元素与集合的关系

元素与集合的关系
元素与集合的关系

知识点——元素与集合的关系

一、定义

(1)如果a 是集合A 的元素,就说a 属于(belong to)A ,记作a ∈A.

(2)如果a 不是集合A 的元素,就说a 不属于(not belong to)A ,记作a A ?.

二、解题之核心

给定一个对象a ,它与一个给定的集合A 之间的关系为a A ∈,或者a A ?,二者必居其一.解答这类问题的关键是:弄清a 的结构,弄清A 的特征,然后才能下结论.

三、常用数集及其表示

非负整数集(或自然数集),记作N ;

正整数集,记作N *或N +;

整数集,记作Z ;

有理数集,记作Q ;

实数集,记作R ;

四、典型例题

用符号“∈”或“?”填空. (1)23_____{|11}32____{|4}x x x x <>, ;

(2)223___{|1}5___{|1}N N x x n n x x n n ++=+∈=+∈,, ,;

(3)22

(11)___{|}(11)___{()|}.y y x x y y x -=-=,, ,,

解析:对于第(1)题,可以通过使用计算器,比较各数值的大小,也可以先将各数值转化成结构一致的数,再比较大小;对于第(2)题,不妨分别令x=3,x=5,解方程;对于第(3)题,要明确各个集合的本质属性. (1) 23121123{|11}x x =>∴?<,; 321816432{|4}x x =>=∴∈>,;

(2)令2

31n =+,则223{|1}N N n x x n n ++=±?∴?=+∈,,; 令2

51n =+,则2225{|1}N N n x x n n ++=±∈∴∈=+∈,其中,,;

(3) ∵(-1,1)是一个有序实数对,且符合关系y=x 2,

∴22(11){|}(11){()|}.y y x x y y x -?=-∈=,, ,,

点评:第(1)题充分体现了“化异为同”的数学思想.另外,“见根号就平方”也是一种常用

的解题思路和方法,应注意把握.第(2)题关键是明确集合2{|1}N x x n n +=+∈,这个“口袋”中是装了些x 呢?还是装了些n 呢?要特别注意描述法表示的集合,是由符号“|”左边的元素组成的,符号“|”右边的部分表示x 具有的性质.第(3)题要分清两个集合的区别.集合2{|}y y x =这个“口袋”是由y 构成的,并且是由所有的大于或等于0的实数组成的;而集合2{()|}x y y x =,是由抛物线2y x =上的所有点构成的,是一个点集.

五、变式训练

下面有四个命题:

(1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ;

(3)若,,N b N a ∈∈则b a +的最小值为2; (4)x x 212

=+的解可表示为{}1,1; 其中正确命题的个数为( )

A .0个

B .1个

C .2个

D .3个

答案:A

解析:(1)最小的数应该是0;

(2)反例:0.5N -?,但0.5N ?;

(3)当0,1,1a b a b ==+=;

(4)元素的互异性.

1了解集合的含义元素与集合的属于关系

1.了解集合的含义、元素与集合的属于关系; 2.理解集合之间包含与相等的含义,能识别给定集合的子集; 3.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; 4.理解在给定集合中一个子集的补集的含义,会求给定子集的补集; 5.能使用韦恩(Venn)图表达集合的关系及运算. 1.元素与集合 (1)集合中元素的三个特征:. (2)元素与集合的关系是关系,用符号表示. (3)集合的表示法: 2.集合间的基本关系 表示 关系 文字语言符号语言 集合间 的基本关 系 相等集合A与集合B中的所有元素都相同 子集A中任意一个元素均为B中的元素 真子集 A中任意一个元素均为B中的元素,且B中至少有 一个元素不是A中的元素 空集空集是任何集合的,是任何非空集合的 3.集合的基本运算 集合的并集集合的交集集合的补集图形 语言 符号 语言 A∪B={x|x∈A,或x∈B}A∩B={x|x∈A,且x∈B}?U A={x|x∈U,且x?A} 并集的性质: A∪?=A;A∪A=A;A∪B=B∪A;A∪B=A?. 交集的性质: A∩?=?;A∩A=A;A∩B=B∩A;A∩B=A?. 补集的性质: A∪(?U A)=;A∩(?U A)=?U(?U A)= 高频考点一集合的含义 例1 (1)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是( ) A.1B.3C.5D.9 (2)已知集合A={m+2,2m2+m},若3∈A,则m的值为________. 【变式探究】(1)设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B}, 则M中的元素个数为( ) A.3 B.4 C.5 D.6 (2)设a,b∈R,集合{1,a+b,a}=,则b-a=________. 高频考点二集合间的基本关系 例2、(1)已知集合A={x|x2-3x+2=0,x∈R},B={x|0

《集合之间的关系》参考教案

1.2.1 集合之间的关系 (一)教学目标; 1.知识与技能 (1)理解集合的包含和相等的关系. (2)了解使用Venn图表示集合及其关系. (3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系. 2.过程与方法 (1)通过类比两个实数之间的大小关系,探究两个集合之间的关系. (2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义. (3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念. 3.情感、态度与价值观 应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力. (二)教学重点与难点 重点:子集的概念;难点:元素与子集,即属于与包含之间的区别. (三)教学方法 在从实践到理论,从具体到抽象,从特殊到一般的原则下,一方面注意利用生活实例,引入集合的包含关系. 从而形成子集、真子集、相等集合等概念. 另一方面注意几何直观的应用,即Venn图形象直观地表示、理解集合的包含关系,子集、真子集、集合相等概念及有关性质.

(四)教学过程 教学环 节 教学内容师生互动设计意图 创设情境提出问题思考:实数有相关系,大小关系, 类比实数之间的关系,联想集合 之间是否具备类似的关系. 师:对两个数a、b,应有a >b或a = b或a<b. 而对于两个集合A、B它们也 存在A包含B,或B包含A, 或A与B相等的关系. 类比生疑, 引入课题 概念形 成分析示例: 示例1:考察下列三组集合, 并说明两集合内存在怎样的关 系 (1)A = {1,2,3} B = {1,2,3,4,5} (2)A = {新华中学高(一)6 班的全体女生} B= {新华中学高(一)6 班 的全体学生} (3)C = {x | x是两条边相等 的三角形} D = {x | x是等腰三角形} 1.子集: 生:实例(1)、(2)的共同 特点是A的每一个元素 都是B的元素. 师:具备(1)、(2)的两个 集合之间关系的称A是B的 子集,那么A是B的子集怎 样定义呢? 学生合作:讨论归纳子集的 共性. 生:C是D的子集,同时D 是C的子集. 师:类似(3)的两个集合称 为相等集合. 师生合作得出子集、相等两 通过 实例的共 性探究、感 知子集、相 等概念,通 过归纳共 性,形成子 集、相等的 概念. 初步 了解子集、 相等两个 概念.

111元素与集合模型

元素与集合模型 一、模型知识结构图 二、模型口诀 涉及元素与集合,要把特征来总结; 若定集合中参数,互异无序是凭借; 元素集合关系判,公共属性细挖掘. 三、模型思考 解决有关集合问题,既涉及到集合的整体性质的把握,需要具有归纳共同性质的能力;又要求能够把抽象的整体性质具体化,需要具有延伸拓展的能力.元素与集合的核心就是元素,抓住元素这一中心解决集合问题是我们解题的关键. 四、模型归纳示意图 识模→分析问题→定模→确定解决问题所需模型→解模→通过所选定模型,求解相关值或参数 五、两种具体模型 模型1.元素之间的关系 共性:条件所给两个集合均为列举法表示,而且集合元素是用未知参数来表示,问题都是确定未知参数或集合. 1.设a ,b ∈R ,集合{1,a +b ,a }={0,b a ,b },则b -a =( ) A.1 B.-1 C.2 D.-2 2.若集合P ={1,2,3,m },Q ={m 2,3}满足P Q =P ,则m = . 3.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求实数a ,b 的值. 4.设集合A ={x 2,2x -1,-4},B ={x -5,1-x ,9},若A B ={9},求A B . 模型2.元素与集合之间的关系 确定性 互异性 无序性 元素 集合 含义与表示 列举法 描述法 包含 相等 基本关系 并集 交集 补集 基本运算

5.用列举法写出集合{()()()()x x x x x x Z x x ??++-+∈??->-?? 221≥111239 6.设A ,B 是两个集合,定义{A B x x A -=∈,且}x B ?,若{}M x x =+1≤2,{}|N x x x =-2≤0,则M N -= . 7.已知集合A 的元素全为实数,且满足:若a A ∈,则 a A a +∈-11 1)若a =-3,求出A 中所有元素; 2)0是不是集合A 中的元素?设你设计一个实数a A ∈,再求出A 中的所有元素; 3)根据1)、2),你能得出什么结论? 六、巩固、延伸、拓展 1.已知全集{I =2,3,}a a +-223,{A =2,}||a +1,则I A =e . 2.某含三个实数元素的集合可表示为,b a a ??,????1,也可表示为{},,a a b +20,求a b +20132012. 3.设S 为数集,并满足:(1)S ?1;(2)若a S ∈,则 S a ∈-11. 求证:若m S ∈,则S m ??-∈ ???11. 4.已知集合{} A x x x =-+=28150,{} B x ax =-=10,若B A ?,求实数a 的不同取值组成的集合.

高一数学必修一集合与函数的概念

高一数学必修一集合与函数的概念 第一章集合与函数概念 一:集合的含义与表示 1、集合的含义:集合为一些确定的、不同的东西的全体,人们 能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。 把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。 2、集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确 定的:属于或不属于。 (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 3、集合的表示:{…} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 a、列举法:将集合中的元素一一列举出来{a,b,c……} b、描述法: ①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {xR|x-3>2},{x|x-3>2} ②语言描述法:例:{不是直角三角形的三角形}

③Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:aA (2)元素不在集合里,则元素不属于集合,即:a¢A 注意:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R 6、集合间的基本关系 (1).“包含”关系(1)—子集 定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。记作:(或BA) 注意:有两种可能(1)A是B的一部分; (2)A与B是同一集合。 反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA (2).“包含”关系(2)—真子集

集合之间的关系含答案

集合之间的关系 【课堂例题】 例1.设,,A B C 是三个集合,若A B ?且B C ?,试证A C ?. 例2.试判定下列两个集合的包含关系或相等关系并简述理由. (1)? {|23}x x -<<-; (2){|5}x x > {|6}x x >; (3){|n n 是12的正约数} {1,2,3,4,6,8,12}; (4){|n n 是4的正整数倍} {|2,}n n k k Z + =∈. 例3.求出所有符合条件的集合C (1){1,2,3}C ?; (2){,}C a b ü; (3){1,2,3}{1,2,3,4,5}C ?ü. (选用)例4.已知{|21,},{|A x x k k Z B x x ==+∈=是被4除余3的整数},判断,A B 之间的关系并证明之. . 集合之间的关系 【知识再现】 1.对于两个集合A 与B , (1)如果 ,那么集合A 叫做集合B 的子集,记作________或________,读作 或者_________________; (2)如果A 是B 的子集并且___________________________________,那么集合A 与集合B 相等,记作 ; (3)如果A 是B 的子集并且___________________________________,那么集合A 叫做集合B 的真子集,记作____________或______________. 2.空集?是__________________的子集;空集?是__________________的真子集. 【基础训练】 1.(1)下列写法正确的是( ) (A ){0}?ü (B )0?ü (C ){0}?∈ (D )0∈? (2)下列四个关于空集的命题中:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若A ??≠,则.A ≠? 其中正确的个数是( ) (A )0 (B )1 (C )2 (D )3 2.用恰当的符号填空(,,=??) (1){1,3,5} {5,1,3}; (2){|(3)(2)0}x x x -+= 3{| 0}3 x x x -=+; (3){|2}x x > {|2}x x ≥; (4){|,}2n x x n Z =∈ 1{|,}2 x x n n Z =+∈. 3.(1)已知2{,}{2,2}x y x x =,则x = ,y = . (2)2{1,3,}{1,}x x ?,则实数x ∈ . 4.指出下列各集合之间的关系,并用文氏图表示: {|A x x =是平行四边形},{|B x x =是菱形}, {|C x x =是矩形},{|D x x =是正方形} 5.类比“?”、“?≠”的定义,请给出符号“?”的定义: 如果 ,则称集合A 不是集合B 的子集,用符号“A B ?”表示,读作“A 不包含于B ”. 6.已知集合M 满足{0,1,2,3,4}M ?且{0,2,4,8}M ?,

高一数学知识点:元素与集合的关系

高一数学知识点2019:元素与集合的关系时钟滴答,光阴如梭。青春列车,即将再次出发。承着恩师同窗的教诲与帮助,携着亲朋好友的祝福与期待,现在的你即将返校开始新学年的生活,为了更好地帮助你尽快步入学习生活,为您准备了高一数学知识点2019。 元素与集合的关系有“属于”与“不属于”两种。 集合与集合之间的关系 某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做Φ。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。『说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作A?B。若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作A?B。中学教材课本里将?符号下加了一个≠符号,不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。』 学习方式、习惯的反思与认识 (1)学习的主动性。许多同学进入高中后还象初中那样有很强的依赖心理,跟随老师惯性运转,没有掌握学习的主动性,表现在不订计划,坐等上课,课前不作预习,对老师要上课的内容不了解,上课忙于记笔记,忽略了真正听课的任务,顾此失彼,被动学习。 (2)学习的条理性。老师上课一般都要讲清知识的来龙去脉,剖析概

念的内涵外延,分析重点难点,突出思想方法,而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是忙于赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背,也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。 (3)忽视基础。有些" 自我感觉良好" 的学生,常轻视基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的" 水平" ,好高骛远,重" 量" 轻" 质" ,陷入题海,到正规作业或考试中不是演算出错就是中途" 卡壳" 。 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。(4)学生在练习、作业上的不良习惯。主

元素与集合的关系

知识点——元素与集合的关系 一、定义 (1)如果a 是集合A 的元素,就说a 属于(belong to)A ,记作a ∈A. (2)如果a 不是集合A 的元素,就说a 不属于(not belong to)A ,记作a A ?. 二、解题之核心 给定一个对象a ,它与一个给定的集合A 之间的关系为a A ∈,或者a A ?,二者必居其一.解答这类问题的关键是:弄清a 的结构,弄清A 的特征,然后才能下结论. 三、常用数集及其表示 非负整数集(或自然数集),记作N ; 正整数集,记作N *或N +; 整数集,记作Z ; 有理数集,记作Q ; 实数集,记作R ; 四、典型例题 用符号“∈”或“?”填空. (1)23_____{|11}32____{|4}x x x x <>, ; (2)223___{|1}5___{|1}N N x x n n x x n n ++=+∈=+∈,, ,; (3)22 (11)___{|}(11)___{()|}.y y x x y y x -=-=,, ,, 解析:对于第(1)题,可以通过使用计算器,比较各数值的大小,也可以先将各数值转化成结构一致的数,再比较大小;对于第(2)题,不妨分别令x=3,x=5,解方程;对于第(3)题,要明确各个集合的本质属性. (1) 23121123{|11}x x =>∴?<,; 321816432{|4}x x =>=∴∈>,; (2)令2 31n =+,则223{|1}N N n x x n n ++=±?∴?=+∈,,; 令2 51n =+,则2225{|1}N N n x x n n ++=±∈∴∈=+∈,其中,,; (3) ∵(-1,1)是一个有序实数对,且符合关系y=x 2, ∴22(11){|}(11){()|}.y y x x y y x -?=-∈=,, ,, 点评:第(1)题充分体现了“化异为同”的数学思想.另外,“见根号就平方”也是一种常用

高中数学集合测试题(含答案和解析)

集合测试题 请认真审题,仔细作答,发挥出自己的真实水平! 一、单项选择题 : 1. 设集合,则() A .{75}x x -<<-∣ B .{35}x x <<∣ C .{53}x x -<<∣ D .{|75}x x -<< 【答案】 C 【解析】 考点:其他不等式的解法;交集及其运算. 分析:由绝对值的意义解出集合S ,再解出集合T ,求交集即可. 解答:由{|55}S x x =-<<,{|73}T x x =-<<故{|53}S T x x =-<<, 故选C 2. 已知集合,则集合等于() A .{-1,1} B .{-1,0,1} C .{0,1} D .{-1,0} 【答案】 A 3.若集合,且,则实数m 的可取值组成的集合是() A . B . C . D . {}()(){} 5,730S x x T x x x =<=+-

【答案】 C 4.若{1,2}A {1,2,3,4,5}则满足条件的集合A 的个数是() A .6 B .7 C .8 D .9 【答案】 C 5.设P={x|x ≤8}, ,则下列关系式中正确的是(). A .a P B .a P C .{a}P D .{a}P 【答案】 D 6. 已知集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A == ∈∈-∈,则B 中所含元素的个数为() A .3 B .6 C . 8 D .10 【答案】 D 【解析】 考点:元素与集合关系的判断. 专题:计算题. 分析:由题意,根据集合B 中的元素属性对x ,y 进行赋值得出B 中所有元素,即可得出B 中所含有的元素个数,得出正确选项 解答:解:由题意,x=5时,y=1,2,3,4, x=4时,y=1,2,3, x=3时,y=1,2, ????∈?

第4讲 集合与元素(数学竞赛)

第4讲 集合与元素 [知识点金] 元素与集合只有属于和不属于两种关系,但如何判定一个元素是否属于该集合,有时要进行适当甚至灵活的变形,达到集合所要求的形式. [例题精析] 例1 设A= },{22Z y x y x a a ∈-=、 求证: (1)一切奇数属于A (2)偶数 4k – 2(k ∈z )不属于A (3)属于A 的两个整数,其积仍属于A 分析 关键构造出集合元素所需形式. 证明 (1)设a 为任意奇数,则 a = 2k –1(k ∈Z ) 因为 2k –1 = k 2 -(k-1)2 ,k ,k-1∈Z, 故a ∈A 由a 的任意性知,一切奇数属于A. (2)假设4k – 2∈A ,则存在x 、y ∈Z 使 4k – 2 = x 2 – y 2 即(x + y )(x - y )= 2(2k-1)… ① ① 式说明x + y 与 x – y 必有一个是偶数,但x + y 与 x – y 具有 相同的奇偶性,这是一对矛盾,故①不成立. 所以 4k – 2 ?A (3)设a 、b ∈A ,则 a = 2221y x -, b = 2222y x - (Z y y x x ∈2121,,,) 因为 a b =(2121y x -)(2222y x -)= +2221x x 2221y y -2221y x -2122 y x = (2121y y x x -)2 -(1221y x y x -)2 而 Z y y x x ∈-2121,1221y x y x -Z ∈, 所以 a b ∈A. 例2 (全国女子数学奥林匹克)如果存在 1,2,...,n 的一个排列1a ,2a ,…, n a 使得 k+k a (k=1, 2, ..., n )都是完全平方数,就称n 为“好数”.试问:在集合 {11, 13, 15, 17, 19} 中,哪些是“好数”,哪些不是“好数”?说明理由. 解 除了11之外都是“好数”. (1)易知11只能与5相加得到24,而4也只能与5相加得到23,因此, 不存在满足条件的数列,所以11不是“好数”. (2)13是“好数”,因为如下的排列中,)13,...,2,1(=+k a k k 都是完全平方数:

元素与集合之间的基本关系#(优选.)

第一课 元素与集合之间的关系 一、考点 1、集合、元素 某些指定的对象集在一起就成为一个集合(常用大写字母表示),其中每一个对象叫做元素(常用小写字母表示)。 元素三要素:确定性、互异性、无序性。 2、集合与元素之间的关系 (1)如果a 是集合A 的元素,就说a 属于A ,记做a ∈A 。 (2)如果a 不是集合A 的元素,就说a 不属于A ,记做a ?A 。 3、集合的表示法:列举法、描述法。 4、集合的分类:空集、有限集、无限集 5、常用数集 实数集:R 有理数集:Q 整数集:Z 自然数集:N 正整数集:* N 或+N 6、集合与集合之间的关系 7、集合之间的运算 二、典型例题 1、已知集合A={x||x|≤2,x ∈R},B={x|x ≤4,x ∈Z},则A I B=() A 、(0,2) B 、[0,2] C 、{0,2} D 、{0,1,2} 2、设P ={1,2,3,4},Q ={4,5,6,7,8},定义P*Q ={(a ,b)|a ∈P ,b ∈Q ,a ≠b},则P*Q 中元素的个数为( ) A .4 B .5 C .19 D .20 3、已知集合A={(x ,y )|x ,y 为实数,且1y x 22=+},B={(x ,y )|x ,y 为实数,且y=x},则A I B 的元素个数为() A 、0 B 、1 C 、2 D 、3 4、设集合{}R A ∈<=x 1a -x x ,,{}R B ∈>=x 2b -x x ,,若B A ?,则实数a ,b 必满足( ) A 、3b a ≤+ B 、3b a ≥+ C 、3b -a ≤ D 、3b -a ≥ 5、已知集合{}32x R x <+∈=A ,集合()(){}02-x m -x x <∈=R B ,且()n 1-,=B A I ,则=m __________,=n __________。

元素与集合关系的判断-高中数学知识点讲解

元素与集合关系的判断 1.元素与集合关系的判断 【知识点的认识】 1、元素与集合的关系: 一般地,我们把研究对象称为元素,把一些元素组成的总体称为集合,简称集.元素一般用小写字母a,b,c 表示,集合一般用大写字母A,B,C 表示,两者之间的关系是属于与不属于关系,符号表示如:a∈A 或a?A. 2、集合中元素的特征: (1)确定性:作为一个集合中的元素,必须是确定的.即一个集合一旦确定,某一个元素属于还是不属于这集合是确定的.要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合. (2)互异性:集合中的元素必须是互异的.对于一个给定的集合,他的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素. (3)无序性:集合于其中元素的排列顺序无关.这个特性通常被用来判断两个集合的关系. 【命题方向】 题型一:验证元素是否是集合的元素 典例 1:已知集合A={x|x=m2﹣n2,m∈Z,n∈Z}.求证: (1)3∈A; (2)偶数 4k﹣2(k∈Z)不属于A. 分析:(1)根据集合中元素的特性,判断 3 是否满足即可; (2)用反证法,假设属于A,再根据两偶数的积为 4 的倍数;两奇数的积仍为奇数得出矛盾,从而证明要证的结论. 解答:解:(1)∵3=22﹣12,3∈A; (2)设 4k﹣2∈A,则存在m,n∈Z,使 4k﹣2=m2﹣n2=(m+n)(m﹣n)成立, 1、当m,n 同奇或同偶时,m﹣n,m+n 均为偶数, ∴(m﹣n)(m+n)为 4 的倍数,与 4k﹣2 不是 4 的倍数矛盾.

2、当m,n 一奇,一偶时,m﹣n,m+n 均为奇数, ∴(m﹣n)(m+n)为奇数,与 4k﹣2 是偶数矛盾. 综上 4k﹣2?A. 点评:本题考查元素与集合关系的判断.分类讨论的思想. 题型二:知元素是集合的元素,根据集合的属性求出相关的参数. 典例 2:已知集合A={a+2,2a2+a},若 3∈A,求实数a 的值. 分析:通过 3 是集合A 的元素,直接利用a+2 与 2a2+a=3,求出a 的值,验证集合A 中元素不重复即可.解答:解:因为 3∈A,所以a+2=3 或 2a2+a=3…(2 分) 当a+2=3 时,a=1,…(5 分) 此时A={3,3},不合条件舍去,…(7 分) 当 2a2+a=3 时,a=1(舍去)或?=―3 2 ,…(10 分) 由?=―31 ,得?={2,3},成立…(12 分)2 故?=―3 2?(14 分) 点评:本题考查集合与元素之间的关系,考查集合中元素的特性,考查计算能力. 【解题方法点拨】 集合中元素的互异性常常容易忽略,求解问题时要特别注意.分类讨论的思想方法常用于解决集合问题.

集合与集合之间的关系

课时1 集合与集合之间的关系(第一课时) 一、高考考纲要求 1.理解交集、并集的概念. 2.理解补集的概念,了解全集的意义. 3.会用交集、并集、补集正确地表示一些简单的集合. 二、高考考点回顾 1.集合的概念 (1)集合的概念:我们把研究对象统称为,把一些元素组成的总体叫做 (简称为集). (2)集合的分类:根据集合中元素的多少,可以分为三类:有限集、无限集、空集. (3)元素与集合之间的关系:若a是集合A的元素,记作;若b不是集合A的元素,记作; (4)元素的特征:①、②、③ . (5)常用数集及其记法:自然数集,记作N;正整数集,记作N*或N+;整数集,记作Z; 有理数集,记作Q;实数集,记作R. 2.集合有三种表示方法: 3.集合之间的关系: (1)对于两个集合A和B,如果集合A的任何一个元素都是集合B的元素,那么集合A叫做集合B的,记作或 . (2)如果集合A是集合B的子集,并且B中至少有一个元素不属于集合A,那么集合A叫做集合B的,记作或 . (3)集合相等:构成两个集合的元素完全一样。若A?B且B?A,则称集合A等于集合B,记作; 简单性质:①A?A;②??A;③若A?B,B?C,则A?C. 4.空集 空集是指的集合,它是任何一个集合的子集,是任何一个非空集合的真子集.记作?. 5.有限集的子集、真子集的个数 若集合A中含有n个元素的集合,则集合A有个子集(其中个真子集).

课时1 集合与集合之间的关系(第二课时) 三、课前检测 1.已知集合{,,}S a b c =中的三个元素是ABC ?的三边长,那么ABC ?一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 2.集合8{|,}3M y Z y x Z x =∈= ∈+的元素的个数是( ) A .2个 B .4个 C .6个 D .8个 3. 已知集合2{|320}M x x x =+->,{|}N x x a =>,若M N ?,则实数a 的取值范围是( ) A .[3,)+∞ B .(3,)+∞ C .(,1]-∞- D .(,1)-∞- 4.已知集合2{|32,}M x x a a a R ==-+∈,2{|,}N x x b b b R ==-∈,则M 、N 的关系是( ) A .M N ≠? B .M N ≠? C .M N = D .不确定 5.已知集合{1,3,21}A m =--,集合2{3,}B m =,若B A ?,则实数m = 6.(2016·新课标全国Ⅰ,1)设集合A ={1,3,5,7},B ={x |2≤x ≤5},则A ∩B =( ) A.{1,3} B.{3,5} C.{5,7} D.{1,7} 7.(2016·新课标全国Ⅱ,1)已知集合A ={1,2,3},B ={x |x 2<9},则A ∩B =( ) A.{-2,-1,0,1,2,3} B.{-2,-1,0,1,2} C.{1,2,3} D.{1,2} 8.(2016·新课标全国Ⅲ,1)设集合A ={0,2,4,6,8,10},B ={4,8},则?A B =( ) A.{4,8} B.{0,2, 6} C.{0,2,6,10} D.{0,2,4,6,8,10}

高一数学元素与集合的关系练习题(含答案)之欧阳数创编

1、“①难解的题目;②方程012=+x ;③平面直角坐标系内第四象限的一些点;④很多多项式”中,能组成集合的是( )。 A .② B .①③ C .②④ D .①②④ 2、下列命题正确的个数为…………………( )。 (1)很小两实数可以构成集合; (2)}1|{2-=x y y 与}1|),{(2-=x y y x 是同一集合 (3)5.0,21,46,23,1-这些数组成的集合有5个数; (4)集合},,0|),{(R y x xy y x ∈≤是指第二、四象限内的点集; A .0个 B .1个 C .2个 D .3个 3、,R x ∈则 }2,,3{2x x x -中的元素x 应满足什么条件? 4、⑴用列举法表示下列集合: ①},,20,20|),{(Z y x y x y x ∈<≤<≤= ②_;__________},,,|{}, 2,1,0{=≠∈+===b a M b a b a x x P M 5.用描述法表示下列集合 ①所有正偶数组成的集合 ②被9除

余2的数组成的集合 6.若方程052=++c x ax 的解集是},31,21{求a .c 的值。 7.求集合}05|{>+x x 与集合},0|{R a a x x ∈<-有公共元素的a 的取值范围。 8.若},,2|{Z b Z a b a x R x B ∈∈+=∈=, 则2231 -B 。 9.集合{(x ,y)|y =2x -1}表示( ) A .方程y =2x -1 B .点(x ,y) C .平面直角坐标系中的所有点组成的集合 D .函数y =2x -1图象上的所有点组成的集合 10.设集合M ={x ∈R|x≤33},a =26,则( ) A .a ?M B .a ∈M C .{a}∈M D .{a|a =26}∈M 11.方程组????? x +y =1x -y =9的解集是( ) A .(-5,4) B .(5,-4) C .{(-5,4)} D .{(5,-4)} 12.下列命题正确的有( ) (1)很小的实数可以构成集合; (2)集合{y|y =x 2-1}与集合{(x ,y)|y =x 2-1}是同一 个集合; (3)1,32,64,|-12 |,0.5这些数组成的集合有5个元素; (4)集合{(x ,y)|xy≤0,x ,y ∈R}是指第二和第四象限内的点集. A .0个 B .1个 C .2个 D .3个 13.下列集合中,不同于另外三个集合的是( )

元素与集合之间的基本关系

第一课元素与集合之间的关系 、考点 1、 集合、元素 某些指定的对象集在一起就成为一个集合(常用大写字母表示),其中每一个对 象叫做元素(常用小写字母表示)。 元素三要素:确定性、互异性、无序性。 2、 集合与元素之间的关系 (1) 如果a 是集合A 的元素,就说a 属于A ,记做a A 。 (2) 如果a 不是集合A 的元素,就说a 不属于A ,记做a A 。 3、 集合的表示法:列举法、描述法 4、 集合的分类:空集、有限集、 5、 常用数集 实数集:R 有理数 集: 整数集:Z 自然数集: 正整数集: 6集合与集合之间的关系 7、集合之间的运算 、典型例题 o 无限集 A 、( 0,2 ) B 、[0,2] C {0,2} D 、 {0,1,2} 2、设 P = {1,2,3,4} , Q= {4,5,6,7,8}, 定义 P*Q = {(a , b)|a € 中兀素的个数为( ) A. 4 B .5 C 19 D .20 3、已知集合A={ (x , y ) |x , y 为实数, 且x 2 y 2 1} , B={(: y=x},则 A B 的兀素个数为() A 、0 B 、1 C 、 2 D 、3 4、设集合A x x-a 1, x R , B x x -b 2, x R , 必满足( ) |x , y 为实数,且 B ,则实数a , b a-b a-b 5、已知集合A Rx 2 ,集合 B x R x -m x-2 0 ,且 A B -1, n ,则m 1 已知集合 A={x||x| < 2, x R}, 3 A B P , b € Q a 工 b},贝U P*Q x , y ) 若A a b a b 3 B={x| 、、x w 4, x Z},则 A B=()

集合之间的关系(一)

集合之间的关系(一) 教学目标】 知识目标: 1) 掌握子集、真子集的概念; 2) 掌握两个集合相等的概念; 3) 会判断集合之间的关系 . 能力目标: 通过集合语言的学习与运用,培养学生的数学思维能力 教学重点】 集合与集合间的关系及其相关符号表示. 教学难点】 子集的概念. 教学设计】 从复习上节课的学习内容入手,通过实际问题导入知识; 通过简单的实例,认识集合的相等关系; 为学生们提供观察和操作的机会,加深对知识的理解与掌握. 课时安排】 2 课时 教学过程】 复习知识 揭示课题 前面学习了集合的相关问题,试着回忆下面的知识点: 1.集合 由某些确定的对象组成的整体,及元素组成集合的对象. 2.常用数集有哪些?用什么字母表示? 3.集合的表示法 (1) 列举法:在花括号内,一一列举集合的元素; (2) 描述法: {代表元素| 元素所具有的特征性质 }. 4.元素与集合之间有属于或不属于的关系. 完成下面的问题:2) 通过实际问题引导学生认识真子集,突破难点; 1)

用适当的符号“ ”或“”填空: N; (3)品R;⑷ 0.5 Z; ⑸ 1 21,2,3} ;⑹ 2 {_ x|xv1} ;(7)2_L x|x=2k+1, k Z}. 那么集合与集合之间又有什么关系呢?创设情景兴趣导入 问题 1.设A表示我班全体学生的集合,B表示我班全体男学生的集合,那么, 集合A与集合B之间存在什么关系呢? 2.设M={数学,语文,英语,计算机应用基础,体育与健康,物理,化学}, N ={数学,语文,英语,计算机应用基础,体育与健康},那么集合M与集合N 之间存在什么关系呢? 3.自然数集Z与整数集N之间存在什么关系呢? 解决 显然,问题1中集合B的元素(我班的男学生)肯定是集合A的元素(我班 的学生);问题2中集合N的元素肯定是集合M的元素;问题3中集合N的元素 (自然数)肯定是集合Z的元素(整数). 归纳 当集合B的元素肯定是集合A的元素时称集合A包含集合B ?两个集合之间的这种关系叫做包含关系. 动脑思考探索新知 概念 一般地,如果集合B的元素都是集合A的元素,那么称集合A包含集合B,并把集合B叫做集合A的子集. 表示 将集合A包含集合B记作A B或B A (读作“ A包含B ”或“ B包含于A ”). 可以用下图表示出这两个集合之间的包含关系.

元素与集合之间的基本关系

元素与集合之间的基本 关系 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第一课 元素与集合之间的关系 一、考点 1、集合、元素 某些指定的对象集在一起就成为一个集合(常用大写字母表示),其中每一个对象叫做元素(常用小写字母表示)。 元素三要素:确定性、互异性、无序性。 2、集合与元素之间的关系 (1)如果a 是集合A 的元素,就说a 属于A ,记做a ∈A 。 (2)如果a 不是集合A 的元素,就说a 不属于A ,记做a ?A 。 3、集合的表示法:列举法、描述法。 4、集合的分类:空集、有限集、无限集 5、常用数集 实数集:R 有理数集:Q 整数集:Z 自然数集:N 正整数集:*N 或+N 6、集合与集合之间的关系 7、集合之间的运算 二、典型例题 1、已知集合A={x||x|≤2,x ∈R},B={x|x ≤4,x ∈Z},则A B=() A 、(0,2) B 、[0,2] C 、{0,2} D 、{0,1,2} 2、设P ={1,2,3,4},Q ={4,5,6,7,8},定义P*Q ={(a ,b)|a ∈P ,b ∈Q ,a ≠b},则P*Q 中元素的个数为( ) A .4 B .5 C .19 D .20 3、已知集合A={(x ,y )|x ,y 为实数,且1y x 22=+},B={(x ,y )|x ,y 为实数,且 y=x},则A B 的元素个数为() A 、0 B 、1 C 、2 D 、3 4、设集合{}R A ∈<=x 1a -x x ,,{} R B ∈>=x 2b -x x ,,若B A ?,则实数a ,b 必满足( ) A 、3b a ≤+ B 、3b a ≥+ C 、3b -a ≤ D 、3b -a ≥

集合知识点总结及习题

集合 123412n x A x B A B A B A n A ∈??? ????? ∈?∈?()元素与集合的关系:属于()和不属于()()集合中元素的特性:确定性、互异性、无序性集合与元素()集合的分类:按集合中元素的个数多少分为:有限集、无限集、空集()集合的表示方法:列举法、描述法(自然语言描述、特征性质描述)、图示法、区间法子集:若 ,则,即是的子集。、若集合中有个元素,则集合的子集有个, 注关系集合集合与集合{}00(2-1)23,,,,.4/n A A A B C A B B C A C A B A B x B x A A B A B A B A B A B x x A x B A A A A A B B A A B ??????????? ???????????≠∈?????=???=∈∈?=??=??=???真子集有个。、任何一个集合是它本身的子集,即 、对于集合如果,且那么、空集是任何集合的(真)子集。 真子集:若且(即至少存在但),则是的真子集。集合相等:且 定义:且交集性质:,,,运算{}{},/()()()-()/()()()()()()U U U U U U U U A A B B A B A B A A B x x A x B A A A A A A B B A A B A A B B A B A B B Card A B Card A Card B Card A B C A x x U x A A C A A C A A U C C A A C A B C A C B ????????=????=∈∈???=??=?=????????=???=+?=∈?=?=??==?=?,定义:或并集性质:,,,,, 定义:且补集性质:,,,, ()()()U U U C A B C A C B ????? ?? ?? ???? ?????????? ???????? ??????????????????????? ?????????????????????=??????? 一、集合有关概念 1. 集合的含义 2. 集合的中元素的三个特性: (1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY 的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合 3.元素与集合的关系——(不)属于关系 (1)集合用大写的拉丁字母A 、B 、C …表示 元素用小写的拉丁字母a 、b 、c …表示 (2)若a 是集合A 的元素,就说a 属于集合A,记作a ∈A;

集合的基本概念元素集合之间的关系

第一章集合 第一节集合的概念 一、要点透析 (一)集合的有关概念: 由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。 1、集合的概念 (1)元素:某些特定的研究对象叫做元素 (2)集合:一些元素集在一起就形成一个集合(简称集) 2、元素对于集合的隶属关系 (1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a A ∈(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作a A ?3、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可 (2)互异性:集合中的元素没有重复 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 例1.下列各组对象能确定一个集合吗? (1)所有很大的实数()(2)好心的人()(3)1,2,2,3,4,5.() 4、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q …… 元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q …… (2)“∈”的开口方向,不能把a A ∈颠倒过来写 5、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合,记作N ,{} 0,1,2,N = (2)正整数集:非负整数集内排除0的集,记作*N 或N +,{}* 1,2,3,N = (3)整数集:全体整数的集合,记作Z ,{}012Z =±± , ,,(4)有理数集:全体有理数的集合,记作Q ,{} Q =整数与分数(5)实数集:全体实数的集合,记作R ,{} R =数轴上所有点所对应的数 (6)空集:不含任何元素的集合,记作? 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集,记作* N 或N +,Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成* Z

相关文档
最新文档