周期除了取决于所加工的材料外,模具的设计和构造对其则有极大的影响。一般,加热模具所需的时间取决于模具用钢的总量,因此尽量减少所要加热和冷却的钢材量非常重要。为了做到这一点,最好是将模腔和模芯嵌入到模板中,而不是穿过模板。为了减小热损失并提高效率,还应在任何可能的条件下,利用气隙和隔热材料,将这些嵌入件与模腔和模芯固定板隔开。 除了尽可能地减少必须进行冷/热循环的钢的用量外,还应考虑使用具有高导热性的金属,如铍铜合金或

相关文档
最新文档