理论力学之核心概念-动力学篇

理论力学之核心概念-动力学篇
理论力学之核心概念-动力学篇

本篇接着阐述理论力学动力学中的核心观念。阐述的方式依旧是回答几个问题。

问题1:动力学的基本问题是什么?

答案:虽然书上有关于动力学问题的许多说法,但是就实际应用而言,对于我们机械专业而言,我们所遇到的最常见的动力学问题是,在一个机构上的原动件受到了力(偶),我们要得到机构上各构件的速度和加速度。或者已知了速度和加速度,要反推这个力(偶)是多少。

下图就是这样一个例子。在OA杆上施加一个驱动力偶,各个杆件都有重力,我们要计算此时各约束处的约束力的大小,还需要计算CD杆的速度和加速度。

该问题中,力与运动交织在一起,这就是机构的动力学问题,也是机械中经常遇到的问题。

问题2:如何求解动力学问题?

答案:

解决动力徐问题的方法很多。我们只要谈两种方法:第一种是通用解法,第二种是动静法(达朗伯原理)。

通用解法,是指面对一个动力学问题,我们总是有一套很程序化的思路来求解它,这套思路中,我们会使用刚体平面运动的微分方程。使用这种方法,我们几乎不用思考,就可以列出所有的方程,解决所有的未知数。例如,对上面这个问题,如果它已知M,要求CD杆的加速度。则使用通用解法,我们可以同时求出AB杆,BE,CD杆的加速度,也可以求出A,B,C,D,E 处所有的约束力。使用通用解法,我们几乎不用关注题目要求什么,而总是可以求出所有的未知数。

动静法,是说把这个动力学问题从形式上变成静力学问题,然后再借用静力学的求解方法来计算所需要的未知数。动静法之所以能够把动力学问题变成静力学问题,是因为它把加速度变成了惯性力,然后对于系统中的每一个构件,形成了一个力系平衡的问题。而我们之所以使用动静法,是因为对于静力学问题,我们有很多解题技巧,例如取整体为对象,或者取某几个构件一起为对象,或者对任何一个点取力矩,这些优越性,都是刚体平面运动微分方程所不具备的。

问题3:如何使用通用解法求解动力学问题?

答案:使用通用解法求解动力学问题的步骤如下:

(1)绘制受力图,并标出每个物体质心的加速度和构件的角加速度。

(2)确定未知数。在(1)中出现的所有未知力,以及加速度都是未知数,计算这些未知数的数目,设为M。

(3)问题分析。首先对每个物体列出刚体平面运动微分方程3个,从而确定可以列的所有动力学方程,设为N。那么需要追加的方程数目是M-N.这些方程应该来自于运动学或者滑动摩擦定律。

(4)列出所有动力学方程。

(5)补充方程。

如果问题中有摩擦,且发生了相对滑动,则需要补充滑动摩擦定律;

其次,追加加速度的关系式。凡是两个相互连接的物体之间都有加速度的关系式,要分辨两个物体之间是绳传动?是铰链连接?是移动副?是高副?根据不同情况增加不同的加速度关系式。

此外,如果一个物体在做平面运动,一般需要用基点法给出上面两个特殊点的加速度关系式。

(6)联立上述方程组求解。

问题4:如何使用达朗伯原理求解动力学问题?

答案:

使用达朗伯原理求解动力学问题的步骤如下:

(1)对物系中的每个物体绘制受力图。此时每个物体受到主动力和约束力,绘制受力图的方法就是在静力学中使用的方法。

(2)在(1)所绘制的受力图上,对每个物体标注质心的加速度和刚体的角加速度。

(3)在(2)的基础上,在每个加速度的反方向上施加惯性力或者惯性力偶。到此为止,每个物体的受力图就是完整的。

(4)对于(3)给定的完整的受力图(包含了主动力,约束力,惯性力(偶)的图形),鉴别需要求解的未知数是哪几个力,然后确定如何用静力学的方法取研究对象,列方程。

(5)一般而言,需要追加加速度的关系方程,然后联立(4)的力系平衡方程一起求解。将达朗伯原理用到上述问题上(为方便起见,将上图重抄如下),其解题思路如下:

首先,分别绘制出OA,AB,BE,CD,滑块C的受力图。

其次,对OA,AB,BE,CD,滑块C分别标出其质心的加速度,并对OA,BE杆标出角加速度。

再次,在上述加速度的反方向上绘制出惯性力和惯性力偶。

然后,确定如何用静力学的方法求解上述CD杆的水平惯性力(它代表着CD杆的加速度)?然后,追加各个杆件质心的加速度及杆件的角加速度的关系,补充方程。

最后,联立上述方程组求解。

问题5:上述两种求解方法各有什么优缺点?

答案:

尽量使用通用解法。

对于达朗伯原理,理论上很容易,其实不然。它需要解题人对惯性力的施加很清楚,也需要熟练掌握静力学的解题技巧(否则,该方法意义就不大),此外,仍旧需要增加加速度的关系式。使用该原理,解题人需要对思路非常清晰,否则,绕来绕去,都不知道自己要做什么了。

经典力学和相对论

牛顿经典力学 牛顿经典力学认为质量和能量各自独立存在,且各自守恒,它只适用于物体运动速度远小于光速的范围。牛顿 力学较多采用直观的几何方法,在解决简单的力学问题 时,比分析力学方便简单。 广义相对论 广义相对论(General Relativity?),是爱因斯坦于1915年以几何语言建立而成的引力理论,统合了狭义相对论和牛顿的万有引力定律,将引力改描述成因时空中的物质与能量而弯曲的时空,以取代传统对于引力是一种力的看法。 广义相对论的相对性原理:所有非惯性系和有引力场存在的惯性系对于描述物理现象都是等价的。 爱因斯坦狭义相对论 相对论是20世纪物理学史上最重大的成就之一,它包括狭义相对论和广义相对论两个部分,狭义相对论颠复了从牛顿以来形成的时空概念,提示了时间与空间的统一性和相对性,建立了新的时空观。广义相对论把相对原理推广到非惯性参照系和弯曲空间,从而建立了新的引力理论。在相对论的建立过程中,爱因斯坦起了主要的作用。 物理经典力学和爱因斯坦的相对论有什么区别物理经典力学是牛顿时期的力学那时候的坐标系是忽略时间的,只有空间

爱因斯坦的相对论时期是考虑了时间的是时间和空间都考虑的 相对论与经典力学的区别与联系。 可以这样高度总结地来看: 经典力学是狭义相对论在低速(v<

《理论力学》动力学典型习题+答案

《动力学I 》第一章 运动学部分习题参考解答 1-3 解: 运动方程:θtan l y =,其中kt =θ。 将运动方程对时间求导并将0 30=θ代入得 34cos cos 22lk lk l y v ====θ θθ 938cos sin 22 3 2lk lk y a =-==θ θ 1-6 证明:质点做曲线运动,所以n t a a a +=, 设质点的速度为v ,由图可知: a a v v y n cos ==θ,所以: y v v a a n = 将c v y =,ρ 2 n v a = 代入上式可得 ρ c v a 3 = 证毕 1-7 证明:因为n 2 a v =ρ,v a a v a ?==θsin n 所以:v a ?= 3 v ρ 证毕 1-10 解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式: t v L s 0-=,并且 222x l s += 将上面两式对时间求导得: 0v s -= ,x x s s 22= 由此解得:x sv x -= (a ) (a)式可写成:s v x x 0-= ,将该式对时间求导得: 2 02 v v s x x x =-=+ (b) 将(a)式代入(b)式可得:32 20220x l v x x v x a x -=-== (负号说明滑块A 的加速度向上) 1-11 解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处 于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即: θcos A B v v = (a ) 因为 x R x 2 2cos -= θ (b ) 将上式代入(a )式得到A 点速度的大小为: 2 2 R x x R v A -=ω (c ) 由于x v A -=,(c )式可写成:Rx R x x ω=--22 ,将该式两边平方可得: 222222)(x R R x x ω=- 将上式两边对时间求导可得: x x R x x R x x x 2232222)(2ω=-- 将上式消去x 2后,可求得:2 22 42) (R x x R x --=ω 由上式可知滑块A 的加速度方向向左,其大小为 2 22 42) (R x x R a A -=ω 1-13 解:动点:套筒A ; 动系:OA 杆; 定系:机座; 运动分析: 绝对运动:直线运动; 相对运动:直线运动; 牵连运动:定轴转动。 根据速度合成定理 r e a v v v += 有:e a cos v v =?,因为AB 杆平动,所以v v =a , o v o v a v e v r v x o v x o t

理论力学复习公式

静力学知识点 静力学公理和物体的受力分析 本章总结 1.静力学是研究物体在力系作用下的平衡条件的科学。 2.静力学公理 公理1 力的平行四边形法则。 公理2 二力平衡条件。 公理3 加减平衡力系原理 公理4 作用和反作用定律。 公理5 刚化原理。 3.约束和约束力 限制非自由体某些位移的周围物体,称为约束。约束对非自由体施加的力称为约束力。约束力的方向与该约束所能阻碍的位移方向相反。 4.物体的受力分析和受力图 画物体受力图时,首先要明确研究对象(即取分离体)。物体受的力分为主动力和约束力。要注意分清内力与外力,在受力图上一般只画研究对象所受的外力;还要注意作用力和反作用力之间的相互关系。 常见问题 问题一画受力图时,严格按约束性质画,不要凭主观想象与臆测。 平面力系 本章总结 1. 平面汇交力系的合力 ( 1 )几何法:根据力多边形法则,合力矢为 合力作用线通过汇交点。 ( 2 )解析法:合力的解析表达式为 2. 平面汇交力系的平衡条件 ( 1 )平衡的必要和充分条件: ( 2 )平衡的几何条件:平面汇交力系的力多边形自行封闭。 ( 3 )平衡的解析条件(平衡方程): 3. 平面内的力对点O 之矩是代数量,记为 一般以逆时针转向为正,反之为负。 或

4. 力偶和力偶矩 力偶是由等值、反向、不共线的两个平行力组成的特殊力系。力偶没有合力,也不能用一个力来平衡。 平面力偶对物体的作用效应决定于力偶矩M 的大小和转向,即 式中正负号表示力偶的转向,一般以逆时针转向为正,反之为负。 力偶对平面内任一点的矩等于力偶矩,力偶矩与矩心的位置无关。 5. 同平面内力偶的等效定理:在同平面内的两个力偶,如果力偶相等,则彼此等效。力偶矩是平面力偶作用的唯一度量。 6. 平面力偶系的合成与平衡 合力偶矩等于各分力偶矩的代数和,即 平面力偶系的平衡条件为 7、平面任意力系 平面任意力系是力的作用线可杂乱无章分布但在同一平面内的力系。当物体(含物体系)有一几何对称平面,且力的分别关于此平面对称时,可简化为平面力系计算。还有其他情况也可按平面任意力系计算。 本章用力的平移定理对平面任意力系进行简化,得到主矢主矩的概念,并进一步对力系简化结果进行讨论;然后得出平面任意力系的平衡条件,得出平衡方程的三种形式,并用平衡方程求解一些平衡问题;介绍静定超静定问题的概念,对物体系的平衡问题进行比较多的训练;最后介绍平面简单桁架的概念和内力计算。 常见问题 问题一不要因为这一章的内容简单,就认为理论力学容易学,而造成轻视理论力学的印象,这将给后面的学习带来影响。 问题二本章一开始要掌握好单个物体的平衡问题与解题技巧,这样才能熟练掌握物体系平衡问题的解法与解题技巧。 问题三在平时做题时,要注意解题技巧的训练,能用一个方程求解的就不用两个方程,但考试时则不一定如此。 第三章空间力系 本章总结 1. 力在空间直角坐标轴上的投影 ( 1 )直接投影法 ( 2 )间接投影法(图形见课本) 2. 力矩的计算 ( 1 )力对点的矩是一个定位矢量, ( 2 )力对轴的矩是一个代数量,可按下列两种方法求得: ( a )

北大考研辅导班-北大理论物理考研接收优秀应届本科毕业生推免硕士专业目录 (校本部)

北大考研辅导班-北大理论物理考研接收优秀应届本科毕业生推免硕士专业目录(校本部) 理论物理是研究物质的基本结构和基本运动规律的一门学科,它既是物理学的理论基础,又与物理学乃至自然科学其它领域很多重大基础和前沿研究密切相关。展望二十一世纪,理论物理的发展将会有很好的前景。北京大学(原)理论物理研究室和(现)理论物理研究所是原高教部确定的全国高校理论物理学科的第一个研究室和研究所。北大理论物理是原国家教委确定的第一批重点学科之一。北大理论物理学科有优良的传统,王竹溪、彭桓武、胡宁、杨立铭等著名老一辈理论物理学家曾在这里长期执教。建国以来,北大理论物理专业为国家培养了两弹一星功臣于敏、周光召和15位中国科学院院士(于敏、周光召、冼鼎昌、甘子钊、苏肇冰、吴杭生、徐至展、霍裕平、张宗烨、陈难先、杨国桢、雷啸林、夏建白、周又元、赵光达)、3位第三世界科学院院士(苏肇冰、冼鼎昌、陈创天),以及许多在我国教育和科学研究领域有突出贡献的优秀专家学者。本学科点覆盖面广,优势突出。在理论物理的主流前沿方向上具有坚实的研究基础和较强的实力。本学科点队伍整齐、实力雄厚,凝聚了一批学术造诣精深和富有创造精神的专家学者,其中中科院院士二人,长江学者一人和国家杰出青年基金获得者三人。这一研究集体已作出在国际上有较大影响工作,目前继续招收研究生的研究方向主要有: 1.粒子物理理论 具体包括强子物理(如粲偶素物理、自旋物理、格点规范等)、标准模型和超出标准模型的新物理(如CP破坏、辐射修正、超对称的量子效应等)等。该方向研究集体是目前国家自然科学基金资助的全国唯一一个理论物理方面的“创新研究群体”。 2.原子核理论 具体包括如原子核内的夸克自由度、极端条件下的核结构、原子核的代数模型及微观基础、原子核的集体运动模式及其相变、超重核的结构及合成反应、核天体物理、相对论性重离子碰撞、强相互作用物质的成分、形态、相及相变等。 3.场论和宇宙学 包括如弦理论、共形场论、非对易几何、宇宙甚早期演化及宇宙结构等。 4.凝聚态理论和统计物理 包括介观体系输运性质和强关联系统统计模型、高温超导理论、强电磁场等极端条件下凝聚态物质的性质等。 5.计算物理及其应用 包括多粒子系统的研究方法、对称性理论和方法、模拟计算方法等。自1996年以来,本学科点在国际权威学术期刊发表高水平学术论文多篇,其中有一批在国际上有相当影响的工作。按照SCI和 SLAC-SPIRES的检索结果,本学科成员的论文被他人引用几千次,这充分说明了这些工作的原创性和影响力。本学科成员1996年以来出版专著和教材20余部。获得国家自然科学三等奖1项、国家优秀教材奖12项(其中一等奖3项)。承担了量子力学、电动力学、热力学与统计物理、理论力学、数学物理方法等本科生主干基础课和高等量子力学、量子场论、量子规范场论、量子场论专题、微分几何与拓扑学、粒子物理、广义相对论、宇宙学、中高能原子核理论、计算物理等十多门研究生核心课程的教学

《理论力学》考试知识点.

《理论力学》考试知识点 静力学 第一章静力学基础 1、掌握平衡、刚体、力的概念以及等效力系和平衡力系,静力学公理。 2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束和球铰链的性质。 3、熟练掌握如何计算力的投影和平面力对点的矩,掌握空间力对点的矩和力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。 4、对简单的物体系统,熟练掌握取分离体并画出受力图。 第二章力系的简化 1、掌握力偶和力偶矩矢的概念以及力偶的性质。 2、掌握汇交力系、平行力系、力偶系的简化方法和简化结果。 3、熟练掌握如何计算主矢和主矩;掌握力的平移定理和空间一般力系和平面力系的简化方法和简化结果。 4、掌握合力投影定理和合力矩定理。 5、掌握计算平行力系中心的方法以及利用分割法和负面积法计算物体重心。 第三章力系的平衡条件 1、了解运用空间力系(包括空间汇交力系、空间平行力系和空间力偶系)的平衡条件求解单个物体和简单物体系的平衡问题。 2、熟练掌握平面力系(包括平面汇交力系、平面平行力系和平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力系平衡条件求解单个物体和物体系的平衡问题。 3、了解静定和静不定问题的概念。 4、掌握平面静定桁架计算内力的节点法和截面法,掌握判断零力杆的方法。 第四章摩擦 1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。 2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。 运动学 第五章点的运动 1、掌握描述点的运动的矢量法、直角坐标法和弧坐标法,能求点的运动方程。 2、熟练掌握如何计算点的速度、加速度及其有关问题。 第六章刚体的基本运动

经典力学的局限性(难)

6.经典力学的局限性难 1.关于经典力学、狭义相对论和量子力学,下面说法中正确的是( ) A.狭义相对论和经典力学是相互对立,互不相容的两种理论 B.在物体高速运动时,物体的运动规律服从狭义相对论理论,在低速运动时,物体的运动服从牛顿定律 C.经典力学适用于宏观物体的运动,量子力学适用于微观粒子的运动 D.不论是宏观物体,还是微观粒子,经典力学和量子力学都是适用的 【答案】BC 【解析】 A项:经典力学是狭义相对论在低速(v<<c)条件下的近似,即只要速度远远小于光速,经过数学变换狭义相对论的公式就全部变化为牛顿经典力学的公式,故A错误; B项:在物体高速运动时,物体的运动规律服从狭义相对论理论,在低速运动时,物体的运动服从牛顿定律,故B正确; C、D项:牛顿经典力学只适用于宏观低速物体,而微观、高速适用于狭义相对论,故C 正确;D错误。 故选:BC。 2.下列物理学公式正确的是 A.声音在空气中的传播速度(p为压强,为密度) B.声音在空气中的传播速度(p为压强,为密度) C.爱因斯坦提出的质量与速度关系(为静止质量,c为光速,为物体速度) D.爱因斯坦提出的时间与速度关系(为静止时间,c为光速,为物体速度) 【答案】BD 【解析】 A、B项:密度的单位为kg/m3,压强的单位为N/m2,又1N=1kg m/s2,则的单位为 ,等于速度的单位。故B正确,A错误; C项:爱因斯坦提出的质量与速度关系,(m0为静止质量,C为光速,v为物体速度)故C错误;

D项:爱因斯坦提出的时间与速度关系(t0为静止时间,C为光速,v为物体速度),故D正确。 故应选:BD。 3.2017 年 6 月 16 日,来自中国的“墨子号”量子卫星从太空发出两道红色的光射向青海德令哈站与千里外的云南丽江高美古站,首次实现了人类历史上第一次距离达千里级的量子密钥分发。下列说法正确的是() A.经典力学适用于“量子号”绕地球运动的规律, B.经典力学适用于光子的运动规律, C.量子力学可以描述“量子号”发出“两道红光”的运动规律 D.量子密钥分发的发现说明经典力学已经失去了使用价值 【答案】AC 【解析】A、经典力学适用于宏观低速的物体运动,卫星的运动相对微观粒子的运动速度小很多,属于宏观低速,故A正确。B、量子力学适用于微观高速的物体运动,如光子的运动,故B错误。C、D、量子力学和经典力学的适用范围不同,各自在自己的范围内是有价值的,并不会失去用处;故C正确,D错误。故选AC。 4.(多选)爱因斯坦相对论的提出是物理学领域的一场重大革命,主要是因为( ) A.否定了经典力学的绝对时空观 B.揭示了时间、空间并非绝对不变的本质属性 C.打破了经典力学体系的局限性 D.使人类对客观世界的认识开始从宏观世界深入到微观世界 【答案】BC 【解析】A、运动的钟变慢,运动的尺缩短,运动物体的质量变大,这是狭义相对论的几个重要的效应,揭示了时间、空间并非绝对不变的属性,故A错误,B正确; C、爱因斯坦相对论解释了经典牛顿力学不能解释的高速、微观范围,但狭义相对论在狭义相对性原理的基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相对性原理,它打破了经典力学体系的局限性,故C正确; D、普拉克提出的量子理论使人类对客观世界的认识开始从宏观世界深入到微观世界,故D错误。 5.下列说法正确的是 A.不论是对宏观物体,还是微观粒子,经典力学和量子力学都是适用的 B.当物体运动速度很大(接近光速)时,经典力学理论所得的结果与实际结果之间出现了较大的偏差

理论力学基础知识

《理论力学教程》基础知识 第一章 质点力学 1. 在求解平面曲线运动问题时,可采用平面极坐标系,常将速度矢量分解为径 向速度和横向速度,其表达式分别为:r v r =;θθ r v =;将加速度矢量分解为径向加速度和横向加速度,其表达式分别为2θ r r a r -=; θθθ r r a 2+=。 第2题图 2. 求解线约束问题,通常用内禀方程,它的优点是运动规律和约束反作用力可以分开解算,这套方程可表示为,切向:τF dt dv m =;法向:n n R F v m +=ρ2 ;副法向:b b R F +=0。 3. 试写出直角坐标系表示的质点运动微分方程式x F x m = 、y F y m = 、z F z m = 。 4. 质点在有心力作用下,只能在垂直于动量矩J 的平面内运动,它的两个动力学特征是:(1)对力心的动量矩守恒;(2)机械能守恒。 5. 牛顿运动定律能成立的参考系,叫做惯性系;牛顿运动定律不能成立的参考 系,叫做非惯性系,为了使得牛顿运动定律在此参考系中仍然成立,则需加 上适当的惯性力。 6. 在平面自然坐标系中,切向加速度的表达式为dt dv a =τ,它是由于速度大小改变产生的;法向加速度的表达式为ρ2 v a n =,它是由于速度方向改变产生的。 7. 质心运动定理反映了质点组运动的总趋势,而质心加速度完全取决于作用在

质点组上的外力,而内力不能使质心产生加速度。 第8题图 8. 一质量为m 的小环穿在光滑抛物线状的钢丝上并由A 点向顶点O 运动,其 建立起的运动微分方程为:θsin mg dt dv m =;θρ cos 2 mg R v m -=。 注:此题答案不唯一。 第9题图 9.一物体作斜抛运动,受空气阻力为v mk R -=,若采用直角坐标系建立其在任意时刻的运动微分方程为:x x m kv dt dv m -=;y y mkv m g dt dv m --=;若采用自然坐标系建立其在任意时刻的运动微分方程为:θsin mg mkv dt dv m --=; θρc o s 2 mg v m =。 10.动量矩定义表达式为v m r J ?=,它在直角坐标系中的分量式为 ()y z z y m J x -=、()z x x z m J y -=、()x y y x m J z -=。

理论力学公式

理论力学公式

————————————————————————————————作者:————————————————————————————————日期: ?

理论力学公式 运动学公式 定轴转动刚体上一点的速度和加速度:(角量与线量的关系) 1.点的运动 矢量法 2 2 , , )(dt r d dt v d a dt r d v t r r ==== 直角坐标法 ) ()()(321t f z t f y t f x ===z v y v x v z y x ===z a y a x a z y x === 点的合成运动 r e a v v v +=r e a a a a +=(牵连运动为平动时) k r e a a a a a ++=(牵连运动为转动时) 其中, ),sin(2 , 2r e r e k r e k v v a v a ωωω=?=2 2 , , )(dt d dt d dt d t f ? ωε?ω?====

三.运动学解题步骤.技巧及注意的问题 1.分析题中运动系统的特点及系统中点或刚体的运动形式。 2.弄清已知量和待求量。 3.选择合适的方法建立运动学关系求解。 各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。 动力学公式 1. 动量定理 质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量 的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和. 质心运动定理 ω R v =ε τR a =2 ωR a n =全加速度: 2 ),(ωε= n a tg 轮系的传动比: n n n n i Z Z R R n n i ωωωω ωωωωωω13221111221212112 ,-????====== ω ω , ?=+=AB v v v v BA BA A B 为图形角速度 ετ ?=AB a BA 2 ω ?=AB a n BA ω,ε分别为图形的角速度,角加速度 n BA BA A B a a a a ++=τ() d d e i p F t =∑

理论力学动力学测试

第三篇 动力学 一、选择题(每题2分,共20分) 1.在铅直面内的一块圆板上刻有三道直槽AO ,BO ,CO ,三个质量相等的小球M 1,M 2,M 3在重力作用下自静止开始同时从A ,B ,C 三点分别沿各槽运动,不计摩擦,则________到达O 点。 (A )M 1小球先; (B )M 2小球先; (C )M 3小球先; (D )三球同时。 题1 题2 题3 2.质量分别为m 1=m ,m 2=2m 的两个小球M 1,M 2用长为L 而重量不计的刚杆相连。现将M 1置于光滑水平面上,且M 1M 2与水平面成?60角。则当无初速释放,M 2球落地时,M 1球移动的水平距离为____________。 (A )3L ; (B )4L ; (C )6L ; (D )0。 3.质量为m ,长为b 的匀质杆OA ,以匀角速度ω绕O 轴转动。图示位置时,杆的动量及对O 轴的动量矩的大小为________。 (A )2 ωmb p =,122ωmb L O =; (B )0=p ,122ωmb L O =; (C )2ωmb p =,22ωmb L O =; (D )2 ωmb p =,32ωmb L O =。 4.在_____情况下,跨过滑轮的绳子两边张力相等,即F 1=F 2(不计轴承处摩擦)。 (A )滑轮保持静止或以匀速转动或滑轮质量不计; (B )滑轮保持静止或滑轮质量沿轮缘均匀分布; (C )滑轮保持静止或滑轮质量均匀分布; (D )滑轮质量均匀分布。 题4 题5 5.均质杆长L ,重P ,均质圆盘直径D =L ,亦重P ,均放置在铅垂平面内,并可绕O 轴转动。初始时杆轴线和圆盘直径均处于水平位置,而后无初速释放,则在达到图示位置瞬时,杆的角速度ω1________圆盘的角速度ω2。 (A )大于; (B )小于; (C )等于; (D )小于或等于。

理论力学公式

理论力学公式 运动学公式 定轴转动刚体上一点的速度和加速度:(角量与线量的关系) ω R v =ε τR a =2 ωR a n =全加速度: 2 ),(ωε = n a tg 点的合成运动 r e a v v v +=r e a a a a +=(牵连运动为平动时) k r e a a a a a ++=(牵连运动为转动时) 其中, ) ,sin(2 , 2r e r e k r e k v v a v a ωωω=?= 1.点的运动 ? 矢量法 2 2 , , )dt r d dt v d a dt r d v t r r ====? 直角坐标法 ) ()()(321t f z t f y t f x == =z v y v x v z y x == =z a y a x a z y x == =2 2 , , )(dt d dt d dt d t f ? ωε?ω?====

三.运动学解题步骤.技巧及注意的问题 1.分析题中运动系统的特点及系统中点或刚体的运动形式。 2.弄清已知量和待求量。 3.选择合适的方法建立运动学关系求解。 各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。 动力学公式 1. 动量定理 质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和. 质心运动定理 M a c = ∑F ≡ R 2. 动量矩定理: 平行移轴定理 ) (2 2) ( e z z e z z M dt d I M I ==∴?ε或—刚体定轴转动微分方程 ∑==) ()()(e O e i O O M F m dt L d 一质点系对固定点的动量矩定理 ε τ ?=AB a BA 2 ω?=AB a n BA ω,ε分别为图形的角速度,角加速度 n BA BA A B a a a a ++=τωω , ?=+=AB v v v v BA BA A B 为图形角速度 轮系的传动比: n n n n i Z Z R R n n i ωωωω ωωωωωω13221111221212112 ,-????====== 2 'md I I zC z +=() d d e i p F t =∑

理论力学考试知识点总结

理论力学》考试知识点 静力学 第一章静力学基础 1、掌握平衡、刚体、力的概念以及等效力系和平衡力系,静力学公理。 2、掌握柔性体约束、光滑接触面约束、光滑铰链约束、固定端约束和球铰链的性质。 3、熟练掌握如何计算力的投影和平面力对点的矩,掌握空间力对点的矩和力对轴之矩的计算方法,以及力对轴的矩与对该轴上任一点的矩之间的关系。 4、对简单的物体系统,熟练掌握取分离体并画出受力图。 第二章力系的简化 1、掌握力偶和力偶矩矢的概念以及力偶的性质。 2、掌握汇交力系、平行力系、力偶系的简化方法和简化结果。 3、熟练掌握如何计算主矢和主矩;掌握力的平移定理和空间一般力系和平面力系的简化方法和简化结果。 4、掌握合力投影定理和合力矩定理。 5、掌握计算平行力系中心的方法以及利用分割法和负面积法计算物体重心。 第三章力系的平衡条件 1、了解运用空间力系(包括空间汇交力系、空间平行力系和空间力偶系)的平衡条件求解单个物体和简单物体系的平衡问题。 2、熟练掌握平面力系(包括平面汇交力系、平面平行力系和平面力偶系)的平衡条件及其平面力系平衡方程的各种形式;熟练掌握利用平面力

系平衡条件求解单个物体和物体系的平衡问题。 3、了解静定和静不定问题的概念 4、掌握平面静定桁架计算内力的节点法和截面法,掌握判断零力杆的方法。 第四章摩擦 1、掌握运用平衡条件求解平面物体系的考虑滑动摩擦的平衡问题。 2、了解极限摩擦定律、滑动摩擦系数、摩擦角、自锁现象、摩阻的概念。 运动学 第五章点的运动 1、掌握描述点的运动的矢量法、直角坐标法和弧坐标法,能求点的运动方程。 2、熟练掌握如何计算点的速度、加速度及其有关问题。 第六章刚体的基本运动 1、掌握刚体平动和定轴转动的特征;掌握刚体定轴转动的转动方程、角速度和角加速度;掌握定轴转动刚体角速度矢量和角加速度矢量的概念以及刚体内各点的速度和加速度的矢积表达式。 2、熟练掌握如何计算定轴转动刚体的角速度和角加速度、刚体内各点的速度和加速度。 第七章点的复合运动 1、掌握运动合成和分解的基本概念和方法。 2、理解哥氏加速度的原理。 3、熟练掌握点的速度合成定理和牵连运动为平动时的加速度合成定理的应用。

完整word版,理论力学动力学知识点总结,推荐文档

质点动力学的基本方程 知识总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。 求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 动量定理 知识点总结 1.牛顿三定律适用于惯性参考系。 质点具有惯性,以其质量度量; 作用于质点的力与其加速度成比例; 作用与反作用力等值、反向、共线,分别作用于两个物体上。 2.质点动力学的基本方程。 质点动力学的基本方程为,应用时取投影形式。 3.质点动力学可分为两类基本问题。 质点动力学可分为两类基本问题: (1). 已知质点的运动,求作用于质点的力; (2). 已知作用于质点的力,求质点的运动。

求解第一类问题,需先求得质点的加速度;求解第二类问题,一般是积分的过程。质点的运动规律不仅决定于作用力,也与质点的运动初始条件有关,这两类的综合问题称为混合问题。 常见问题 问题一在动力学中质心意义重大。质点系动量,它只取决于质点系质量及质心速度。 问题二质心加速度取决于外力主失,而与各力作用点无关,这一点需特别注意。 动量矩定理 知识点总结 1.动量矩。 质点对点O 的动量矩是矢量。 质点系对点O 的动量矩是矢量。 若z 轴通过点O ,则质点系对于z 轴的动量矩为 。 若 C 为质点系的质心,对任一点O 有。 2.动量矩定理。 对于定点O 和定轴z 有 若 C 为质心,C z 轴通过质心,有

肛肠动理论力学

肛肠动力学 一、概述 (一)肛肠动力学的概念 用静力学和动力学的方法来研究结肠、直肠、肛管(包括盆底)的各种运动方式,从而对排便生理、肛门自制生理及有关肛肠疾病的病理生理学进行研究,称为肛肠动力学(Anorectal Dynamics)。 平时,固态粪便储存于乙状结肠甚至降结肠中。结肠及直肠松弛,内外括约肌、耻骨直肠肌均处于张力收缩状态。在结肠至肛门这一段距离中,存在着一个远心端压力高,近心端压力低的向心型压力梯度和蠕动波梯度,排便阻力大于排便动力,粪便得以储存(自制)。排便时,结、直肠肌收缩,肠腔内压增高,腹肌亦收缩使腹压增高,而内括约肌、耻骨直肠肌、外括约肌均反射性松弛,肛管压力迅速降低,上述压力梯度逆转,排便动力大于排便阻力,粪便排出肛门(自制解除)。这两种状态下肛管、直肠、盆底的功能变化及各器官协调功能均可通过压力变化而表现出来,测定这些压力变化便可判断有关器官的功能和协调情况。(二)肛肠动力学的发展概况 压力测定的方法诊断肛肠疾病始于30多年前,但其历史却可上溯到一百多年前。1877年Cowers发现扩张直肠后。内括约肌短暂松弛,他即将之称为直肠内括约肌抑制反射。Denny-Brown等(1935)肯定了这一发现。Callaghan和 Nixon(1964)报道先天性巨结肠患者此反射缺如。1967年,Schnaufer、Lawson、Nixon等分别发表文章,介绍用肛管直肠测压诊断小儿先天性巨结肠的方法。此后,应用者逐渐增多。七十年代初。开始将肛管直肠测压的方法用于肛肠外科疾病的病理生理研究和诊断,如痔、肛裂患者肛管压力改变及扩肛治疗后压力的变化。以后,又相继有人报道排便失禁、直肠脱垂、肛瘘、直肠孤立性溃疡综合征、会阴下降综合征等疾病肛管直肠测压的结果。八十年代始,人们又用肛肠测压法评价各种肛肠手术后患者的肛管直肠功能,将其用于排便失禁的生物反馈治疗,将骶神经—肛门外括约肌反射用作术中监测手段,帮助鉴别神经组织。近几年来,测压方法以及由其衍生出来的各种方法已广泛地应用于肛肠外科的各个领域,被公认为十分重要的研究手段和有用的诊断方法。显然,"测压"这一名词已难以全面准确地体现本方法学的现状和发展趋势。本文作者在工程界学者的帮助下,于1986年提出"肛肠动力学"的概念,以期代替“测压”一词。 (三)肛肠动力学检查的意义 排便、自制以及多种肛肠疾病的发生、发展都与结肠、直肠、肛管、盆底的力学状态改变有关。由于涉及的因素很多,机理十分复杂以及检测手段的限制,过去医师们仅能凭病人主诉和直肠指诊x线照相所提供的比较粗略的形态学资料进行判断,而难以对它们的功能,尤其是运动状态下的功能进行定性、定量观察。近些年发展起来的排粪造影技术,使人们对大肠肛门运动过程中的形态学改变的观察成为可能,但对这些过程申肉眼无法观察到的力学状态却难以准确了解,动力学检查恰好提供了一种有效的定量手段,从而在肛肠疾病的诊断和研究中得到广泛应用。当它与肠道转运功能检查、排粪造影检查、盆底肌电图检查结合应用时,能提供关于结肠、直肠、盆底、内外括约肌生理的许多重要的基本信息,从而使肛肠外科疾病的研究、诊断、治疗水平有了提高。 (四)研究肛肠动力学的基本要求

理论力学之核心概念-动力学篇

本篇接着阐述理论力学动力学中的核心观念。阐述的方式依旧是回答几个问题。 问题1:动力学的基本问题是什么? 答案:虽然书上有关于动力学问题的许多说法,但是就实际应用而言,对于我们机械专业而言,我们所遇到的最常见的动力学问题是,在一个机构上的原动件受到了力(偶),我们要得到机构上各构件的速度和加速度。或者已知了速度和加速度,要反推这个力(偶)是多少。 下图就是这样一个例子。在OA杆上施加一个驱动力偶,各个杆件都有重力,我们要计算此时各约束处的约束力的大小,还需要计算CD杆的速度和加速度。 该问题中,力与运动交织在一起,这就是机构的动力学问题,也是机械中经常遇到的问题。 问题2:如何求解动力学问题? 答案: 解决动力徐问题的方法很多。我们只要谈两种方法:第一种是通用解法,第二种是动静法(达朗伯原理)。 通用解法,是指面对一个动力学问题,我们总是有一套很程序化的思路来求解它,这套思路中,我们会使用刚体平面运动的微分方程。使用这种方法,我们几乎不用思考,就可以列出所有的方程,解决所有的未知数。例如,对上面这个问题,如果它已知M,要求CD杆的加速度。则使用通用解法,我们可以同时求出AB杆,BE,CD杆的加速度,也可以求出A,B,C,D,E 处所有的约束力。使用通用解法,我们几乎不用关注题目要求什么,而总是可以求出所有的未知数。 动静法,是说把这个动力学问题从形式上变成静力学问题,然后再借用静力学的求解方法来计算所需要的未知数。动静法之所以能够把动力学问题变成静力学问题,是因为它把加速度变成了惯性力,然后对于系统中的每一个构件,形成了一个力系平衡的问题。而我们之所以使用动静法,是因为对于静力学问题,我们有很多解题技巧,例如取整体为对象,或者取某几个构件一起为对象,或者对任何一个点取力矩,这些优越性,都是刚体平面运动微分方程所不具备的。 问题3:如何使用通用解法求解动力学问题?

理论力学公式 (1) 2

理论力学公式 运动学公式 定轴转动刚体上一点的速度和加速度:(角量与线量的关系) 1.点的运动 矢量法 2 2 , , )(dt r d dt v d a dt r d v t r r ==== 直角坐标法 ) ()()(321t f z t f y t f x == =z v y v x v z y x ===z a y a x a z y x === 点的合成运动 r e a v v v +=r e a a a a +=(牵连运动为平动时) k r e a a a a a ++=(牵连运动为转动时) 其中, ) ,sin(2 , 2r e r e k r e k v v a v a ωωω=?=2 2 , , )(dt d dt d dt d t f ? ωε?ω?====

三.运动学解题步骤.技巧及注意的问题 1.分析题中运动系统的特点及系统中点或刚体的运动形式。 2.弄清已知量和待求量。 3.选择合适的方法建立运动学关系求解。 各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。 动力学公式 1. 动量定理 质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量 的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和. 质心运动定理 ω R v =ε τR a =2 ωR a n =全加速度: ),(ε= n a tg 轮系的传动比: n n n n i Z Z R R n n i ωωωω ωωωωωω13221111221212112 ,-????====== ω ω , ?=+=AB v v v v BA BA A B 为图形角速度 ετ ?=AB a BA 2 ω ?=AB a n BA ω,ε分别为图形的角速度,角加速度 n BA BA A B a a a a ++=τ() d d e i p F t =∑

北京大学理论力学讲义 LagrangeEq

第一章Lagrange 方程

本章主要内容 §1、约束,自由度和广义坐标 §2、虚功原理 §3、Lagrange方程

在矢量力学中,最基本、最重要的方程是F =m a 。 1、处理运动受到约束(即限制)的力学问题 一个质量为m 的质点,受到作用力F 已知,在3维空间中, t d /r md F 22 =这里包含3个标量方程,3个未知数(矢径的3个分量)。如果这个质点被限制在一个光滑的曲面f (r )=0上运动,f (r )=f (x,y,z )= 0 , 22/, F R md r dt += 在曲面上,df =0,由于曲面光滑,所以曲面对质点 的作用力R ∝,?n ? O ?r d r f (r )=0m =0?n 矢量力学的不足? 运动,运动方程是:方程为:?n 表示法向单位矢量。

同理,质点约束在光滑的曲线上运动, 独立变量减少了2个,但方程和未知量却增加2个。 但在分析力学中,情况却相反,质点的运动受到约束,描述质点运动的独立变量数减少, 方程和未知量的个数也随着减少, 使求解问题变得更简单。 2、描述质点运动的坐标 在F=m a中,r是我们要求解的重要变量, 但这种变量的形式太受局限,难于用来描述复杂的 物理体系,如电磁场、引力场,更不用说量子体系。 在分析力学中,r被广义坐标取代, 这种描述方法可直接推广到 电磁场、引力场、量子力学、量子场论, 可以用于自然界中的所有4种基本相互作用。

3、作用力 F是一个宏观量,在微观世界中没有这个量。 宏观量F与微观世界中的动量变化相联系。 在分析力学中,通常用能量、广义动量这类更基本的物理量,这样便于把分析力学推广到其它领域。 1788年,J. L. Lagrange写了一本名为“分析力学”的书,这就是现在的Lagrange形式的分析力学。1834年,W. Hamilton 建立了另一种形式的分析力学,就是现在的Hamilton形式的分析力学。 除这两种形式之外,分析力学还被表述为变分形式。我们现在所说的分析力学主要包括这3种表述形式。 分析力学比较抽象,不像矢量力学那样直观。 在Lagrange的分析力学中,没有一张图。 矢量力学则直观、图像清晰。

理论力学公式

2013.1.27兰州 师兄的建议:考试不仅仅是知识的积累,更重要的是会学,重点考试内容必须掌握, 所以我们要好好复习 静力学 静力学是研究物体在力系作用下平衡的科学。 第一章、静力学公理和物体的受力分析 1、基本概念:力、刚体、约束和约束力的概念。 2、静力学公理: (1)力的平行四边形法则;(三角形法则、多边形法则)注意:与力偶的区别 (2)二力平衡公理;(二力构件) (3)加减平衡力系公理;(推论:力的可传性、三力平衡汇交定理) (4)作用与反作用定律; (5)刚化原理。 3、常见约束类型与其约束力: (1)光滑接触约束——约束力沿接触处的公法线; (2)柔性约束——对被约束物体与柔性体本身约束力为拉力; (3)铰链约束——约束力一般画为正交两个力,也可画为一个力; (4)活动铰支座——约束力为一个力也画为一个力; (5)球铰链——约束力一般画为正交三个力,也可画为一个力; (6)止推轴承——约束力一般画为正交三个力; (7)固定端约束——两个正交约束力,一个约束力偶。 4、物体受力分析和受力图: (1)画出所要研究的物体的草图; (2)对所要研究的物体进行受力分析; (3)严格按约束的性质画出物体的受力。 意点:(1)画全主动力和约束力; 注 (2)画简图时,不要把各个构件混在一起画受力图; (3)灵活利用二力平衡公理(二力构件)和三力平衡汇交定理; (4)作用力与反作用力。 第二章、平面汇交力系与平面力偶系

1、平面汇交力系: (1)几何法(合成:力多边形法则;平衡:力多边形自行封闭) (2)解析法(合成:合力大小与方向用解析式;平衡:平衡方程0x F =∑,0y F =∑) 意点:(1)投影轴尽量与未知力垂直;(投影轴不一定相互垂直) (2)对于二力构件,一般先设为拉力,若求出负值,说明受压。 2、平面力对点之矩——()O M Fh =±F ,逆时针正,反之负 意点:灵活利用合力矩定理 3、平面力偶系: (1)力偶:由两个等值、反向、平行不共线的力组成的力系。 (2)力偶矩:M F h =±,逆时针正,反之负。 (3)力偶的性质: [1]、力偶中两力在任何轴上的投影为零; [2]、力偶对任何点取矩均等于力偶矩,不随矩心的改变而改变;(与力矩不同) [3]、若两力偶其力偶矩相等,两力偶等效; [4]、力偶没有合力,力偶只能由力偶等效。 (4)力偶系的合成(i M M = ∑)与平衡(0M =∑) 第三章、平面任意力系 1、力的平移定理:把力向某点平移,须附加一力偶,其力偶矩等于原力对该点的力矩。 2、简化的中间结果: (1)主矢R 'F ——大小:R F '= ; 方向:(cos ,/R ix R F F ''=F i ,()cos ,/R iy R F F ''=∑F j 。 (2)主矩()O O i M M =∑F 3、简化的最后结果: (1)主矢0R '≠F ——[1]、0O M =,合力,作用在O 点; [2]、0O M ≠,合力,作用线距O 点为/O R M F '。 (2)主矢0R '=F ——[1]、0O M ≠,合力偶,与简化中心无关; [2]、0O M =,平衡,与简化中心无关。 4、平面任意力系的平衡 (1)平衡条件——0R '=F 、0O M =。 (2)平衡方程——[1]、基本式:0x F =∑、0y F =∑、()0O M =∑F ; [2]、二矩式:0x F =∑、()0A M =∑F 、()0B M =∑F ,A 、 注 注

理论力学部分

(理论力学部分) 一.静力学 1.静力学基本概念、受力图 刚体、力的概念、静力学公理。约束与约束反力。约束的基本类型。受力分析与受力图。2.平面汇交力系 平面汇交力系合成的几何法、平衡的几何条件。力的分解、力在轴上投影。平面汇交力系合成的解析法。平面汇交力系平衡方程及其应用。 3.力矩、平面力偶理论 力对点之矩、力偶与力偶矩、力偶等效、平面力偶系的合成与平衡。 4.平面任意力系 力的平移定理。平面任意力系向面内一点简化。力系的主矢与主矩。简化结果分析。合力矩定理。平面任意力系的平衡方程。静定与静不定的概念。物体系统的平衡问题。 5.摩擦及其平衡问题 静滑动摩擦、动滑动摩擦的概念。摩擦角与自锁现象。考虑摩擦时平衡问题的解法。6.空间力系 力在空间坐标轴上投影。力对轴之矩。空间任意力系的平衡方程。重心的概念与计算。二.运动学 运动学的研究对象。参考系。运动描述的相对性。瞬时和时间间隔。 1.点的运动学 确定点运动位置的基本方法——矢量法、直角坐标法、弧坐标法。运动方程。点的速 度与加速度的矢量表示,点的速度与加速度的直角坐标表示,点的速度与加速度的弧坐标表示。切向加速度和法向加速度。 2.刚体的简单运动 刚体的平动。刚体的定轴转动。转动方程。角速度与角加速度。转动刚体上各点的速度与加速度。定轴轮系的传动比。 3.点的合成运动 合成运动的几个基本概念——定参考系与动参考系,绝对运动、相对运动与牵连运动,三种速度与加速度,牵连点。点的速度合成定理。 4.刚体平面运动 刚体平面运动分解为平动与转动。求平面图形上各点速度的基本法与投影法。求平面图形上各点速度的瞬心法。 三.动力学 1.质点的运动微分方程 动力学的研究对象。动力学的基本定律。质点的运动微分方程。质点动力学的两类基本问题。2.体绕定轴转动的动力学基本方程 刚体绕定轴转动的运动微分方程、转动惯量。 3.动能定理 力的功。刚体作平动、定轴转动、平面运动时动能的计算。质点与质点系的动能定理。4.动静法 惯性力的概念。质点与质点系的达朗伯原理。刚体惯性力系的简化。 (材料力学部分) 1.截面法、内力、应力、应变和变形的概念。 2.(压)杆的内力、应力和变形。虎克定律,材料的拉、压力学性能。应力集中的概念。

相关文档
最新文档