传热与流动的数值计算

传热系数计算方法

第四章循环流化床锅炉炉内传热计算 循环流化床锅炉炉膛中的传热是一个复杂的过程,传热系数的计算精度直接影响了受热面设计时的布置数量,从而影响锅炉的实际出力、蒸汽参数和燃烧温度。正确计算燃烧室受热面传热系数是循环流化床锅炉设计的关键之一,也是区别于煤粉炉的重要方面。 随着循环流化床燃烧技术的日益成熟,有关循环流化床锅炉的炉膛传热计算思想和方法的研究也在迅速发展。许多著名的循环流化床制造公司和研究部门在此方面也做了大量的工作,有的已经形成商业化产品使用的设计导则。 但由于技术保密的原因,目前国内外还没有公开的可以用于工程使用的循环流化床锅炉炉膛传热计算方法,因此对它的研究具有重要的学术价值和实践意义。 清华大学对CFB锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大学等单位也对CFB锅炉炉膛中的传热过程进行了有益的探索。根据已公开发表的文献报导,考虑工程上的方便和可行,本章根椐清华大学提出的方法,进一步分析整理,作为我们研究的基础。为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算方法,浙江大学和华中理工大学的传热计算与巴苏的相近似。 4.1 清华的传热理论及计算方法 4.1.1 循环流化床传热分析 CFB锅炉与煤粉锅炉的显著不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p 大大高于煤粉炉,而且炉内各处的浓度也不一样,它对炉内传热起着重要作用。为此首先需要计算出炉膛出口处的物料浓度C p,此处浓度可由外循环倍率求出。而炉膛不同高度的物料浓度则由内循环流率决定,它沿炉膛高度是逐渐变化的,底部高、上部低。近壁区贴壁下降流的温度比中心区温度低的趋势,使边壁下降流减少了辐射换热系数;水平截面方向上的横向搅混形成良好的近壁区物料与中心区物料的质交换,同时近壁区与中心区的对流和辐射的热交换使截面方向的温度趋于一致,综合作用的结果近壁区物料向壁面的辐射加强,总辐射换热系数明显提高。在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。物料浓度C p对辐射传热和对流传热都有显著影响。燃烧室的平均温度是床对受热面换热系数的另一个重要影响因素。床温的升高增加了烟气辐射换热并提高烟气的导热系数。虽然粒径的减小会提高颗粒对受热面的对流换热系数,在循环流化床锅炉条件下,燃烧室内部的物料颗粒粒径变化较小,在较小范围内的粒径变化时换热系数的变化不大,在进行满负荷传热计算时可以忽略,但在低负荷传热计算时,应该考虑小的颗粒有提高传热系数的能力。 炉内受热面的结构尺寸,如鳍片的净宽度、厚度等,对平均换热系数的影响也是非常明显的。鳍片宽度对物料颗粒的团聚产生影响;另一方面,宽度与扩展受热面的利用系数有关。根

传热学数值计算大作业2014011673

数值计算大作业 一、用数值方法求解尺度为100mm×100mm 的二维矩形物体的稳态导热问题。物体的导热系数λ为1.0w/m·K。边界条件分别为: 1、上壁恒热流q=1000w/m2; 2、下壁温度t1=100℃; 3、右侧壁温度t2=0℃; 4、左侧壁与流体对流换热,流体温度tf=0℃,表面传热系数 h 分别为1w/m2·K、10 w/m2·K、100w/m2·K 和1000 w/m2·K; 要求: 1、写出问题的数学描述; 2、写出内部节点和边界节点的差分方程; 3、给出求解方法; 4、编写计算程序(自选程序语言); 5、画出4个工况下的温度分布图及左、右、下三个边界的热流密度分布图; 6、就一个工况下(自选)对不同网格数下的计算结果进行讨论; 7、就一个工况下(自选)分别采用高斯迭代、高斯——赛德尔迭代及松弛法(亚松弛和超松弛)求解的收敛性(cpu 时间,迭代次数)进行讨论; 8、对4个不同表面传热系数的计算结果进行分析和讨论。 9、自选一种商业软件(fluent 、ansys 等)对问题进行分析,并与自己编程计算结果进行比较验证(一个工况)。(自选项) 1、写出问题的数学描述 设H=0.1m 微分方程 22220t t x y ??+=?? x=0,0

y=H ,0

传热学第四版课后题答案第四章

第四章 复习题 1、 试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。 2、 试说明用热平衡法建立节点温度离散方程的基本思想。 3、 推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似, 为什么前者得到的是精确描述,而后者解出的确实近似解。 4、 第三类边界条件边界节点的离散那方程,也可用将第三类边界条件表达式中的一阶导数 用差分公式表示来建立。试比较这样建立起来的离散方程与用热平衡建立起来的离散方程的异同与优劣。 5.对绝热边界条件的数值处理本章采用了哪些方法?试分析比较之. 6.什么是非稳态导热问题的显示格式?什么是显示格式计算中的稳定性问题? 7.用高斯-塞德尔迭代法求解代数方程时是否一定可以得到收敛德解?不能得出收敛的解时是否因为初场的假设不合适而造成? 8.有人对一阶导数()()()2 21,253x t t t x t i n i n i n i n ?-+-≈ ??++ 你能否判断这一表达式是否正确,为什么? 一般性数值计算 4-1、采用计算机进行数值计算不仅是求解偏微分方程的有力工具,而且对一些复杂的经验公式及用无穷级数表示的分析解,也常用计算机来获得数值结果。试用数值方法对Bi=0.1,1,10的三种情况计算下列特征方程的根:)6,2,1( =n n μ 3,2,1,tan == n Bi n n μμ 并用计算机查明,当2 .02≥=δτ a Fo 时用式(3-19)表示的级数的第一项代替整个级数(计 算中用前六项之和来替代)可能引起的误差。 解:Bi n n =μμtan ,不同Bi 下前六个根如下表所示: Bi μ 1 μ2 μ3 μ 4 μ 5 μ 6 0.1 0.3111 3.1731 6.2991 9.4354 12.5743 15.7143 1.0 0.8603 3.4256 6.4373 9.5293 12.6453 15.7713 10 1.4289 4.3058 7.2281 10.2003 13.2142 16.2594 Fo=0.2及0.24时计算结果的对比列于下表: Fo=0.2 δ=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.94879 0.62945 0.11866 前六和的值 0.95142 0.64339 0.12248 比值 0.99724 0.97833 0.96881 Fo=0.2 0=x Bi=0.1 Bi=1 Bi=10 第一项的值 0.99662 0.96514 0.83889 前六项和的值 0.994 0.95064 0.82925 比值 1.002 1.01525 1.01163 Fo=0.24 δ=x

计算传热学数值模拟

1、Jacobi 迭代 在Jacobi 迭代法中任一点上未知值的更新是用上一轮迭代中所获得的各邻 点之值来计算的,即 kk k k l l n l k n k a b T a T /)(1)1()(+=∑≠=- k=1,2,...,L 1×M 1 这里带括号的上角标表示迭代轮数。所谓一轮是指把求解区域中每一节点之值都更新一次的运算环节。显然,采用Jacobi 迭代式,迭代前进的方向(又称扫描方向)并不影响迭代收敛速度。这种迭代法收敛速度很慢,一般较少采用。但对强烈的非线性问题,如果两个层次的迭代之间未知量的变化过大,容易引起非线性问题迭代的发散。在规定每一层次计算的迭代轮次数的情况下,有利于Jacobi 迭代有利于非线性问题迭代的收敛。 2、Gauss-Seidel 迭代 在这种迭代法中,每一种计算总是取邻点的最新值来进行。如果每一轮迭代按T 的下角标由小到大的方式进行,则可表示为: kk k M L k l n l kl k l l n l kl n k a b T a T a T /)(1 11 ) 1(1 1) ()(++ =∑∑?+=--≠= 此时迭代计算进行的方向(即扫描方向)会影响到收敛速度,这是与边界条件的影响传入到区域内部的快慢有关的。 3、例题: 一矩形薄板几何尺寸如图所示,薄板左侧的边界温度T L =100K ,右侧温度T R =300K ,上侧温度T T =200K ,下侧温度T B =200K ,其余各面绝热,求板上个节点的温度。要求节点数目可以变化,写出程序。 解析: ⑴列出描述问题的微分方程和定解条件。 22 220t t x y ??+=??;对于离散化的问题,其微分方程根据热平衡原理得到:

传热流体数计算

1 傅立叶定律 傅立叶定律是导热理论的基础。其向量表达式为: q gradT λ=-? (2-1) 式中:q —热流密度,是向量,2 /()Kcal m h ;gradT —温度梯度,是向量,℃/m ;λ—导热系数,又称热导率, /()Kcal mh C o ; 式中的负号表示q 的方向始终与gradT 相反。 2 导热系数(thermal conductivity )及其影响因素 导热系数λ( /()Kcal mh C o )是一个比例常数,在数值上等于每小时每平方米面积上,当物体内温度梯度为1℃/m 时的导热量。 导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1度(K ,°C ),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度,w/m·k (W/m·K,此处的K 可用℃代替)。导热系数为温度梯度1℃/m ,单位时间通过每平方米等温面的热传导热流量。单位是:W/(m·K)。 3.热传导微分方程推导 ? 在t 时刻w 界面的温度梯度为x T ?? 在t 时刻e 界面的温度梯度为dx x T x T dx x x T x T 2 2??+??=????+?? 单位时间内六面体在x 方向流入的热流量为:dydz x T ??-λ; 单位时间内六面体在x 方向流出的热流量为: dydz dx x T x T ?? ??????+??-22λ; 单位时间内六面体在x 方向流入的净热量为:dxdydz x T 22??λ 图3-1 微分单元体各面上进出流量示意图 同理,单位时间内六面体在y 方向流入的净热量为:dxdydz y T 22??λ; 单位时间内六面体在y 方向流入的净热量为:dxdydz z T 22??λ; 单位时间内流入六面体的总热量为:dxdydz z T y T x T ??? ?????+??+??222222λ (3-1) 六面体内介质的质量为:dxdydz ρ。 单位时间六面体内热量的变化量(增加)为:Cdxdydz t T ρ?? 根据热量守恒定律: Cdxdydz t T dxdydz z T y T x T ρλ??=????????+??+??222222, C t T z T y T x T ρλ??=????????+??+??222222, t T z T y T x T C ??= ????????+??+??222222ρλ, t T z T y T x T a ??= ????????+??+??222222, C a ρλ = α称为热扩散率或热扩散系数(thermal diffusivity ),单位m 2/s. λ:导热系数,单位W/(m·K); ρ:密度,单位kg/m 3 c :热容,单位J/(kg·K). 思考:如果单元体内有热源:单位体积单位时间的散热量是q 方程怎么变? 4.岩石的热扩散率(导温系数) thermal diffusion coefficient ;thermal diffusivity; thermal degradation 岩石的热扩散率也叫或热扩散系数,表示岩石在加热或冷却时各部分温度趋于一致的能力。它反映岩石的热惯性特征,是一个综合性参数。热扩散率越大的岩石,热能传播温度趋于一致的速度越大,透入的深度也越大。 在t 时刻 w 界面流体速度为U ,流体温度为T 单位时间流入微元体的流体质量为:udydz dm ρ=1 带入微元体的热量为:uTCdydz ρ e 界面流体速度为dx x u u ??+ ,流体温度为dx x T T ??+ 单位时间流出微元体的流体质量为:dydz dx x u u dm ????? ? ??+ =ρ2 带出微元体的热量为: Cdydz dx x T T dx x u u ?? ??????+?????? ??+ ρ dxdydz x T dx x u C Cdxdydz x T u TCdxdydz x u uTCdydz ????+??+??+ρρρ ρ 如果不考虑x 方向速度变化,略去高阶微量,则e 界面带出微元体的热量为:Cdxdydz x T u uTCdydz ??+ρρ 单位时间内在x 方向流入六面体的净热流量为:dxdydz x T uC ??-ρ; 同理, y 方向:dxdydz y T vC ??-ρ z 方向:dxdydz z T wC ??-ρ

管道总传热系数计算18

1管道总传热系数 管道总传热系数是热油管道设计和运行管理中的重要参数。在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。1.1 利用管道周围埋设介质热物性计算K 值管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。当考虑结蜡 层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式: (1-1)1112ln 111ln 22i i n e n w i L L D D D KD D D D ααλλ-+???? ?????=+++????????∑式中:——总传热系数,W /(m 2·℃);K ——计算直径,m ;(对于保温管路取保温层内外径的平均值,对于e D 无保温埋地管路可取沥青层外径);——管道内直径,m ;n D ——管道最外层直径,m ;w D ——油流与管内壁放热系数,W/(m 2·℃);1α ——管外壁与周围介质的放热系数,W/(m 2·℃);2α ——第层相应的导热系数,W/(m·℃);i λi ,——管道第层的内外直径,m ,其中;i D 1i D +i 1,2,3...i n =——结蜡后的管内径,m 。L D 为计算总传热系数,需分别计算内部放热系数、自管壁至管道最外径K 1α的导热热阻、管道外壁或最大外围至周围环境的放热系数。 2α(1)内部放热系数的确定1α放热强度决定于原油的物理性质及流动状态,可用与放热准数、自然1αu N 对流准数和流体物理性质准数间的数学关系式来表示[47]。r G r P 在层流状态(Re<2000),当时:500Pr

热物理过程的数值模拟-计算传热学3.(DOC)

四、非线笥问题迭代式解法的收敛性 每一层次上满足迭代法求解的收敛条件+相邻次间代数方程的系数变化不太大(亦即未知量的变化不太大←多数情形下非线性问题迭代式解法是可以收敛的)。 使相邻两层次间未知量变化不太大的措施: 1、欠松弛迭代 常用逐次欠弛线迭法(SLUR ):一组临时系数下逐线迭代求解+对所得的解施以欠松弛,再用欠松弛后的解去计算新的系数,常数,以进入下一层次的迭代。 实施:常把欠松弛处理纳入迭代过程,而不是在一个层次迭代完成后再行欠松弛。 )( ) ()()1(n p p n n n p n p t a b bt a t t -∑+=+ω )()1() 1()( n p p n n n p p t a b b t b a t a ω ωω -+++∑=+ ∑+=+')1('b b bt a t a n n n p p )('))(1(',n p p p p t a b b a a ωωω-+==,用交替方向线迭代法求解这一方程,就实现了SLUR 的迭代求解。为一般化起见,上式中b t n 上没有标以迭代层次的符号(J ,GS 时不相同)。 2、采用拟非稳态法 前面已指出,稳态问题的迭代解法与非稳态问题的步进法十分相似。对于非线性稳态问题,从代数方程的一组临时系数进入到另一组临时系数亦好象非稳态问题前进了一个时间层,非稳态问题的物理特性:系数热惯性越大(↑??=τρ/v c a o p ),温度变化越慢,仿此,对稳态非线性问题,可在离散方程中加入拟非稳态项,以减小未知量托两个层次间的变化,即 由 )()1()1()()(n p o p n n n p o p p n n n n p p n t a b b bt a t a V S b a b b bt a t V S b a ++∑=+?-∑?+∑=?-∑++ o p p n n p o p n n n p a V S b a t a b b bt a t +?-∑++∑= +) ()1( 一直进行到b t t n p ,收敛,虚拟时间步τ?的大小通过计算实践确定。 3、采用Jacobi 点迭代法 中止迭代的判据(该层次迭代)除前述变化率判据外,还可以规定迭代的轮数,例如规定进行4-6次ADI 线迭代就结束该层次上的计算。此时,用收敛速度低的丁迭代也就起到了欠松弛的作用。 五、迭代法的收敛速度 1、收敛速度 对给定的代数方程组(包括是临时系数的情形),采用不同的迭代方法求解时,使一定的初始误差缩小成α倍所需要的迭代轮数K 是不相的。1<α

玻璃的传热系数计算

4.3 热工设计 4.3.1 本系统用于外墙外保温时的保温层设计厚度,应根据《河南省公共建筑节能设计标准》(DBJ41/075-2006)、《河南省居住建筑节能设计标准(寒冷地区)》(DBJ41/062-2005)、《河南省居住建筑节能设计标准(夏热冬冷地区)》(DBJ41/071-2006)规定的外墙传热系数限值,通过热工计算确定。 4.3.2 ZCK无机复合保温板用于外墙外保温时,其导热系数(λ)、蓄热系数(S)设计计算值和修正系数按下表取值。 表4.3.2 ZCK无机复合保温板λ、S、修正系数 4.3.3 热工计算示例,以采用60mm保温板为例。 示例一:200mm混凝土剪力墙外贴60mm保温板,计算如下: Ra=R内+R1+R2+R3+R4+R外=0.11+0.0215+0.1149+1.1429+0.005+0.04=1.4343 Ka=1/R=1/1.4333=0.70W/(m2.K) 其中:R内为内表面换热阻,0.11m2.K/W; R1为水泥砂浆层热阻,0.02/0.81=0.0215 m2.K/W; R2为混凝土剪力墙层热阻,0.2/1.74=0.1149 m2.K/W; R3为保温板层热阻,0.06/(0.05*1.05)=1.1429 m2.K/W; R4为抗裂砂浆层热阻,0.005/0.93=0.005 m2.K/W; R外为外表面换热阻,0.04m2.K/W; 示例二:200mm加气混凝土砌块外贴60mm保温板,计算如下: Rb=R内+R1+R2+R3+R4+R外=0.11+0.0215+0.80+1.1429+0.005+0.04=2.1194 Kb=1/R=1/2.1194=0.47W/(m2.K) 其中:R内为内表面换热阻,0.11m2.K/W; R1为水泥砂浆层热阻,0.02/0.81=0.0215 m2.K/W; R2为加气混凝土砌块层热阻,0.2/(0.20*1.25)=0.80 m2.K/W; R3为保温板层热阻,0.06/(0.05*1.05)=1.1429 m2.K/W; R4为抗裂砂浆层热阻,0.005/0.93=0.005 m2.K/W;

【精品】流体力学与传热学教案设计

流体力学与传热学 流体静力学:研究静止流体中压强分布规律及对固体接触面的作用问题 流体动力学:研究运动流体中各运动参数变化规律,流体与固体作用面的相互作用力的问题 传热学研究内容:研究热传导和热平衡规律的科学上篇:流体力学基础 第一章流体及其主要力学性质 第一节流体的概念 一流体的概述 ⒈流体的概念:流体是液体和气体的统称 ⒉流体的特点:易流动性—在微小剪切力的作用下,都将连续不断的产生变形(区 别于固体的特点) ⑴液体:具有固定的体积;在容器中能够形成一定的自由表面;不可压缩性 ⑵气体;没有固定容积;总是充满所占容器的空间;可压缩性

二连续介质的模型 ⒈连续介质的概念 所谓连续介质即是将实际流体看成是一种假想的,由无限多流体质点所组成的稠密而无间隙的连续介质.而且这种连续介质仍然具有流体的一切基本力学性质. ⒉连续介质模型意义 所谓流体介质的连续性,不仅是指物质的连续不间断,也指一些物理性质的连续不间断性.即反映宏观流体的密度,流速,压力等物理量也必定是空间坐标的连续函数(可用连续函数解决流体力学问题)

第二节流体的性质 一密度—--表征流体质量性质 ⒈密度定义:单位体积内所具有的流体质量 ⑴对于均质流体:ρ=m/v 式中ρ-流体的密度(㎏/m 3) m-流体的质量(㎏) v —流体的体积(m 3) ⑵对于非均质流体:ρ=⒉比体积(比容):单位质量流体所具有的体积(热力学和 气体动力学概念) ⑴对于均质流体:v=V/m=1/ρ(m 3/㎏) 3.液体的密度在一般情况下,可视为不随温度或压强而变化;但气体的密度则随温度和压强可发生很大的变化。 二流体的压缩性和膨胀性 dv dm v m v =??→?0lim

流体与传热数值计算大作业

1.研究对象:冷、热水换热器 问题描述:一个冷、热水混合器的部流动与 热量交换问题。温度为T=350k 的热水自上部的热水 小管嘴流入,与自下部右侧小管嘴流入的温度为290k 的冷水在混合器部混合进行热量与动量交换后,自 下部左侧小管嘴流出。混合器结构如下图1-1所示。 输入条件: 热水温度T r =350K,热水入口速度v r =10m/s; 冷水温度T l =290K,冷水入口速度v l =10m/s; 图1.1 换热器简图 2.利用GAMBIT 建立计算模型 2.1创建混合器网格图 打开gambit ,选择fluent5/6求解器,首先在工 作区建立20*20的网格,再根据模型的几何尺寸要求 ,确定出不同类型边界的交点及圆弧中心点。再由节 点逐步建立出混合器的壁面及各个小管嘴,最终建成 各个面,从而生成换热器的几何模型。 打开“mesh edges ”,选取边线,对各个线的 部节点进行重新剖分。在“edges ”选中取边界线LA, CD,FG,GH,KL,在“interval count ”中填入15,将各条 边分成15份。同样操作,其它边分成5分。完成上 述工作后,可查看网格划分情况,如图2.1所示: 图2-1 换热器网格图 A B C D E P Q S T F G H I U V J K L 热水入口混合后出口冷水入口3CM 20CM

2.2设置边界类型 如图1.1所示,这个换热器的边界主要 就是入口边界与出口边界需要设置,入口边 界有冷水入口ST与热水入口UV,出口边界 只有冷热水混合后出流口PQ,因此打开 ”ZONES”中“Specify Boundary Type”对话框, 在“Action”项选add,创建名称“inlet1”,并 选择“velcocity inlet”类型,最后选取边界线 ST,点击Apply,这样就设置了ST的边界类型, 类似的操作,可设置边界UV和PQ的边界类 型分别为“inlet2”“outlet”。设置结果如图 2.2所示:图2.2边界类型设置对话框 至此保存,并选择File/Export/Mesh命令,选中Export 2D Mesh输出mixowwang.msh文件,该文件可直接有Fluent读入。 3.换热器部流动与换热的仿真计算 3.1对网格进行处理 1)以二维单精度方式启动Fluent,读入网格文件mixowwang.msh,这样就完成了网格文件的输入操作。 2)选择Grid中Check,对网格进行检查,网格检查列出了x,y的最小值和最大值,也报告出了网格的其它特性,如单元的最大体积,最小体积,最大面积与最小面积等,同时网格检查还会报告有关网格的任何错误,若存在错误,fluent 将无法进行计算。 3)平滑网格。对网格进行平滑操作,可进一步确保网格质量。

导热系数、传热系数、热阻值概念及热工计算方法简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法 导热系数λ[W/(m.k)]: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。导热系数可通过保温材料的检测报告中获得或通过热阻计算。 传热系数K [W/(㎡?K)]: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K 值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。传热系数可通过保温材料的检测报告中获得。 热阻值R(m.k/w): 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。 传热阻: 传热阻以往称总热阻,现统一定名为传热阻。传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻: R=δ/λ 式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0

一维非稳态导热的数值计算

一维非稳态导热的数值计算 一、实验名称 一维非稳态导热的数值计算 二、实验内容 一块无限大平板(如图3所示),其一半厚度为L=0.1m,初始温度 T0=1000℃,突然将其插入温度T∞=20℃的流体介质中。平板的导热系数λ=34.89W/m℃,密度ρ=7800 kg/m3,比热c=0.712J/kg℃,平板与介质的对流换热系数为h=233W/m2.℃,求平板内各点的温度分布。 三、实验编程 #include #include #define S 3.14 #define L 10 #define Dx (1.0/L) #define Dy (0.5/L) int main(int argc, char* argv[]) { Int i, j, k; double a = 2/(1+sin(S/L)); double T[L+1][L+1]; for(i=0; i<=L; i++) T[0][i] = T[i][0] = 100; for(i=1; i<=L; i++) T[i][L] = 100 + 400*Dx*i; for(j=1; j<=L-1; j++) T[L][j] = 100 + 800*Dy*j;

for(i=1; i<=L-1; i++) T[i][j] = 100; for(k=0; k<=1000; k++) {for(i=1; i<=L-1; i++) for(j=1; j<=L-1; j++) {T[i][j] = T[i][j] + (a/4)*(T[i+1][j] + T[i][j+1] + T[i-1][j] + T[i][j-1] -4*T[i][j]); } } printf(" a = %lf\n", a); printf("T[x][y] = ...\n"); for(i=0; i<=L; i++) for(j=0; j<=L; j++) {printf("%.1lf\t", T[i][j]); if(j == L) putchar(10); } return 0; } 四、运行结果

哈尔滨工程大学传热学大作业数值计算matlab程序内容

传热学作业数值计算

数值计算matlab程序内容:>> tw1=10; % 赋初值tw2=20; c=1.5; p2=20; p1=c*p2; L2=40; L1=c*L2; deltaX=L2/p2; a=p2+1; b=p1+1; ti=ones(a,b)*5; m1=ones(a,b); m1(a,2:b-1)=zeros(1,b-2); m1(2:a,1)=zeros(a-1,1); m1(2:a,b)=zeros(a-1,1); m1(1,:)=ones(1,b)*2; k=0; max1=1.0; tn=ti; while(max1>1e-6) max1=0; k=k+1; for i=1:1:a for j=1:1:b

m=m1(i,j); n=ti(i,j); switch m case 0 tn(i,j)=tw1; case 1 tn(i,j)=0.25*(tn(i,j+1)+tn(i,j-1)+tn(i+1,j)+tn(i-1,j)); case 2 tn(i,j)=tw1+tw2*sin(pi*(j-1)/(b-1)); end er=abs(tn(i,j)-n); if er>max1 max1=er; end end end ti=tn; end k ti max1 t2=ones(a,b); %求解析温度场 for i=a:-1:1 for j=1:1:b y=deltaX*(a-i); x=deltaX*(j-1); t2(i,j)=tw1+tw2*sin(pi*x/L1)*(sinh(pi*y/L1))/(sinh(pi*L2/L1)); end end t2 迭代次数k =706 数值解温度场ti

传热系数计算

传热系数计算 散热器是一种热交换器~其热工计算的基本公式为传热方程式~其表达式为: Ф=KAΔt ,6,1, m Ф为传热量单位:W 2K为传热系数单位:W/(m〃?) A 为传热面积单位:? Δt为冷热流体间的对数平均温差单位:? m,,,从《车辆冷却传热》上可知~以散热器空气侧表面为计算基础~散热器传热系数 计算公式为: -1K=(β/h+(β×λ) +(1/η×h)+ R) ,6,2, 1管02f 式中:β为肋化系数~其等于空气侧所有表面积之和/水侧换热面积 2h为水侧表面传热系数单位:W/(m〃?) 12h为空气侧表面传热系数单位:W/(m〃?)2 2λ为散热管材料导热系数单位:W/(m〃?) 管2R为散热器水侧和空气侧的总热阻单位:,m〃?),W f η为肋壁总效率~其表达式为: 0 η=1,(×,1,η,),A ,6,3, f20 A为空气侧二次换热面积~单位:? 22 A为空气侧所有表面积之和~单位:? 2 η为肋片效率 f η,th(m×h)/ (m×h) ,6,4, fff th为双曲线函数 h为散热带的特性尺寸~即散热管一侧的肋片高度 f m为散热带参数~表达式为: 0.5 m=((2×h)/(δ×λ)),6,5, 2222h为空气侧传热系数单位:W/(m〃?) 2 δ为散热带壁厚单位:m 22λ为散热带材料导热系数单位:W/(m〃?) 2

从《传热学》上可知~表面传热系数h的公式为: 2 h= Nu×/de 单位:W/(m 〃?) ,6,6, λ为流体的热导率~对散热器~即为空气热导率 de为换热面的特性尺度~对散热器~求气侧换热系数时~因空气外 掠散热管~故特性尺度为散热管外壁的当量直径, 单位m [2]由《传热学》中外掠管束换热实验知,流体横掠管束时~对其第一排管子来说~换热情况与横掠但管相仿。 Nu=C×Re (6,7) m[3]式中C、为常数~数值见《传热学》表5.2 Re=Va×de/νa ,6,8, Va 为空气流速单位m/s 2νa为空气运动粘度单位m/s

传热学上机C程序源答案之二维非稳态导热的数值计算

二维稳态导热的数值计算 2.1物理问题 一矩形区域,其边长L=W=1,假设区域内无内热源,导热系数为常数,三个边温度为T1=0,一个边温度为T2=1,求该矩形区域内的温度分布。 2.2 数学描述 对上述问题的微分方程及其边界条件为:2222T T 0x y ??+=?? x=0,T=T 1=0 x=1,T=T 1=0 y=0,T=T 1=0 y=1,T=T 2=1 该问题的解析解:112121(1)sin n n n sh y T T n L x n T T n L sh W L ππππ∞=??? ?---??? ?=? ?-????? ??? ∑ 2.3数值离散 2.3.1区域离散 区域离散x 方向总节点数为N ,y 方向总节点数为M ,区域内任一节点用I,j 表示。 2.3.2方程的离散 对于图中所有的内部节点方程可写为:2222,,0i j i j t t x y ??????+= ? ??????? 用I,j 节点的二阶中心差分代替上式中的二阶导数,得: +1,,-1,,+1,,-1222+2+0i j i j i j i j i j i j T T T T T T x y --+= 上式整理成迭代形式:()()22 ,1,-1,,1,-12222+2() 2()i j i j i j i j i j y x T T T T T x y x y ++=++++ (i=2,3……,N-1),(j=2,3……,M-1) 补充四个边界上的第一类边界条件得:1,1j T T = (j=1,2,3……,M) ,1N j T T = (j=1,2,3……,M) ,1i j T T = (i=1,2,3……,N)

传热过程的计算16页

第五节 传热过程的计算 化工生产中广泛采用间壁换热方法进行热量的传递。间壁换热过程由固体壁的导热和壁两侧流体的对流传热组合而成,导热和对流传热的规律前面已讨论过,本节在此基础上进一步讨论传热的计算问题。 化工原理中所涉及的传热过程计算主要有两类:一类是设计计算,即根据生产要求的热负荷,确定换热器的传热面积;另一类是校核计算,即计算给定换热器的传热量、流体的流量或温度等。两者都是以换热器的热量衡算和传热速率方程为计算基础。 4-5-1 热量衡算 流体在间壁两侧进行稳定传热时,在不考虑热损失的情况下,单位时间热流体放出的热量应等于冷流体吸收的热量,即: Q=Q c =Q h (4-59) 式中 Q ——换热器的热负荷,即单位时间热流体向冷流体传递的热量,W ; Q h ——单位时间热流体放出热量,W ; Q c ——单位时间冷流体吸收热量,W 。 若换热器间壁两侧流体无相变化,且流体的比热容不随温度而变或可取平均温度下的比热容时,式(4-59)可表示为 ()()1221t t c W T T c W Q pc c ph h -=-= (4-60) 式中 c p ——流体的平均比热容,kJ/(kg ·℃); t ——冷流体的温度,℃; T ——热流体的温度,℃; W ——流体的质量流量,kg/h 。 若换热器中的热流体有相变化,例如饱和蒸气冷凝,则 ()12t t c W r W Q pc c h -== (4-61) 式中 W h ——饱和蒸气(即热流体)的冷凝速率,kg/h ; r ——饱和蒸气的冷凝潜热,kJ/kg 。 式(4-61)的应用条件是冷凝液在饱和温度下离开换热器。若冷凝液的温度低于饱和温度时,则式(4-61)变为 ()[]()122t t c W T T c r W Q pc c s ph h -=-+= (4-62) 式中 c ph ——冷凝液的比热容,kJ/(kg ·℃); T s ——冷凝液的饱和温度,℃。 4-5-2 总传热速率微分方程 图4-20为一逆流操作的套管换热器的微元管段d L ,该管段的内、外表面积及平均传热面积分别为d S i 、d S o 和d S m 。热流依次经过热流体、管壁和

帕坦卡:传热与流体流动的数值计算

帕坦卡:传热与流体流动的数值计算 书的特点: 1)8年的工作经验的总结 2)简洁而系统 3)可以到达数值计算的前沿 4)三个人的贡献:spalding,patankar,张政,于1984年3月 第一章引论 1.1范畴 传热、流体的重要性 传热,传质,流体流动,两相流,化学反应等,广泛存在于冶金,化工,机械,建筑,电子天气等几乎贯穿于各个行业; 预测的本质:预测温度、压力,速度,浓度,应力;进而得到热量,流量,受力等; 路线:简单的数学公式,不进行推导,从物理意义上理解,这门课程最好是在学习过传热学和流体力学之后进行学习,即使没有学习过,也没有关系,仍然能够达到一定高度。 1.2预测的方法 实验研究的问题, 1)昂贵 2)模化反推的误差 3)无法模化,如燃烧与沸腾 1.3理论计算 一组微分方程组,如果采用纯理论解析解,能够解决的问题少的可怜。 数值计算方法和计算机的发展,几乎得到这些方程的隐含解。即数值解。 使用非连续的点表示一个量的场。 理论计算的优点 1)速度快 2)成本低 3)资料完备,信息量大,如温度,压力速度等 4)模拟真实条件的能力 5)模拟理想条件的能力

理论计算的缺点 模型的适用程度限制计算的效能 将实际问题分成两类: A、可以使用适合的数学模型来描述的问题 B、无法可以使用适合的数学模型来描述的问题 对于A类,使用计算是非常优越的,但是对于求非常少数内容的且结构非常复杂的,不易使用计算方法,如求得一个机构是否复杂设备的流体压力损失,就不如采用实验方法。 对于B类问题,没有很好的办法,目前就是通过人工建设,把它转化成A类问题,并结合实验,进一步修正模型。 1.4 预测方法选择 1)实验方法还是唯一的 2)综合分析 3)设计 4)讨论分析 5)最佳方案:计算+实验 1.5主要内容 九章:三章基础,三章推演,三章应用 1)基础:现象,微分方程,数值方法步骤 2)推演:处理导热,对流与导热,速度场本身的计算;特点是由一维推演到多维 3)应用:

管道总传热系数算

管道总传热系数算

————————————————————————————————作者:————————————————————————————————日期:

1管道总传热系数 管道总传热系数是热油管道设计和运行管理中的重要参数。在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。 1.1 利用管道周围埋设介质热物性计算K 值 管道总传热系数K 指油流与周围介质温差为1℃时,单位时间内通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式: 1 112ln 111ln 22i i n e n w i L L D D D KD D D D ααλλ-+???? ?????=+++????????∑ (1-1) 式中:K ——总传热系数,W /(m 2·℃); e D ——计算直径,m ;(对于保温管路取保温层内外径的平均值, 对于无保温埋地管路可取沥青层外径); n D ——管道内直径,m ; w D ——管道最外层直径,m ; 1α——油流与管内壁放热系数,W/(m 2·℃); 2α——管外壁与周围介质的放热系数,W/(m 2·℃); i λ——第i 层相应的导热系数,W/(m·℃); i D ,1i D +——管道第i 层的内外直径,m ,其中1,2,3...i n =; L D ——结蜡后的管内径,m 。 为计算总传热系数K ,需分别计算内部放热系数1α、自管壁至管道最外径的 导热热阻、管道外壁或最大外围至周围环境的放热系数2α。 (1)内部放热系数1α的确定 放热强度决定于原油的物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 和流体物理性质准数r P 间的数学关系式来表示[47]。 在层流状态(Re<2000),当500Pr

传热学数值计算

传热学数值计算作业

数值解程序: tw1=40 %三边温度 tw2=100 %一边温度正弦变化幅度l1=40 %板长L1:40厘米 l2=20 %板宽L2:20厘米 m=41 %分划成40*20的网格 n=21 k=2 dx=l1/(m-1) c=ones(n,m) for i=1:m a2(i)=tw1+tw2*sin(pi*dx*(i-1)/l1) c(1,i)=tw1 ,c(n,i)=a2(i) end for j=1:n c(j,1)=tw1 c(j,m)=tw1 end while (abs(c(j,i)-k)>0.0001) k=c(j,i) for i=2:m-1 for j=2:n-1 c(j,i)=0.25*(c(j,i-1)+c(j,i+1)+c(j-1,i)+c(j+1,i)) end end

end 数值解中各网格点的温度值:

数值二维温度分布图像:

解析解程序: tw1=40 tw2=100 l1=40 l2=20 p=40 q=20 x(1)=0 for i=1:p x(i+1)=x(i)+1 end y(1)=0 for j=1:q y(j+1)=y(j)+1 end for i=1:p+1 for j=1:q+1 n(j,i)=tw1+tw2*sinh(pi*y(j)/l1)*sin(pi*x(i)/l1)/sinh(pi*l2/l1) end end 各网格点用解析式得到的温度值: 50 L1/cm numerical calculation 2D temperature distribution L2/cm t e m p e r a t u r e /c e l s i u s d e g r e e

相关文档
最新文档