linux进程线程管理实验报告

linux进程线程管理实验报告
linux进程线程管理实验报告

linux进程线程管理实验报告

————————————————————————————————作者:————————————————————————————————日期:

西安郵電學院

操作系统LINUX实验报告

题目1:进程______

题目2:线程管理__

题目3:互斥_____系部名称:计算机学院

专业名称:软件工程

班级:0802

学号:04085048

学生姓名:郭爽乐

时间:2010-10-31

实验一: 进程管理

一.实验目的

通过观察、分析实验现象,深入理解进程及进程在调度执行和内存空间等方面的特点,

掌握在POSIX 规范中fork和kill系统调用的功能和使用。

二.实验要求

2.1 实验环境要求

1. 硬件

(1) 主机:Pentium III 以上;

(2) 内存:128MB 以上;

(3) 显示器:VGA 或更高;

(4) 硬盘空间:至少100MB 以上剩余空间。

2. 软件

Linux 操作系统,内核2.4.26 以上,预装有X-Window 、vi、gcc、gdb 和任意web 浏览器。

2.2 实验前的准备工作

学习man 命令的用法,通过它查看fork 和kill 系统调用的在线帮助,并阅读参

考资料,学会fork 与kill 的用法。

复习C 语言的相关内容。

三、实验内容

3.1 补充POSIX 下进程控制的残缺版实验程序

3.2回答下列问题:

1. 你最初认为运行结果会怎么样?

2. 实际的结果什么样?有什么特点?试对产生该现象的原因进行分析。

3. proc_number 这个全局变量在各个子进程里的值相同吗?为什么?

4. kill 命令在程序中使用了几次?每次的作用是什么?执行后的现象是什么?

5. 使用kill 命令可以在进程的外部杀死进程。进程怎样能主动退出?这两种退出方式哪种更好一些?

四、实验结果

4.1 补充完全的源程序

#include

#include

#include

#include

#include

#define MAX_CHILD_NUMBER 10/* 允许建立的子进程个数最大值 */ #define SLEEP_INTERV AL 1/* 子进程睡眠时间 */

int proc_number=0; /* 子进程的编号,从0开始 */

void do_something();

main(int argc,char *argv[])

{

int child_proc_number=MAX_CHILD_NUMBER; /* 子进程个数 */ int i,ch;

pid_t child_pid;

pid_t pid[10]={0};/* 存放每个子进程的id */

if(argc>1){

child_proc_number=atoi(argv[1]);

child_proc_number=(child_proc_number>10)?10:child_proc_number; /* 命令行参数中的第一个参数表示建立几个子进程,最多10个 */ }

/*建立child_proc_number个子进程

* 子进程要执行

* proc_number = i;

* do_something();

* 父进程把子进程的id保存到pid[i] */

for(i=0;i

child_pid=fork();

if(child_pid== -1){

perror("creat error!\n");

return 1;

}

else if(child_pid>0)

pid[i]=child_pid;

else{

proc_number=i;

do_something();

}

}

/* 让用户选择杀死哪个进程。输入数字(自编号)表示杀死该进程

* 输入q退出 */

while((ch=getchar())!='q'){

if(isdigit(ch)){

kill(pid[ch-'0'],SIGTERM);

wait(&pid[ch-'0']);

}

}

kill(0,SIGTERM); /*杀死本组的所有进程 */

return 0;

}

void do_something(){

for(;;){

printf("This is process NO.%*d\n",proc_number+3,proc_number);

sleep(SLEEP_INTERV AL);

}

}

4.2回答上述实验内容中的问题

1.预期结果:

会持续输出0-9号进程,直到输入数字键+回车,则会杀死该进程,接下来的输出将不会有该进程号,当输入q+回车,则退出程序。

2.实际结果:

与预期差不多,因输入进程总数20大于设定的最大进程数,因此按进程数10来处理。随机输出0-9号进程,sleep(SLEEP_INTERV AL),循环输出,直到输入数字键,则会杀死该数字对应的进程,直到输入q退出循环,然后杀死本组所有进程。

分析:每创建一个子进程时,将其pid存储在pid[i]中,i存储在proc_number,然后调用死循环函数do_something(),输出该进程的代号proc_number;

当输入数字键时,主进程会执行kill(pid[ch-'0'],SIGTERM),从而杀死(ch-‘0’)号进程。当输入q时循环退出,kill(0,SIGTERM),杀死本组所有进程。程序退出。

3. proc_number这个全局变量在各个子进程里的值相同,因为子进程相互独立,资源互不影响。

4.kill命令在程序中使用了2次:kill(pid[ch-'0'],SIGTERM); kill(0,SIGTERM);

第一次是杀死该进程号pid[ch-‘0’],执行后接下来的结果中不会有该进程号,用另一个终端打开,使用命令ps aux | grep process,因为子进程先于父进程退出,则被杀死的进程为僵死状态,但我加了行代码wait(&pid[ch-'0']),就会使该子进程真正结束。

第二次是杀死本组所有进程。即主进程以及它创建的所有子进程。执行后程序退出,进程结束。

5.进程在main函数中return,或调用exit()函数都可以正常退出。

而使用kill命令则是异常退出。

当然是正常退出比较好,若在子进程退出前使用kill命令杀死其父进程,则系统

会让init进程接管子进程。当用kill命令使得子进程先于父进程退出时,而父进程又没有调用wait函数等待子进程结束,子进程处于僵死状态,并且会一直保持下去,直到系统重启。子进程处于僵死状态时,内核只保存该进程的必要信息以被父进程所需,此时子进程始终占着资源,同时减少了系统可以创建的最大进程数。

实验二: 线程管理

一.实验目的

通过观察、分析实验现象,深入理解线程及线程在调度执行和内存空间等方面的特点,并掌握线程与进程的区别。掌握在POSIX 规范中pthread_create() 函数的功能和使用方法。

二.实验要求

2.1 实验环境要求

1. 硬件

(1) 主机:Pentium III 以上;

(2) 内存:128MB 以上;

(3) 显示器:VGA 或更高;

(4) 硬盘空间:至少100MB 以上剩余空间。

2. 软件

Linux 操作系统,内核2.4.26 以上,预装有X-Window 、vi、gcc、gdb 和任意web 浏览器。

2.2 实验前的准备工作

阅读参考资料,了解线程的创建等相关系统调用。

三、实验内容

3.1 补充POSIX 下进程控制的残缺版实验程序

3.2回答下列问题:

1. 你最初认为前三列数会相等吗?最后一列斜杠两边的数字是相等,还是大于或者

小于关系?

2. 最后的结果如你所料吗?有什么特点?试对原因进行分析。

3. thread 的CPU 占用率是多少?为什么会这样?

4. thread_worker()内是死循环,它是怎么退出的?你认为这样退出好吗?

四、实验结果

4.1 补充完全的源程序

#include

#include

#include

#include

#include

#define MAX_THREAD 3/* 线程的个数 */

unsigned long long main_counter,counter[MAX_THREAD];

/* unsigned long long是比long还长的整数 */

void* thread_worker(void*);

int main(int argc,char argv[]){

int i,rtn;

char ch;

pthread_t pthread_id[MAX_THREAD]={0};/* 存放每个线程的id */

for(i=0;i

pthread_create(&pthread_id[i],NULL,thread_worker,(void*)i);

/*用pthread_create建一个普通的线程,线程id存入pthread_id[i],线程执行的函数是thread_worker,并i作为参数传递给线程 */

}

/* 用户按一次回车执行下面的循环体一次。按q退出 */

do{

unsigned long long sum=0;

for(i=0;i

sum+=counter[i]; /* 求所有线程的counter的和 */

printf("counter[%d]=%llu\n",i,counter[i]);

}

printf("main_counter=%llu/sum=%llu\n",main_counter,sum);

}while((ch=getchar())!='q');

return 0;

}

void* thread_worker(void* p){

int thread_num;

thread_num=(int)p; /*把main中的i的值传递给thread_num */

for(;;){

main_counter++;

counter[thread_num]++;

}

}

4.3回答上述实验内容中的问题

1.试验运行前我认为前三列数不会相等,因为三个线程运行次数是随机的,结

果不可预料,当然counter[i]值不会一定相等。而我认为main_counter与sum 值应该是相等的。因为都是三个线程的counter之和。

2.而实验结果是前三列数确实不相等。不过main_counter与sum的值也不相等,main_counter < sum,经分析讨论得出解释:因为三个线程在共同争取运行thread_worker()函数,比如main_counter初值为0,pthread_id[0]执行之后main_counter+1,此时还未来得及将值赋给main_counter,这时的main_counter 还是0;pthread_id[1]也执行这个函数,main_counter+1,若此时在1号线程将main_counter+1的值还未赋给main_counter,即这时的main_counter还是0,pthread_id[2]也来执行这个函数,main_counter+1,此时三个线程才将加完之后的值赋给main_counter,则main_counter=0+1=1,而真正执行次数sum=0+1+1+1=3。main_counter < sum。

3.thread的CPU占用率在我的机子上执行结果是181,因为三个线程是无限循环的运行,使得cpu占用率很高。

4.thread_worker()函数内是死循环,退出时因为主函数中设置的输入q时循环退出。输入q时主进程执行退出,return 退出程序,则子线程也强制退出。

这样退出不好。

实验三: 互斥

一.实验目的

通过观察、分析实验现象,深入理解理解互斥锁的原理及特点

掌握在POSIX 规范中的互斥函数的功能及使用方法

二.实验要求

2.1 实验环境要求

1. 硬件

(1) 主机:Pentium III 以上;

(2) 内存:128MB 以上;

(3) 显示器:VGA 或更高;

(4) 硬盘空间:至少100MB 以上剩余空间。

2. 软件

Linux 操作系统,内核2.4.26 以上,预装有X-Window 、vi、gcc、gdb 和任

意web 浏览器。

2.2 实验前的准备工作

准备好上节实验完成的程序thread.c 。

阅读参考资料,了解互斥锁的加解锁机制及相关的系统调用。

三、实验内容

3.1找到thread.c 的代码临界区,用临界区解决main_counter 与sum 不同步的问题。

3.2阅读下列代码,回答问题:

#include

#include

#include

#include

#include

#define LOOP_TIMES 1000

pthread_mutex_t mutex1=PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t mutex2=PTHREAD_MUTEX_INITIALIZER;

void* thread_worker(void *);

void critical_section(int threadd_num,int i);

int main(int argc,char *argv[]){

int rtn,i;

pthread_t pthread_id=0;

rtn=pthread_create(&pthread_id,NULL,thread_worker,NULL);

if(rtn!=0){

printf("pthread_create ERROR!\n");

return -1;

}

for(i=0;i

pthread_mutex_lock(&mutex1);

pthread_mutex_lock(&mutex2);

critical_section(1,i);

pthread_mutex_unlock(&mutex2);

pthread_mutex_unlock(&mutex1);

}

pthread_mutex_destroy(&mutex1);

pthread_mutex_destroy(&mutex2);

return 0;

}

void *thread_worker(void* p){

int i;

for(i=0;i

pthread_mutex_lock(&mutex2);

pthread_mutex_lock(&mutex1);

critical_section(2,i);

pthread_mutex_unlock(&mutex2);

pthread_mutex_unlock(&mutex1);

}

}

void critical_section(int thread_num,int i){

printf("Thread%d:%d\n",thread_num,i);

}

1. 你预想deadlock.c 的运行结果会如何?

2. deadlock.c 的实际运行结果如何?多次运行每次的现象都一样吗?为什么会这样?

四、实验结果

4.1 通过加锁可修改thread.c程序,使得main_counter与sum值同步,源代码如下:

#include

#include

#include

#include

#include

#define MAX_THREAD 3

unsigned long long main_counter,counter[MAX_THREAD];

void* thread_worker(void*);

pthread_mutex_t main_counter_mutex=PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t counter_mutex=PTHREAD_MUTEX_INITIALIZER;

int main(int argc,char argv[]){

int i,rtn;

char ch;

pthread_t pthread_id[MAX_THREAD]={0};

for(i=0;i

pthread_create(&pthread_id[i],NULL,thread_worker,(void*)i);

}

do{

unsigned long long sum=0;

pthread_mutex_lock(&counter_mutex);

for(i=0;i

sum+=counter[i];

printf("counter[%d]=%llu\n",i,counter[i]);

}

printf("main_counter=%llu/sum=%llu\n",main_counter,sum);

pthread_mutex_unlock(&counter_mutex);

}while((ch=getchar())!='q');

return 0;

}

void* thread_worker(void* p){

int thread_num;

thread_num=(int)p;

for(;;){

pthread_mutex_lock(&main_counter_mutex);

main_counter++;

pthread_mutex_unlock(&main_counter_mutex);

pthread_mutex_lock(&counter_mutex);

counter[thread_num]++;

pthread_mutex_unlock(&counter_mutex);

}

}

4.2回答上述实验要求中的问题:

1.程序运行会出现中止现象,可能会资源互斥。

2.实际运行时程序会在运行期间中止,出现死锁现象。多次运行之后现象都一样。解释如下:主线程申请mutex1资源,而子线程申请mutex2资源,此时主线程继续申请mutex2资源,子线程来申请mutex1资源,而mutex2资源还未被子线程释放,主线程无法申请到,同样的,mutex1资源未被主线程释放则子线程也无法申请到,此时便处于无限循环等待,形成死锁。

修改后的程序:

#include

#include

#include

#include

#include

#define LOOP_TIMES 1000

pthread_mutex_t mutex1=PTHREAD_MUTEX_INITIALIZER;

pthread_mutex_t mutex2=PTHREAD_MUTEX_INITIALIZER;

void* thread_worker(void *);

void critical_section(int threadd_num,int i);

int main(int argc,char *argv[]){

int rtn,i;

pthread_t pthread_id=0;

rtn=pthread_create(&pthread_id,NULL,thread_worker,NULL);

if(rtn!=0){

printf("pthread_create ERROR!\n");

return -1;

}

for(i=0;i

pthread_mutex_lock(&mutex1);

pthread_mutex_lock(&mutex2);

critical_section(1,i);

pthread_mutex_unlock(&mutex2);

pthread_mutex_unlock(&mutex1);

}

pthread_mutex_destroy(&mutex1);

pthread_mutex_destroy(&mutex2);

return 0;

}

void *thread_worker(void* p){

int i;

for(i=0;i

pthread_mutex_lock(&mutex1);

pthread_mutex_lock(&mutex2);

critical_section(2,i);

pthread_mutex_unlock(&mutex2);

pthread_mutex_unlock(&mutex1);

}

}

void critical_section(int thread_num,int i){ printf("Thread%d:%d\n",thread_num,i); }

实验七:Linux多线程编程(实验分析报告)

实验七:Linux多线程编程(实验报告)

————————————————————————————————作者:————————————————————————————————日期:

实验七:Linux多线程编程(4课时) 实验目的:掌握线程的概念;熟悉Linux下线程程序编译的过程;掌握多线程程序编写方法。 实验原理:为什么有了进程的概念后,还要再引入线程呢?使用多线程到底有哪些好处?什么的系统应该选用多线程?我们首先必须回答这些问题。 1 多线程概念 使用多线程的理由之一是和进程相比,它是一种非常"节俭"的多任务操作方式。运行于一个进程中的多个线程,它们彼此之间使用相同的地址空间,共享大部分数据,启动一个线程所花费的空间远远小于启动一个进程所花费的空间。 使用多线程的理由之二是线程间方便的通信机制。同一进程下的线程之间共享数据空间,所以一个线程的数据可以直接为其它线程所用,这不仅快捷,而且方便。2多线程编程函数 Linux系统下的多线程遵循POSIX线程接口,称为pthread。编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。pthread_t在头文件/usr/include/bits/pthreadtypes.h中定义: typedef unsigned long int pthread_t; 它是一个线程的标识符。 函数pthread_create用来创建一个线程,它的原型为: extern int pthread_create((pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg)); 第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数。 函数pthread_join用来等待一个线程的结束。函数原型为: extern int pthread_join(pthread_t th, void **thread_return); 第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。 函数pthread_exit的函数原型为: extern void pthread_exit(void *retval); 唯一的参数是函数的返回代码,只要pthread_join中的第二个参数thread_return不是NULL,这个值将被传递给thread_return。 3 修改线程的属性 线程属性结构为pthread_attr_t,它在头文件/usr/include/pthread.h中定义。属性值不能直接设置,须使用相关函数进行操作,初始化的函数为pthread_attr_init,这个函数必须在pthread_create函数之前调用。 设置线程绑定状态的函数为pthread_attr_setscope,它有两个参数,第一个是指向属性结构的指针,第二个是绑定类型,它有两个取值:PTHREAD_SCOPE_SYSTEM(绑定的)和PTHREAD_SCOPE_PROCESS(非绑定的)。 另外一个可能常用的属性是线程的优先级,它存放在结构sched_param中。用函数pthread_attr_getschedparam和函数pthread_attr_setschedparam进行存放,一般说来,我们总是先取优先级,对取得的值修改后再存放回去。 4 线程的数据处理

Linux进程间通信(2)实验报告

实验六:Linux进程间通信(2)(4课时) 实验目的: 理解进程通信原理;掌握进程中信号量、共享内存、消息队列相关的函数的使用。实验原理: Linux下进程通信相关函数除上次实验所用的几个还有: 信号量 信号量又称为信号灯,它是用来协调不同进程间的数据对象的,而最主要的应用是前一节的共享内存方式的进程间通信。要调用的第一个函数是semget,用以获得一个信号量ID。 int semget(key_t key, int nsems, int flag); key是IPC结构的关键字,flag将来决定是创建新的信号量集合,还是引用一个现有的信号量集合。nsems是该集合中的信号量数。如果是创建新集合(一般在服务器中),则必须指定nsems;如果是引用一个现有的信号量集合(一般在客户机中)则将nsems指定为0。 semctl函数用来对信号量进行操作。 int semctl(int semid, int semnum, int cmd, union semun arg); 不同的操作是通过cmd参数来实现的,在头文件sem.h中定义了7种不同的操作,实际编程时可以参照使用。 semop函数自动执行信号量集合上的操作数组。 int semop(int semid, struct sembuf semoparray[], size_t nops); semoparray是一个指针,它指向一个信号量操作数组。nops规定该数组中操作的数量。 ftok原型如下: key_t ftok( char * fname, int id ) fname就是指定的文件名(该文件必须是存在而且可以访问的),id是子序号,虽然为int,但是只有8个比特被使用(0-255)。 当成功执行的时候,一个key_t值将会被返回,否则-1 被返回。 共享内存 共享内存是运行在同一台机器上的进程间通信最快的方式,因为数据不需要在不同的进程间复制。通常由一个进程创建一块共享内存区,其余进程对这块内存区进行读写。首先要用的函数是shmget,它获得一个共享存储标识符。 #include #include #include int shmget(key_t key, int size, int flag); 当共享内存创建后,其余进程可以调用shmat()将其连接到自身的地址空间中。 void *shmat(int shmid, void *addr, int flag); shmid为shmget函数返回的共享存储标识符,addr和flag参数决定了以什么方式来确定连接的地址,函数的返回值即是该进程数据段所连接的实际地

线程实现邮箱通信-实验报告

进程通信实验报告 一、实验名称:进程通信 二、实验目的:掌握用邮箱方式进行进程通信的方法,并通过设计实现简单邮箱理解进程通信中的同步问题以及解决该问题的方法。 三、实验原理:邮箱机制类似于日常使用的信箱。对于用户而言使用起来比较方便,用户只需使用send ()向对方邮箱发邮件 receive ()从自己邮箱取邮件, send ()和 receive ()的内部操作用户无需关心。因为邮箱在内存中实现,其空间有大小限制。其实send ()和 receive ()的内部实现主要还是要解决生产者与消费者问题。 四、实验内容:进程通信的邮箱方式由操作系统提供形如send ()和receive ()的系统调用来支持,本实验要求学生首先查找资料了解所选用操作系统平台上用于进程通信的系统调用具体形式,然后使用该系统调用编写程序进行进程间的通信,要求程序运行结果可以直观地体现在界面上。在此基础上查找所选用操作系统平台上支持信号量机制的系统调用具体形式,运用生产者与消费者模型设计实现一个简单的信箱,该信箱需要有创建、发信、收信、撤销等函数,至少能够支持两个进程互相交换信息,比较自己实现的信箱与操作系统本身提供的信箱,分析两者之间存在的异同。 五、背景知识介绍: 1、sembuf 数据结构 struct sembuf { unsigned short int sem_num; //semaphore number short int sem_op; //semaphore operation short int sem_flg; //operation flag }; sem_num :操作信号在信号集中的编号,第一个信号的编号是0。 进程A 进程B 信箱A 信箱B Send() Send() receive() receive()

进程管理实验报告文档

实验一进程管理 1.实验目的: (1)加深对进程概念的理解,明确进程和程序的区别; (2)进一步认识并发执行的实质; (3)分析进程争用资源的现象,学习解决进程互斥的方法; (4)了解Linux系统中进程通信的基本原理。 2.实验预备内容 (1)阅读Linux的源码文件,加深对进程管理概念的理解; (2)阅读Linux的fork()源码文件,分析进程的创建过程。 3.实验内容 (1)进程的创建: 编写一段程序,使用系统调用fork() 创建两个子进程。当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 源代码: #include <> #include <> #include #include <> main() {

int p1,p2; p1=fork(); ockf()函数是将文件区域用作信号量(监视锁),或控制对锁定进程的访问(强制模式记录锁定)。试图访问已锁定资源的其他进程将返回错误或进入休态,直到资源解除锁定为止。而上面三个进程,不存在要同时进入同一组共享变量的临界区域的现象,因此输出和原来相同。 (3) a) 编写一段程序,使其实现进程的软中断通信。 要求:使用系统调用fork() 创建两个子进程,再用系统调用signal() 让父进程捕捉键盘上来的中断信号(即按DEL键);当捕捉到中断信号后,父进程用系统调用Kill() 向两个子进程发出信号,子进程捕捉到信号后分别输出下列信息后终止: Child Process 1 is killed by Parent! Child Process 2 is killed by Parent! 父进程等待两个子进程终止后,输出如下的信息后终止: Parent Process is killed!

实验二-Linux进程、线程及编程

实验二Linux进程、线程及编程实验 一、实验目的 1、通过编写一个完整的守护进程,掌握守护进程编写和调试的方法 2、进一步熟悉如何编写多进程程序 二、实验环境 硬件:PC机一台,JXARM9-2410教学实验平台。 软件:Windows98/XP/2000系统,虚拟机环境下的Linux系统。 三、预备知识 1、fork() fork()函数用于从已存在的进程中创建一个新进程。新进程称为子进程,而原进程称为父进程。使用fork()函数得到的子进程是父进程的一个复制品,它从父进程处继承了整个进程的地址空间,包括进程上下文、代码段、进程堆栈、存信息、打开的文件描述符、信号控制设定、进程优先级、进程组号、当前工作目录、根目录、资源限制和控制终端等,而子进程所独有的只有它的进程号、资源使用和计时器等 2、exit()和_exit()的区别 _exit()函数的作用最为简单:直接使进程停止运行,清除其使用的存空间,并销毁其在核中的各种数据结构; exit()函数则在这些基础上作了一些包装,在执行退出之前加了若干道工序。 exit()函数在调用exit系统调用之前要检查文件的打开情况,把文件缓冲区中的容写回文件,就是图中的"清理I/O缓冲"一项。 3、wait()和waitpid() wait()函数是用于使父进程(也就是调用wait()的进程)阻塞,直到一个子进程结束或者该进程接到了一个指定的信号为止。如果该父进程没有子进程或者他的子进程已经结束,则wait()就会立即返回。 四、实验容 在该实验中,读者首先创建一个子进程1(守护进程),然后在该子进程中新建一个子进程2,该子进程2暂停10s,然后自动退出,并由子进程1收集子线程退出的消息。在这里,子进程1和子进程2的消息都在系统日志文件(例如“/var/log/messages”,日志文件的全路径名因版本的不同可能会有所不同)中输出。在向日志文件写入消息之后,守护进程(子进程1)循环暂停,其间隔时间为10s。 五、实验步骤

查看程序的进程和线程实验报告

查看程序的进程和线程实验报告 篇一:程序实验2:11-多线程编程---实验报告 程序实验二:11-多线程编程实验 专业班级实验日期 5.21 姓名学号实验一(p284:11-thread.c) 1、软件功能描述 创建3个线程,让3个线程重用同一个执行函数,每个线程都有5次循环,可以看成5个小任务,每次循环之间会有随即等待时间(1-10s)意义在于模拟每个任务到达的时间是随机的没有任何的特定规律。 2、程序流程设计 3.部分程序代码注释(关键函数或代码) #include #include #include #define T_NUMBER 3 #define P_NUMBER 5 #define TIME 10.0

void *thrd_func(void *arg ) { (本文来自:https://www.360docs.net/doc/3b14848803.html, 小草范文网:查看程序的进程和线程实验报告) int thrd_num=(int)arg; int delay_time =0; int count =0; printf("Thread %d is staraing\n",thrd_num); for(count=0;count { delay_time =(int)(rand()*TIME/(RAND_MAX))+1; sleep(delay_time); printf("\tTH%d:job%d delay =%d\n",thrd_num,count,delay_time); } printf("%d finished\n",thrd_num); pthread_exit(NULL); } int main()

Linux下查看进程和线程

在Linux中查看线程数的三种方法 1、top -H 手册中说:-H : Threads toggle 加上这个选项启动top,top一行显示一个线程。否则,它一行显示一个进程。 2、ps xH 手册中说:H Show threads as if they were processes 这样可以查看所有存在的线程。 3、ps -mp 手册中说:m Show threads after processes 这样可以查看一个进程起的线程数。 查看进程 1. top 命令 top命令查看系统的资源状况 load average表示在过去的一段时间内有多少个进程企图独占CPU zombie 进程:不是异常情况。一个进程从创建到结束在最后那一段时间遍是僵尸。留在内存中等待父进程取的东西便是僵尸。任何程序都有僵尸状态,它占用一点内存资源,仅仅是表象而已不必害怕。如果程序有问题有机会遇见,解决大批量僵尸简单有效的办法是重起。kill是无任何效果的stop模式:与sleep进程应区别,sleep会主动放弃cpu,而stop 是被动放弃cpu ,例单步跟踪,stop(暂停)的进程是无法自己回到运行状态的。 cpu states: nice:让出百分比irq:中断处理占用 idle:空间占用百分比iowait:输入输出等待(如果它很大说明外存有瓶颈,需要升级硬盘(SCSI)) Mem:内存情况 设计思想:把资源省下来不用便是浪费,如添加内存后free值会不变,buff值会增大。判断物理内存够不够,看交换分区的使用状态。 交互命令: [Space]立即刷新显示 [h]显示帮助屏幕

进程间通信实验报告

进程间通信实验报告 班级:10网工三班学生姓名:谢昊天学号:1215134046 实验目的和要求: Linux系统的进程通信机构 (IPC) 允许在任意进程间大批量地交换数据。本实验的目的是了解和熟悉Linux支持的消息通讯机制及信息量机制。 实验内容与分析设计: (1)消息的创建,发送和接收。 ①使用系统调用msgget (), msgsnd (), msgrev (), 及msgctl () 编制一长度为1k 的消息的发送和接收程序。 ②观察上面的程序,说明控制消息队列系统调用msgctl () 在此起什么作用? (2)共享存储区的创建、附接和段接。 使用系统调用shmget(),shmat(),sgmdt(),shmctl(),编制一个与上述功能相同的程序。(3)比较上述(1),(2)两种消息通信机制中数据传输的时间。 实验步骤与调试过程: 1.消息的创建,发送和接收: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)在SERVER端建立一个Key为75的消息队列,等待其他进程发来的消息。当遇到类型为1的消息,则作为结束信号,取消该队列,并退出SERVER 。SERVER每接收到一个消息后显示一句“(server)received”。 (3)CLIENT端使用Key为75的消息队列,先后发送类型从10到1的消息,然后退出。最后的一个消息,既是 SERVER端需要的结束信号。CLIENT每发送一条消息后显示一句“(client)sent”。 (4)父进程在 SERVER和 CLIENT均退出后结束。 2.共享存储区的创建,附接和断接: (1)先后通过fork( )两个子进程,SERVER和CLIENT进行通信。 (2)SERVER端建立一个KEY为75的共享区,并将第一个字节置为-1。作为数据空的标志.等待其他进程发来的消息.当该字节的值发生变化时,表示收到了该消息,进行处理.然后再次把它的值设为-1.如果遇到的值为0,则视为结束信号,取消该队列,并退出SERVER.SERVER 每接收到一次数据后显示”(server)received”. (3)CLIENT端建立一个为75的共享区,当共享取得第一个字节为-1时, Server端空闲,可发送请求. CLIENT 随即填入9到0.期间等待Server端再次空闲.进行完这些操作后, CLIENT退出. CLIENT每发送一次数据后显示”(client)sent”. (4)父进程在SERVER和CLIENT均退出后结束。 实验结果: 1.消息的创建,发送和接收: 由 Client 发送两条消息,然后Server接收一条消息。此后Client Server交替发送和接收消息。最后一次接收两条消息。Client 和Server 分别发送和接收了10条消息。message 的传送和控制并不保证完全同步,当一个程序不再激活状态的时候,它完全可能继续睡眠,造成上面现象。在多次send message 后才 receive message.这一点有助于理解消息转送的实现机理。

Linux进程通信实验报告

Linux进程通信实验报告 一、实验目的和要求 1.进一步了解对进程控制的系统调用方法。 2.通过进程通信设计达到了解UNIX或Linux系统中进程通信的基本原理。 二、实验内容和原理 1.实验编程,编写程序实现进程的管道通信(设定程序名为pipe.c)。使 用系统调用pipe()建立一条管道线。而父进程从则从管道中读出来自 于两个子进程的信息,显示在屏幕上。要求父进程先接受子进程P1 发来的消息,然后再接受子进程P2发来的消息。 2.可选实验,编制一段程序,使其实现进程的软中断通信(设定程序名为 softint.c)。使用系统调用fork()创建两个子进程,再用系统调用 signal()让父进程捕捉键盘上来的中断信号(即按Del键),当父进程 接受这两个软中断的其中一个后,父进程用系统调用kill()向两个子 进程分别发送整数值为16和17的软中断信号,子进程获得对应软中 断信号后分别输出相应信息后终止。 三、实验环境 一台安装了Red Hat Linux 9操作系统的计算机。 四、实验操作方法和步骤 进入Linux操作系统,利用vi编辑器将程序源代码输入并保存好,然后 打开终端对程序进行编译运行。 五、实验中遇到的问题及解决 六、实验结果及分析 基本实验 可选实验

七、源代码 Pipe.c #include"stdio.h" #include"unistd.h" main(){ int i,j,fd[2]; char S[100]; pipe(fd); if(i=fork==0){ sprintf(S,"child process 1 is sending a message \n"); write(fd[1],S,50); sleep(3); return; } if(j=fork()==0){ sprintf(S,"child process 2 is sending a message \n"); write(fd[1],S,50); sleep(3); return;

进程同步实验报告

实验三进程的同步 一、实验目的 1、了解进程同步和互斥的概念及实现方法; 2、更深一步的了解fork()的系统调用方式。 二、实验内容 1、预习操作系统进程同步的概念及实现方法。 2、编写一段源程序,用系统调用fork()创建两个子进程,当此程序运行时,在系统中有一个父进程和两个子进程活动。让每一个进程在屏幕上显示一个字符:父进程显示字符“a”;子进程分别显示字符“b”和字符“c”。程序的输出是什么?分析原因。 3、阅读模拟火车站售票系统和实现进程的管道通信源代码,查阅有关进程创建、进程互斥、进程同步的系统功能调用或API,简要解释例程中用到的系统功能或API的用法,并编辑、编译、运行程序,记录程序的运行结果,尝试给出合理的解释。 4、(选做)修改问题2的代码,使得父子按顺序显示字符“a”;“b”、“c”编辑、编译、运行。记录程序运行结果。 三、设计思想 1、程序框架 (1)创建两个子进程:(2)售票系统:

(3)管道通信: 先创建子进程,然后对内容加锁,将输出语句存入缓存,并让子进程自己进入睡眠,等待别的进程将其唤醒,最后解锁;第二个子进程也执行这样的过程。父进程等待子进程后读内容并输出。 (4)修改程序(1):在子进程的输出语句前加上sleep()语句,即等待父进程执行完以后再输出。 2、用到的文件系统调用函数 (1)创建两个子进程:fork() (2)售票系统:DWORD WINAPI Fun1Proc(LPVOID lpPartameter); CreateThread(NULL,0,Fun1Proc,NULL,0,NULL); CloseHandle(hThread1); (HANDLE)CreateMutex(NULL,FALSE,NULL); Sleep(4000)(sleep调用进程进入睡眠状态(封锁), 直到被唤醒); WaitForSingleObject(hMutex,INFINITE); ReleaseMutex(hMutex); (3)管道通信:pipe(fd),fd: int fd[2],其中: fd[0] 、fd[1]文件描述符(读、写); lockf( fd,function,byte)(fd: 文件描述符;function: 1: 锁定 0:解锁;byte: 锁定的字节数,0: 从当前位置到文件尾); write(fd,buf,byte)、read(fd,buf,byte) (fd: 文件描述符;buf : 信息传送的源(目标)地址;byte: 传送的字节数); sleep(5); exit(0); read(fd[0],s,50) (4)修改程序(1):fork(); sleep(); 四、调试过程 1、测试数据设计 (1)创建两个子进程:

操作系统实验报告(包括线程,进程,文件系统管理,linux+shell简单命令)

操作系统实验报告 班级:030613 学号:03061331 姓名:裴帅帅

实验一:进程的建立 一、实验内容 创建进程及子进程,在父子进程间实现进程通信,创建进程并显示标识等进 程控制块的属性信息,显示父子进程的通信信息和相应的应答信息。 使用匿名管道实现父子进程之间的通信。 二、源程序 1、创建匿名管道 SECURITY_ATTRIBUTES sa; sa.bInheritHandle=true; sa.lpSecurityDescriptor=NULL; sa.nLength=sizeof(SECURITY_ATTRIBUTES); if(!CreatePipe(&m_hRead,&m_hWrite,&sa,0)) { MessageBox("创建匿名管道失败"); return false; } 2、创建子进程 STARTUPINFO si; ZeroMemory(&si,sizeof(STARTUPINFO)); si.cb=sizeof(STARTUPINFO); si.dwFlags=STARTF_USESTDHANDLES; si.hStdInput=m_hRead; si.hStdOutput=m_hWrite; si.hStdError=GetStdHandle(STD_ERROR_HANDLE); if(!CreateProcess(NULL,"子 进.exe",NULL,NULL,true,0,NULL,NULL,&si,&pi)) { MessageBox("创建子进程失败"); CloseHandle(m_hRead); CloseHandle(m_hWrite); m_hRead=NULL; m_hWrite=NULL; return; } 3、销毁子进程 if(m_hRead) CloseHandle(m_hRead);

实验四 同步与互斥 Linux实验报告

实验四同步与互斥 【实验目的和要求】 1、掌握进程(线程)的同步与互斥。 2、掌握生产者消费者问题的实现方法。 3、掌握多线程编程方法。 【实验内容】 实现生产者消费者问题 1、有一个仓库,生产者负责生产产品,并放入仓库,消费者会从仓库中拿走产品(消费)。 2、仓库中每次只能入一个(生产者或消费者)。 3、仓库中可存放产品的数量最多10个,当仓库放满时,生产者不能再放入产品。 4、当仓库空时,消费者不能从中取出产品。 5、生产、消费速度不同。 【实验原理】 1、信号量mutex提供对缓冲池访问的互斥要求并初始化为1,信号量empty和 full分别用来表示空缓冲项和满缓冲项的个数,信号量empty初始化为n,信号量full初始化为0。 2、定义如下结构及数据: 定义缓冲区内的数据类型:typedef int buffer_item; 缓冲区:buffer_item buffer[BUFFER_SIZE];

对缓冲区操作的变量:int in,out; 信号量mutex提供了对缓冲池访问的互斥要求:pthread_mutex_t mutex; 信号量empty和full分别表示空缓冲顶和满缓冲顶的个数:sem_t empty,full; 可以设定生产者的生产速度及消费者的消费速度:int pro_speed,con_speed; 对缓冲区操作的自增函数:#define inc(k) if(k < BUFFER_SIZE) k = k+1;else k=0 3、并定义了如下实现问题的函数模块: 将生产的产品放入缓冲区: int insert_item(buffer_item item) 从缓冲区内移走一个产品: int remove_item(buffer_item *item) 生产者进程:void *producer(void *param) 消费者进程:void *consumer(void *param) 生产者结构进程消费者结构进程 【程序代码】 //sx.c #include

操作系统进程创建及通信实验报告

武汉工程大学计算机科学与工程学院 《操作系统》实验报告[Ⅰ]

一、实验目的 创建进程,实现进程消息通信和共享内存通信,了解进程的创建、退出和获取进程信。了解什么是映像文件、管道通信及其作用,掌握通过内存映像文件和管道技术实现进程通信。 二、实验内容 本例用三种方法实现进程通信,仅用于示例目的,没有进行功能优化。 1、创建进程A和B后,在进程A中输入一些字符,点“利用 SendMessage发送消息”按钮可将消息发到进程B。 2、在进程A中输入一些字符,点“写数据到内存映像文件”按钮, 然后在进程B中点“从内存映像文件读数据”按钮可收到消息。其中在点“写数据到内存映像文件”时,要求创建映像文件,B进程在印象文件中读取数据。 3、先在进程B中点“创建管道并接收数据”按钮,然后在进程A 中输入一些字符,点“写数据到管道文件”按钮可将消息发到进程B。管道是连接读/写进程使他们进行通信的一个共享文件,目的是更好地实现进程间的通信。 三、实验思想 这次试验最主要的内容和核心思想就是学会创建进程并实现进程间的简单通信、创建映像文件和创建管道文件来通信,后两者是实现进程通信的高级通信机制中的两种。. 创建一个程序A和程序B,其中程序A和B各有一个主窗体,A主窗体上要求可以实现创建进程B(即调用函数B)、结束进程B、关闭进程A、向进程B发送数据、创建映像文件、创建管道文件等功能,进程B要求有从映像文件读取数据、创建管道并接收数据、结束进程B功能。最终让A、B进程相互通信。

四、设计分析: 首先设得设计A、B两个程序的操作界面,然后编写各个功能模块。对于A 程序窗体,在“利用SendMessage发送消息”按钮的消息响应函数中,主要是利用Windows API函数CWnd::FindWindow来找到接收消息的窗体,即进程B,找到进程B后,利用这个函数返回的窗体指针的SendMessage函数来发送消息。在“写数据到内存印象文件”按钮的消息响应函数中,主要是利用函数CreateFileMapping来创建一个印象文件,这个函数返回的是这个印象文件的句柄,然后将这个句柄和要发送的消息字符串传递到函数sprintf中,就可以所要发送的消息写入印象文件,在B程序窗体中有个“从内存印象文件读数据”按钮,在这个按钮的消息响应函数中读取父进程所创建的印象文件中的数据就可以实现通信了。在B程序窗体按钮“写数据到管道文件”的消息响应函数中,不能直接将要发送的消息发送到管道文件,因为管道必须先由子进程通过函数CreateNamedPipe创建,只有待子进程创建好管道后父进程才能根据管道创建管道文件,将消息写入管道文件并及时发送给子进程。而且这个管道只能使用一次,即每次发送完消息后那个管道不能在使用了,必须再由子进程创建一个管道,A 进程才能再次创建管道文件并向其中写入消息。这个程序也不一定要MFC实现,还可以用其他的技术和语言实现,比如说Java、VB等,外表构架可以不一样,但核心技术都是一样的,只是不同的调用形式和调用方法,比如说在VB中,实现进程间的一般通信就是使用动态数据交换DDE,实现起来就比较简单,但是要创建映像文件和管道文件就比较繁琐,可以根据不同的需求采用不同的语言。 五、程序部分源代码: 1.“利用SendMessage发送消息”按钮中的主要代码 //找到接收消息的窗口(窗口名为Receiver) CString str="进程B"; CWnd *pWnd=CWnd::FindWindow(NULL,str); if(pWnd) { COPYDATASTRUCT buf; char * s=new char[m_Msg1.GetLength()]; //m_Msg1为CString类型的变量 s=m_Msg1.GetBuffer(0);

linux使用多线程解决“读者—写者”问题实验报告

计算机科学与技术系 实验(项目)报告 一、基本信息 二、目的与要求 目的: 通过实验掌握Linux环境下多线程程序的开发方法。 要求: 1.掌握线程的基本概念及操作; 2.掌握线程间通信的基本方法; 3.掌握Linux环境下多线程程序的开发方法及步骤。 三、完成实验(项目)过程和效果 内容: 1.问题分析; 有100个读线程和100个写线程共同读、写文件 (1)允许多个reader同时读一个文件; (2)当有一个reader在读文件时,不允许writer写文件; (3)当有一个writer在写文件时,不允许reader读文件,也不允许其 他writer写文件。

2.程序实现; 3.程序的调试与运行。 步骤: 1.问题分析 可以利用读写锁解决读者-写者问题 2.程序实现 1)读者: void *Reader(void *id) { RandomSleep(); pthread_rwlock_rdlock(&rwlock); ReaderNum++; ReadFile(*((int *)id)); ReaderNum--; pthread_rwlock_unlock(&rwlock); } 2)写者: void *Writer(void *id) { RandomSleep(); pthread_rwlock_wrlock(&rwlock); WriterNum++; WriteFile(*((int *)id)); WriterNum--;

pthread_rwlock_unlock(&rwlock); } 3)线程的创建: for(i=0; i

进程控制与进程间通信操作系统实验报告

工程大学实验报告 专业班级:姓名:学号: 课程名称:操作系统 实验成绩:指导教师:蔡敦波 实验名称:进程控制与进程间通信 一、实验目的: 1、掌握进程的概念,明确进程和程序的区别。 2、认识和了解并发执行的实质。 3、了解什么是信号。 4、熟悉LINUX系统中进程之间软中断通信的基本原理。 二、实验内容: 1、进程的创建(必做题) 编写一段程序,使用系统调用fork( )创建两个子进程,在系统中有一个父进程和两个子进程活动。让每个进程在屏幕上显示一个字符;父进程显示字符“a”,子进程分别显示字符“b”和“c”。试观察记录屏幕上的显示结果,并分析原因。 <参考程序>

运行的结果是bca. 首先创建进程p1,向子进程返回0,输出b.又创建进程p2,向子进程返回0,输出c,同时向父进程返回子进程的pid,输出a 2、修改已编写的程序,将每个进程的输出由单个字符改为一句话,再观察程序执行时屏幕上出现的现象,并分析其原因。(必做题) <参考程序> # include int main() { int p1, p2, i; while((p1=fork())= = -1); if(p1= =0) for(i=0;i<500;i++) printf(“child%d\n”,i); else { while((p2=fork())= =-1); If(p2= =0) for(i=0;i<500;i++) printf(“son%d\n”,i); else for(i=0;i<500;i++) printf(“daughter%d\n”,i); } }

运行的结果是如上图所示. 首先创建进程p1,向子进程返回0,并for语句循环输出child +i字符串.又创建进程p2,向子进程返回0,输出字符串son+i,同时向父进程返回子进程的pid,输出字符串duaghter +i ,各打印5次。

Linux 线程实现机制分析

Linux 线程实现机制分析 杨沙洲 国防科技大学计算机学院 2003 年 5 月 19 日 自从多线程编程的概念出现在 Linux 中以来,Linux 多线应用的发展总是与两个问题脱不开干系:兼容性、 效率。本文从线程模型入手,通过分析目前 Linux 平台上最流行的 LinuxThreads 线程库的实现及其不足,描述了 Linux 社区是如何看待和解决兼容性和效率这两个问题的。 一 .基础知识:线程和进程 按照教科书上的定义,进程是资源管理的最小单位,线程是程序执行的最小单位。在操作系统设计上,从进程演化出线程,最主要的目的就是更好的支持 SMP 以及减小(进程/线程)上下文切换开销。 无论按照怎样的分法,一个进程至少需要一个线程作为它的指令执行体,进程管理着资源(比如cpu 、内存、 文件等等),而将线程分配到某个cpu 上执行。一个进程当然可以拥有多个线程,此时,如果进程运行在SMP 机器上,它就可以同时使用多个cpu 来执行各个线程,达到最大程度的并行,以提高效率;同时,即使是在单cpu 的机器上,采用多线程模型来设计程序,正如当年采用多进程模型代替单进程模型一样,使设计更简 洁、功能更完备,程序的执行效率也更高,例如采用多个线程响应多个输入,而此时多线程模型所实现的功能实际上也可以用多进程模型来实现,而与后者相比,线程的上下文切换开销就比进程要小多了,从语义上 来说,同时响应多个输入这样的功能,实际上就是共享了除cpu 以外的所有资源的。 针对线程模型的两大意义,分别开发出了核心级线程和用户级线程两种线程模型,分类的标准主要是线程的调度者在核内还是在核外。前者更利于并发使用多处理器的资源,而后者则更多考虑的是上下文切换开销。在目前的商用系统中,通常都将两者结合起来使用,既提供核心线程以满足smp 系统的需要,也支持用线程 库的方式在用户态实现另一套线程机制,此时一个核心线程同时成为多个用户态线程的调度者。正如很多技 术一样,"混合"通常都能带来更高的效率,但同时也带来更大的实现难度,出于"简单"的设计思路,Linux 从 一开始就没有实现混合模型的计划,但它在实现上采用了另一种思路的"混合"。 在线程机制的具体实现上,可以在操作系统内核上实现线程,也可以在核外实现,后者显然要求核内至少实现了进程,而前者则一般要求在核内同时也支持进程。核心级线程模型显然要求前者的支持,而用户级线程模型则不一定基于后者实现。这种差异,正如前所述,是两种分类方式的标准不同带来的。 当核内既支持进程也支持线程时,就可以实现线程-进程的"多对多"模型,即一个进程的某个线程由核内调度,而同时它也可以作为用户级线程池的调度者,选择合适的用户级线程在其空间中运行。这就是前面提到的"混合"线程模型,既可满足多处理机系统的需要,也可以最大限度的减小调度开销。绝大多数商业操作系统(如Digital Unix 、Solaris 、Irix )都采用的这种能够完全实现POSIX1003.1c 标准的线程模型。在核外实现的线程又可以分为"一对一"、"多对一"两种模型,前者用一个核心进程(也许是轻量进程)对应一个线程,将线程调度等同于进程调度,交给核心完成,而后者则完全在核外实现多线程,调度也在用户态完成。后者就是前面提到的单纯的用户级线程模型的实现方式,显然,这种核外的线程调度器实际上只需要完成线程运行栈的切换,调度开销非常小,但同时因为核心信号(无论是同步的还是异步的)都是以进程为单位的,因而无法定位到线程,所以这种实现方式不能用于多处理器系统,而这个需求正变得越来 内容: 一.基础知识:线程和进程 二.Linux 2.4内核中的轻量进程实现 三.LinuxThread 的线程机制 四.其他的线程实现机制 参考资料 关于作者 对本文的评价 订阅: developerWorks 时事通讯

Linux操作系统实验实验报告

实验1:安装L i n u x系统 【实验目的和要求】:安装Linux系统,掌握操作系统的系统配置,建立应用环境的过程。 【实验内容】: 1、首先在windows系统中安装虚拟机。在网上找到VMwareWorksttionPro版本, 确定安装目录。一直下一步,不需要太多的说明。 2、 图为安装完成后的界面。 3、然后在阿里巴巴开源镜像网站下载centos系统镜像,然后虚拟机创建新的虚 拟机, 进行一些简单的虚拟机设置,设置了网络链接nat模式等等。 安装完成后的界面 实验2:Linux下c语言开发 【实验目的】:学会和掌握用c语言开发一个应用程序的全过程,包括,编译,调试等等。

【实验步骤】:首先在系统中查看是否已经安装有gcc,输入查看命令发现没有,于是需要安装gcc。在centos系统中可以使用比较简便的yum命令。在之前已经配置好了yum源。直接输入yuminstallgcc。回车自动安装程序和需要的依赖包。 因为虚拟机中和电脑很多地方切换使用不方便,所以安装了xshell软件。图为xshell中的截图。

安装完毕。然后使用vi或者vim编写 运行,在屏幕上打印出hello,world。 实验3:进程创建 【实验目的和要求】1.了解进程的概念及意义;2.了解子进程和父进程 3.掌握创建进程的方法。 【实验内容】1.子进程和父进程的创建; 2.编写附件中的程序实例 【实验步骤】一1、打开终端,输入命令,在文件中输入中的代码; 2、输入命令,回车后显示无错误; 3、输入命令:./1_fork运行程序。 二、1、打开终端,输入命令,在文件中输入中的代码; 2、输入命令,回车后显示无错误: 3、输入命令:./2_vfork运行程序。 从上面可以看到两次的运行结果不一样。我们知道write函数是不带缓存的。因为在fork之前调用write,所以其数据写到标准输出一次。但是,标准I/O库是带缓存的。如果标准输出连到终端设备,则它是行缓存的,否则它是全缓存的。当以交互方式运行该程序时,只得到printf输出的行一次,其原因是标准输出缓存由新行符刷新。但是当将标准输出重新定向到一个文件时,却得到printf输出行两次。其原因是,在fork之前调用了printf一次,当调用fork时,该行数据仍在缓存中,然后在父进程数据空间复制到子进程中时,该缓存数据 也被复制到子进程中。于是那时父、子进程各自有了带该行内容的缓存。在exit 之前的第二个printf将其数据添加到现存的缓存中。当每个进程终止时,缓存中的内容被写到相应文件中。

实验报告三进程管理及进程通信

实验三进程管理及进程通信 实验环境: Linux操作系统 实验目的: (1)利用Linux提供的系统调用设计程序,加深对进程概念的理解。 (2)体会系统进程调度的方法和效果。 (3)了解进程之间的通信方式以及各种通信方式的使用。 实验方法: 用vi 编写c 程序(假定程序文件名为prog1.c)编 译程序 $ gcc -o prog1.o prog1.c 或 $ cc -o prog1.o prog1.c 运行 $./prog1.o 实验内容及步骤: 实验1 编写程序。显示进程的有关标识(进程标识、组标识、用户标识等)。经过5 秒钟后,执行另一个程序,最后按用户指示(如:Y/N)结束操作。 编程截图:

运行结果: 实验2 参考例程1,编写程序。实现父进程创建一个子进程。体会子进程与父进程分 别获得不同返回值,进而执行不同的程序段的方法。 例程1:利用fork()创建子进程 /* 用fork()系统调用创建子进程的例子*/ main() { int i; if (fork()) /*父进程执行的程序段*/ i=wait(); /* 等待子进程结束*/{ printf("It is parent process.\n"); printf("The child process,ID number %d, is finished.\n",i); } else{

Printf(“It is child process.\n”); Sleep(10); Exit(); } } 运行结果: 思考: 子进程是如何产生的?又是如何结束的?子进程被创建后它的运行环境是怎样建立的? 答:是由父进程用fock()函数创建形成的,通过exit()函数自我结束,子进程被创建后核心 将其分配一个进程表项和进程标识符,检查同时运行的进程数目,并且拷贝进程表项的数据,由子进程继承父进程所有文件。 实验3 参考例程2,编写程序。父进程通过循环语句创建若干子进程。探讨进程的家族树 以及子进程继承父进程的资源的关系。 例程2:循环调用fork()创建多个子进程。 /*建立进程树*/ #include main() { int i; printf(“My pid is %d, my father’s pid is %d\n”,getpid() ,getppid()); for(i=0; i<3; i++) if(fork()==0) printf(“%d pid=%d ppid=%d\n”, i,getpid(),getppid()); else { j=wait(0); Printf(“%d:The chile %d is finished.\n”,getpid(),j);

相关文档
最新文档