第一节匀速圆周运动

第一节匀速圆周运动
第一节匀速圆周运动

物理·必修2(粤教版)

第一节匀速圆周运动

基础达标

1.做匀速圆周运动的物体在运动过程中,下列哪个物理量是变化的()

A .周期

B .角速度

C .速率

D .速度 答案:D

2.做匀速圆周运动的物体,下列说法正确的是( ) A .线速度越大,角速度一定越大 B .线速度越大,周期一定越小 C .角速度越大,周期一定越大 D .角速度越大,周期一定越小

解析:由v =ωr 可知,当v 大时,r 也大,ω不一定大,A 错;由公式v =2πrf 知v 大时,若r 也大,T 不一定小,B 错;由ω=2π

T

知,

ω与T 有唯一确定关系,D 正确,C 错.

答案:D

3.(双选)一个质点做匀速圆周运动时,它在任意相等的时间内( )

A .通过的弧长相等

B .通过的位移相等

C.转过的角度相等

D.速度的变化相等

答案:AC

4.(2013·上海金山中学高一期末)关于匀速圆周运动物体的线速度、角速度、周期的关系,下列说法中正确的是()

A.线速度大的角速度一定大

B.线速度大的周期一定小

C.周期小的半径一定大

D.转速大的周期一定小

答案:D

5.一准确运动的机械钟表,下列说法正确的是()

A.秒针转动的周期最长

B.时针转动的周期最大

C.秒针转动的角速度最大

D.秒针、分针、时针上任一点的线速度相同

答案:C

能力提升

6.(双选)甲、乙两物体分别做匀速圆周运动,如果它们转动的半径之比为15,线速度之比为

32,则下列说法正确的是() A.甲、乙两物体的角速度之比是

15 2

B.甲、乙两物体的角速度之比是

10 3

C.甲、乙两物体的周期之比是

215

D.甲、乙两物体的周期之比是10 3

解析:由v =ωr 得ω1ω2=

v 1

r 1

v 2r 2

=v 1v 2·r 2r 1=32×51=15

2,A 正确,B 错误;由ω=2πT 得T 1T 2=ω2ω1=215,C 正

确,D 错误.

答案:AC

7.(2014·佛山中大附中高一)如图所示,

质量相等的A 、B 两物块放在匀速转动的水平圆盘上,随圆盘一

起做匀速圆周运动,则()

A.它们所受的摩擦力f A>f B

B.它们的线速度v A

C.它们的运动周期T A

D.它们的角速度ωA=ωB

解析:A、B两物体随圆盘一起做匀速圆周运动,是一种同轴转动问题,所以,它们的角速度相等,周期相等,A、C错误,D正确;由v=ωr可知,因r A>r B,所以v A>v B,B错误.

答案:D

8.(2013·北京西城区高一期末)如图所示为某品牌自行车的部分结构.A、B分别是飞轮边缘、大齿盘边缘上的点.飞轮14齿,大齿盘42齿.现在提起自行车后轮,转动脚蹬,使大齿盘和飞轮转动,则下列说法正确的是()

A.A、B两点线速度大小相等

B.A、B两点线速度之比为1∶3

C.A、B两点的角速度大小相等

D.A、B两点的角速度之比为1∶3

答案:A

9.(2014·广东梅州高一期末)(双选)如图所示,为一皮带传动装置,右轮半径为r,a是它轮缘上的一个点.左侧是一轮轴,大轮的半径是4r,小轮的半径是2r,b点在小轮上,它到轮中心的距离为点和d 点分别位于小轮和大轮的边缘上.若传动中不打滑,则下列说法正确的是()

A.a点与b点的线速度大小相等

B.a点与b点的角速度大小相等

C .a 点与c 点的线速度大小相等

D .a 点与d 点的向心加速度大小不相等

解析:A 项,a 、c 两点是传送带传动的两轮与边缘上两点,则v a

=v c ,b 、c 两点为共轴的轮子上两点,ωb =ωc ,r c =2r b ,则v c =2v b ,所以v a =2v b ,故A 错;B 项,a 、c 两点是传送带传动的两轮子边缘上两点,则v a =v c ,b 、c 两点为共轴的轮子上两点,ωb =ωc ,r c =2r a ,则ωc =12ωa ,所以ωb =1

2ωa ,故B 错;C 项,a 、c 两点是传送带传动

的两轮子边缘上两点则v a =v c ,故C 对;D 项,ωb =1

2ωa ,ωb =ωd ,

则ωd =1

2

ωa ,根据公式a =rω2知,r d =4r a ,所以a a =a d ,故D 错.

答案:C

匀速圆周运动说课稿

匀速圆周运动说课稿 各位老师,你们好,今天我说课的题目是匀速圆周运动。下面我将从教材分析、学情分析、教学目标、教法学法和教学过程这五个方面来进行说课。 1、首先是教材分析。匀速圆周运动是粤教版高中物理必修2第二章第1节的内容。匀速圆周运动是学生在前一章抛体运动的学习中充分掌握了曲线运动的规律后接触到的一个较为复杂的曲线运动,本节内容是本章的重要章节,主要向学生介绍了匀速圆周运动的几个基本概念,为后继学习向心力、天体运动等打下重要的基础。 2、接着学情分析。本节内容的教学对象是高一学生,他们在必修2的第一章抛体运动中已经学习过曲线运动规律,知道了曲线运动的速度方向是在曲线上该点的切线方向,也掌握了描述运动快慢的方法,这些知识都为本节课的学习打下重要的基础。但是,高一学生思维水平有限,逻辑推理能力和抽象思维能力尚未成熟,对理解圆周运动具有一定的困难。 3、所以,根据以上我对教材和学情的分析,我确定了本节内容的三维教学目标。 首先,在知识与技能上,学生要知道匀速直线运动的定义,理解什么是线速度、角速度和周期,并且理解这三者之间的关系,还要能够运用匀速圆周运动的相关公式分析和解决问题。 其次,在过程与方法上,希望学生能通过对描述匀速圆周运动各物理量概念的建立,培养学生对新知识的探索能力。 最后,在情感态度价值观上,希望通过本节内容的学习,能激发学生学习物理的兴趣,让学生体会学以致用,培养学生对科学的热爱,领悟科学研究的思想和方法。 另外,本节课的教学重点在于能让学生运用线速度、角速度和周期这些概念来描述匀速圆周运动的快慢,并理解这三个概念之间的关系,而难点在于让学生理解匀速圆周运动是变速运动而不是匀速运动。 4、根据以上的分析,我采用的教法是讲授法和多媒体演示法,而学生的学法是观察、分析讨论以及归纳总结。 5、下面我将说一说我的教学过程设计。我的教学流程将分为新课导入、讲授新课、课堂小结、课后作业这四个环节。 首先是新课导入。老师利用多媒体课件展示生活中几种圆周运动的例子,如转动的风扇、旋转木马、摩天轮等等,让学生观察这些运动的共同特点,引出圆周运动的定义:如果质点的运动轨迹是圆,那么这一质点的运动就是圆周运动。 为了引出匀速圆周运动的概念,老师创设这样一个问题情景:一只蜗牛在直线上匀速地爬行,把直线围成一个圆,蜗牛仍然以相等的速率在圆周上爬行,引导学生回答蜗牛在直线上爬行时相等时间内爬过的位移相等,同样地,蜗牛在圆周上爬行时相等时间爬过的弧长相等,以此引出匀速圆周运动的概念:质点沿圆周运动,如果在相等时间内通过的圆弧长度相等,这种运动叫匀速圆周运动。 接着,老师抛出一个问题引发学生思考:做匀速圆周运动的物体有快有慢,怎么描述匀速圆周运动的快慢呢?老师通过让学生回忆直线运动来启发学生思考,直线运动中我们是用速度来描述运动快慢的,所以同样地,我们也可以用速度来描述匀速圆周运动的快慢,这个速度叫做线速度。老师再引导学生通过比较直线运动的速度的定义和公式,来写出匀速圆周运动中的线速度的定义和公式,线速度v的大小等于质点通过的弧长l与所用时间t的比值,方向为该点切线方向。 接着,老师提出一个关键问题:匀速圆周运动的线速度是恒定不变的吗?有些学生的第一反应是认为匀速圆周运动顾名思义当然是速度恒定不变啊,那么老师要引导学生理解速度是一个矢量,既有大小也有方向,匀速圆周运动的线速度大小不变,但是方向是切线方向,是一直改变的,因此匀速圆周运动是变速运动。 接下来,为了引入角速度这个概念,老师展示自行车车轮匀速转动的图片,引导学生观察出车轮的每根辐条在相同时间内转过的角度是相等的,由此引入物理量角速度来描述这一特征,角速度为转过的角度φ与所用时间t的比值,单位是rad/s。

《圆周运动的实例分析》教案设计

教学设计 高一年级物理《圆周运动的实例分析》 子 洲 中 学 艾娜

高一年级物理《圆周运动的实例分析》教学设计 一、教材依据 本节课是沪科版高中物理必修2第二章《研究圆周运动》的第3节《圆周运动的实例分析》。 二、设计思路 (一)、指导思想 ①突出科学的探究性和物理学科的趣味性; ②体现了以学生为主体的学习观念;注重了循序渐进性原则和学生的认知规律,使学生从感性认识自然过渡到理性认识。 (二)、设计理念 本节对学生来说是比较感兴趣的,要使学生顺利掌握本节内容。引导学生在日常生活经验的基础上通过观察和主动探究和归纳,就成为教学中必须解决的关键问题。所以在本节课的设计中,结合新课改的要求,利用“六步教学法”:教师主导——提出问题;学生探求——发现问题;主体互动——研究问题;课堂整理——解决问题;课堂练习——巩固提高;反思小结——信息反馈,为学生准备了导学提纲,重视创设问题的情境和指导学生探究实验,引导学生分析实验现象,归纳总结出实验结论。 (三)教材分析 本节是《研究圆周运动》这一章的核心,它既是圆周运的向心力与向心加速度的具体应用,也是牛顿运动定律在曲线运动中的升华,它也将为学习后续的万有引定律应用、带电粒子在磁场中运动等内容作知识与方法上的准备。 本节通过对自行车、交通工具等具体事例的分析,理解圆周运动规律分析和解决物理问题的方法。在本节教学内容中,圆周运动与人们日常生活、生产技术有着密切的联系,本节教材从生活场景走向物理学习,又从物理学习走向社会应用,体现了物理与生活、社会的密切联系。 (四)学情分析 本人任教的学生基础较好、动手能力较强,对物理学科特别是紧密联系生活的内容特感兴趣。而且学生已经学完向心力和向心加速度理论知识,将会在极大的好奇心中学习本节内容,只是缺乏对实际圆周运动的深度分析,还没有能将其上升至理论高度。 三、教学目标 (一)知识与技能

(完整版)匀速圆周运动公式

匀速圆周运动 质点沿圆周运动,在任意相等的时间里通过的圆弧长度都相等 亦称“匀速率圆周运动”。因为物体作圆周运动时速率不变,但速度方向随时发生变化。所以匀速圆周运动的线速度是无时无刻在发生变化的。 描述匀速圆周运动快慢的物理量: 1、线速度 v :①意义:描述质点沿圆弧运动的快慢,线速度越大,质点沿圆弧运动越快。 ②定义:线速度的大小等于质点通过的弧长s与所用时间t的比值。 ③单位:m/s ④矢量:方向在圆周各点的切线方向上 ⑤就是物体做匀速圆周运动的瞬时速度 ⑥质点做匀速圆周运动时,线速度大小不变,但方向时刻在改变,故其线速度不是恒矢量。 ⑦边缘相连接的物体,线速度相同。 2、角速度ω:①定义:连接质点和圆心的半径(动半径)转过的角度跟所用时间的比值,叫做匀速圆周运动的角速度。 ②单位:rad/s(弧度每秒) ③矢量(中学阶段不讨论,用右手定则<安培定则>可判断方向,例如:当其在水平面上顺时针转动时角速度方向竖直向下)。 ④质点做匀速圆周运动时,角速度ω恒定不变。 ⑤同一物体上任意两点,除旋转中心外,角速度相同。 3、周期 T:①定义:做匀速圆周运动的物体运动一周所用的时间叫做周期。 ②单位:s(秒)。 ③标量:只有大小。 ④意义:定量描述匀速圆周运动的快慢。半径相等时,周期长说明运动得慢,周期短说明运动得快。 ⑤质点做匀速圆周运动时,周期恒定不变 4、频率 f:①定义:周期的倒数(每秒内完成周期性运动的次数)叫频率。 ②单位:Hz(赫)。 ③标量:只有大小。 ④意义:定量描述匀速圆周运动的快慢,频率高说明运动得快,频率低说明运动得慢。 ⑤质点做匀速圆周运动时,频率恒定不变。 5、转速 n:①定义:做匀速圆周运动的质点每秒转过的圈数。 ②单位:在国际单位制中为r/s(转每秒);常用单位为r/min(转每分)。1 r/s=60 r/min。 (注:r=round 英:圈,圈数) ③标量:只有大小。 ④意义:实际中定量描述匀速圆周运动的快慢,转速高说明运动得快,转速低说明运动得慢。 ⑤质点作匀速圆周运动时,转速恒定不变。

高一物理曲线运动和圆周运动

第五章 第一单元曲线运动 第二单元圆周运动人教版 【同步教育信息】 一. 本周教学内容: 第五章 第一单元曲线运动 第二单元圆周运动 二. 知识要点: (一)全章考点要求 说明:不要求会推导向心加速度的公式r v a 2 = (二)知识要点 1. 运动的合成和分解 (1)运动的独立性:一个物体同时参与几个分运动,各分运动独立进行,互不影响。 (2)运动的合成:加速度、速度、位移都是矢量,遵守 。 两分运动在同一直线上时,同向矢量大小 ,反向矢量大小 。 两分运动不在同一直线上时,按照平行四边形定则进行合成,如图1所示。 图1 两分运动垂直时或正交分解后的合成 a 合=22y x a a + v 合=22y x v v + s 合=2 2y x s s + (3)运动的分解:是运动合成的逆过程。 分解原则:根据运动的实际效果分解或正交分解。

2. 曲线运动 (1)曲线运动的特点:运动质点在某一点的瞬时速度的方向,就是通过这一点的曲线的 方向。因此,质点在曲线运动中的速度方向时刻在 ,所以曲线运动一定是 运动。但是,变速运动不一定是曲线运动。 (2)物体做曲线运动的条件:从运动学角度说,物体的加速度方向跟速度方向 时,物体就做曲线运动。从动力学的角度说,如果物体所受合外力的方向跟物体的速度方向 时,物体就做曲线运动。 3. 平抛运动 (1)定义: 抛出的物体只在 作用下的运动。 (2)性质:是加速度为重力加速度g 的 曲线运动,轨迹是抛物线。 (3)处理方法:可分解为 水平方向的速度等于初速度的 运动。v x =v 0,x =v 0t 竖直方向的 运动。v y =gt y =22 1gt 。 下落时间t=g y /2(只与下落高度y 有关,与其他因素无关)。 任何时刻的速度v 及v 与v 0的夹角θ v =220)(gt v + θ=arctan (gt/v 0) 任何时刻的总位移:s =22y x +=2220)2 1 ()(gt t v + 4. 圆周运动 描述圆周运动的物理量 (1)线速度 物理意义:描述质点沿圆周运动的 。 方向:质点在圆弧某点的线速度方向沿圆孤该点的 方向,与过该点的半径 。 大小:v=t s (s 是t 时间内通过的弧长)。 (2)角速度 物理意义:描述质点绕圆心转动的 。 大小:ω=t ?(rad /s)?是连接质点和圆心的半径在t 时间内转过的角度。 (3)周期T ,频率f

人教版高中物理必修二第四节匀速圆周运动优质教案

第四节 匀速圆周运动 一、 教学目标 1、知道什么是匀速圆周运动。 2、理解什么是线速度、角速度和周期。 3、理解线速度、角速度和周期之间的关系。 4、能够用匀速圆周运动的有关公式分析和计算有关问题。 二、重点难点 重点:理解线速度、角速度、周期以及它们之间的关系。 难点:理解匀速圆周运动是变加速运动。 三、教学方法 讲授、推理、归纳 五、教学过程 物体沿圆周运动是很常见的运动, 例如:转动的电风扇上各点的运动,地球和各个行星绕太阳的运动等。最简单的是匀速圆周运动。 (一) 匀速圆周运动 质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。 举例:电风扇转动时,其上各点所做的运动;地球和各个行星绕太阳的运动,都认为是匀速圆周运动。 怎样描述匀速圆周运动的快慢呢? (二)线速度 a :分析:,物体在做匀速圆周运动时运动的时间t 增大几倍,通过的弧长也增大几倍,所以对于某一匀速圆周运动而言,s 与t 的比值越大,物体运动得越快。 b :线速度:物体做匀速圆周运动时,通过的弧长s 与时间t 的比值就是线速度的大小。用符号v 表示. t s v = 线速度是物体做匀速圆周运动的瞬时速度。 线速度是矢量,它既有大小,也有方向.线速度的方向?→? 在圆周各点的切线方向上. 讨论:匀速圆周运动的线速度是不变的吗? 结论:因为匀速圆周运动的线速度的方向在不断变化,因此,它是一种变速运动。这里的“匀速”是指速率不变。 (三)角速度 a :学生阅读课文 【角速度】内容

b:阅读思考题 1)角速度是表示的物理量 2)角速度等于和的比值 3)角速度的单位是 c:说明:对某一确定的匀速圆周运动而言,角速度ω是恒定的 d:强调角速度单位的写法rad / s (四)周期 a:学生阅读课文【周期】内容 b:阅读思考题: 1)叫周期,叫频率;叫转速 2)它们分别用什么字母表示? 3)它们的单位分别是什么? 4)周期和频率之间的关系是怎样的? (五)线速度、角速度、周期间的关系 学生阅读课文【线速度、角速度、周期间的关系】内容 学生复述线速度、角速度、周期之间的关系: v=2πr/T ω=2π/T v=rω 讨论v=rω 1)当v一定时,ω与r成反比 2)当ω一定时,v与r成正比 3)当r一定时,v与ω成正比 (六)、课堂练习 例1:分析下图中,A、B两点的线速度有什么关系? 分析得到:主动轮通过皮带、链条、齿轮等带动从动轮的过程中,皮带(链条)上各点以及两轮边缘上各点的线速度大小相等。 例2:分析下列情况下,轮上各点的角速度有什么关系?

竖直平面内的圆周运动及实例分析

竖直平面内的圆周运动及实例分析 竖直平面内的圆周运动一般是变速圆周运动(带电粒子在匀强磁场中运动除外),运动的速度大小和方向在不断发生变化,运动过程复杂,合外力不仅要改变运动方向,还要改变速度大小,所以一般不研究任意位置的情况,只研究特殊的临界位置──最高点和最低点。 一、两类模型——轻绳类和轻杆类 1.轻绳类。运动质点在一轻绳的作用下绕中心点作变速圆周运动。由于绳子只能提供拉力而不能提供支持力,质点在最高点所受的合力不能为零,合力的最小值是物体的重力。所以:(1)质点过最高点的临界条件:质点达最高点时绳子的拉力刚好为零,质点在最高点的向心力 全部由质点的重力来提供,这时有,式中的是小球通过最高点的最小速度, 叫临界速度;(2)质点能通过最高点的条件是;(3)当质点的速度小于这一值时,质点运动不到最高点高作抛体运动了;(4)在只有重力做功的情况下,质点在最低点的速度不得小于,质点才能运动过最高点;(5)过最高点的最小向心加速度。 2.轻杆类。运动质点在一轻杆的作用下,绕中心点作变速圆周运动,由于轻杆能对质点提供支持力和拉力,所以质点过最高点时受的合力可以为零,质点在最高点可以处于平衡状态。 所以质点过最高点的最小速度为零,(1)当时,轻杆对质点有竖直向上的支持力,其大小等于质点的重力,即;(2)当时,;(3)当,质点的重力不 足以提供向心力,杆对质点有指向圆心的拉力;且拉力随速度的增大而增大;(4)当 时,质点的重力大于其所需的向心力,轻杆对质点的竖直向上的支持力,支持力随的增大而减小,;(5)质点在只有重力做功的情况下,最低点的速度,才能运动到最高点。过最高点的最小向心加速度。 过最低点时,轻杆和轻绳都只能提供拉力,向心力的表达式相同,即,向

匀速圆周运动重点知识总结

匀速圆周运动重点知识总结 一.基本概念: 1.匀速圆周运动 (1)定义:质点沿圆周运动,如果在相等 的时间内通过的弧长相等,就 称质点作匀速圆周运动 (2)条件: a.有一定的初速度 b.受到一个大小不变方向始终跟速度 垂直的力的作用(即向心力) (3)特点:速度大小不变,方向时刻改变(4)描述匀速圆周运动的物理量: a.线速度:大小不变,方向时刻改变, 单位是m/s, 是矢量。 b.角速度: 恒定不变,是矢量,(方向 可由右手螺旋定则确定,高中 不要求掌握)单位rad/s c.周期:标量,单位:s d.转速:①单位时间物体转过的圈数 ②标量,符号:n ③单位:r/s或r/min e.频率:①质点在单位时间完成圆周运 动的周数 ②标量,符号:f ③单位:Hz (5)注意: a.匀速圆周运动是非匀变速曲线运动 b.“匀速”应理解为“匀速率”不能理 解为“匀速度” c.合力不为零,不能称作平衡状态 2.向心力: (1)定义:做匀速圆周运动的物体所受到 的合力指向圆心,叫向心力。(2)特点:指向圆心,大小不变,方向时 刻改变,是变力。F向=F合(3)作用:只改变速度大小,不改变方向(4)注意: a.是一种效果力,它可以由重力、弹力、 摩擦力等单独提供,也可以由它们的 合力提供。 b.“向心力”只是说明做圆周运动的物 体需要一个指向圆心方向的力,而并 非物体又受到一个“新的性质”的力。 即在受力分析时,向心力不能单独作 为一种力。 c.变速圆周运动的向心力不等于合力, 合力也不一定指向圆心。 3.向心加速度 (1)定义:由向心力产生的加速度 (2)特点:指向圆心,大小不变,方向时 刻改变,是矢量。 4.提供的向心力: 通过受力分析求出来的,沿半径方向指向圆心的力,匀速圆周运动中F需向=F合5.需要的向心力: 根据物体实际运动时的质量m、半径r、线速度v(或角速度w)求出的向心力 F提=mrw2=mrv2/r 6.离心现象 (1)做圆周运动物体的运动特点: 做圆周运动的物体由于本身的惯性, 总有沿圆周切线飞出的倾向。 (2)概念: 在所受合力突然消失或不足以提供圆 周运动所需的向心力的情况下,就会 做靛渐远离圆心的运动,这种现象称 为离心现象。 (3)特别注意: a. 物体做离心运动并不是受到了什 么所谓的“离心力”作用(准确 讲没离心力这个概念) b. 产生离心运动的根本原因是由于 物体的惯性。 c. 离心现象既有利又有害,要注意利 用和防止。 二.基本公式 1.线速度:2 l r v t T π ? == ? n r? ? =π2 2.角速度:2 t T θπ ω ? == ? n? =π2 3.转速(n)频率(f)周期三者的关系:n=f 11 T f n == 4.线速度与角速度、半径r的关系:v=ωr 5.向心力: 2 2 2 2 n n v F ma m m r m r r T π ω?? ==== ? ??6.向心加速度: 2 2 2 2 n v a r r r T π ω?? === ? ?? ,

匀速圆周运动的实例分析

匀速圆周运动的实例分析 北京市密云县第二中学蔡小娟 教学设计思路: 一、教学理念 本节课的教学设计努力遵循教育部颁发的《普通高中物理课程标准》倡导的“促进学生自主学习,让学生积极参与、乐于探究、勇于实验、勤于思考”的教学理念.在课堂教学中以问题为主线,倡导情景设置、师生交流,在自主、合作、探究的氛围中,引导学生自己提出问题,努力促使学生成为一个研究者. 学习任务分析: 圆周运动在实际生活中有广泛的应用,有关圆周运动的问题是对牛顿运动定律的进一步应用,是教学的难点,同时也是学习机械能和电学知识的基础,通过实例分析求解,教会学生解决问题的一般方法,特别要掌握几个模型及条件. 一、培养学生分析向心力来源的能力,引导学生对做圆周运动的物体进行受力分析,让学生清楚地认识到物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力. 二、培养学生运用物理知识解决实际问题的能力,通过对例题的分析与讨论(结合动画或课件),引导学生从中领悟、掌握运用向心力公式的思路和方法. 学习者分析: 一、学生学完匀速圆周运动的理论知识,尚缺乏实际的应用,对定律的理解还比较粗浅,本节课帮助学生建立一个生动活泼的场景,利于学生的理解、消化. 二、本节课来源于生活中的大量实例,但学生对相关新事物、新情况的了解较为片面,不能很好地由感性认识提升为理性认识,通过对本节的学习让学生掌握探究学习的一般方法,使其成为学生终身学习的基础. 教学目标: 一、知识与技能 1.知道如果一个力或几个力的合力的效果是使物体产生向心加速度,那么这个力或这个合力就是做匀速圆周运动的物体所受的向心力.会在具体问题中分析向心力的来源.2.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例. 3.知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度. 二、过程与方法 1.通过对匀速圆周运动实例的分析,渗透理论联系实际的观点,提高学生分析和解决问题的能力. 2.通过匀速圆周运动的规律在变速圆周运动中使用,渗透特殊性和一般性之间的辩证关系,提高学生的分析能力. 3.通过对离心现象的实例分析,提高学生综合应用知识解决问题的能力. 三、情感态度与价值观 1.通过对几个实例的分析,使学生明确具体问题必须具体分析,理解物理与生活的联系,学会用合理、科学的方法处理问题. 重点难点

曲线运动、平抛运动、圆周运动练习题.doc

《曲线运动》练习题 一选择题 1 . 关于运动的合成的说法中,正确的是() A.合运动的位移等于分运动位移的矢量和 B.合运动的时间等于分运动的时间之和 C.合运动的速度一定大于其中一个分运动的速度 D.合运动的速度方向与合运动的位移方向相同 2. 物体在几个力的作用下处于平衡状态,若撤去其中某一个力而其余力的性质(大小、方向、作用点)不变,物体的运动情况可能是() A.静止B.匀加速直线运动C.匀速直线运动D.匀速圆周运动 3 . 某质点做曲线运动时() A.在某一点的速度方向是该点曲线的切线方向 B.在任意时间内,位移的大小总是大于路程 C.在某段时间里质点受到的合外力可能为零 D.速度的方向与合外力的方向必不在同一直线上 5. 一个质点在恒力 F 作用下,在 xOy 平面内从 O点运动到 A 点的轨迹如图所示,且在 A 点的速度方向与x 轴平行,则恒力 F 的方向不可能()y A. 沿 x 轴正方向 B. 沿 x 轴负方向 A C. 沿 y 轴正方向 D. 沿 y 轴负方向 O x 6 在光滑水平面上有一质量为2kg 的物体,受几个共点力作用做匀速直线运动。现突然将与速度反方向的2N 力水平旋转 90o,则关于物体运动情况的叙述正确的是() A. 物体做速度大小不变的曲线运动 B. 物体做加速度为在2 m/s2的匀变速曲线运动 C.物体做速度越来越大的曲线运动 D.物体做非匀变速曲线运动,其速度越来越大 7.做曲线运动的物体,在运动过程中一定变化的物理量是() A. 速度 B. 加速度 C.速率 D. 合外力 9 关于曲线运动,下面说法正确的是() A.物体运动状态改变着,它一定做曲线运动 B.物体做曲线运动,它的运动状态一定在改变 C.物体做曲线运动时,它的加速度的方向始终和速度的方向一致 D.物体做曲线运动时,它的加速度的方向始终和所受到的合外力方向一致 10 物体受到几个力的作用而处于平衡状态,若再对物体施加一个恒力,则物体可能做() A. 静止或匀速直线运动 B. 匀变速直线运动 C. 曲线运动 D. 匀变速曲线运动 14.关于物体的运动,下列说法中正确的是() A.物体做曲线运动时,它所受的合力一定不为零 B.做曲线运动的物体,有可能处于平衡状态 C.做曲线运动的物体,速度方向一定时刻改变 D.做曲线运动的物体,所受的合外力的方向有可能与速度方向在一条直线上 17.加速度不变的运动() A .可能是直线运动B.可能是曲线运动C.可能是匀速圆周运动D.一定是匀变速运动 18. 如图所示,蜡块可以在竖直玻璃管内的水中匀速上升,若在蜡块从 A 点开始匀速上升的同时,玻璃管从AB 位置 水平向右做匀加速直线运动,则蜡块的实际运动轨迹可能是图中的A.直线 P B.曲线 Q C .曲线 R D .三条轨迹都有可能B (C) Q P R A D

圆周运动实例分析

圆周运动实例分析 广州南沙东涌中学 一.教学目标 1.知识与技能 1.能定量分析汽车转弯时的向心力由谁提供。 2.能定量分析汽车过拱形桥最高点和凹形桥最低点的压力问题。 3.会用牛顿第二定律分析生活中较简单的圆周运动问题。 2.过程与方法 通过对圆周运动的实例分析,渗透理论联系实际的观点,提高分析和解决问题的能力。 3.情感、态度与价值观 养成应用实践能力和思维创新意识;运用生活中的几个事例,激发学习兴趣、求知欲和探索动机;通过对实例的分析,建立具体问题具体分析的科学观念。 二.学情分析 学生已经学习过了圆周运动以及向心力的基本知识,并且生活中有很多圆周运动,学生在生活经验中已具备一些有关圆周运动的感性认识,但他们还不是很清楚物体做圆周运动的向心力应该由谁来充当,,也不能理性的分析和解释各种实际的圆周运动的情况。教学中要充分利用学生已有知识经验,使学生积极主动地参与教学过程。 三.重点难点 会用牛顿第二定律分析生活中较简单的圆周运动问题 四.教学过程 活动1【导入】引入新课 向同学们提出以下问题:1.物体做圆周运动受到的合外力是否为0? 2.向心力它是恒力还是变力以及向心力的公式? 3.生活中有哪些运动是圆周运动?引出本节课《圆周运动实例分析》 活动2【讲授】讲授新课 本节课主要有两个知识点:(1)汽车转弯问题(2)汽车过拱形桥问题 (1)汽车转弯的问题 1.汽车在水平路面转弯: 汽车在水平面转弯时,向心力由哪个力来提供?为什么汽车转弯时,要减速慢行? 通过PPT呈现汽车转弯时的图片,引导学生找出汽车转弯时的向心力由静摩擦力提供,通过分析可知,汽车转弯时 ,车速越大,所需向心力越大,因此,转弯时,必须减速慢行。 例题讲解; 例1.在一段半径为R的圆弧形水平弯道上,已知地面对汽车轮胎的最大静摩擦力等于车重的μ倍 ,则汽车转弯时的 安全速度是多少?

高一物理匀速圆周运动知识点及习题教学文稿

高一物理匀速圆周运动知识点及习题

高一物理匀速圆周运动知识介绍 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,匀速圆周运动,这种运动就叫做“匀速圆周运动”,匀速圆周运动是圆周运动中,最常见和最简单的运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。

天体的匀速圆周运动 定义 质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”,亦称“匀速率圆周运动”。因为物体作圆周运动时速率不变,但速度方向随时发生变化。所以匀速圆周运动的线速度是无时不刻不在变化的。

匀速圆周运动 运动条件 物体作匀速圆周运动时,速度的大小虽然不变,但速度的方向时刻改变,所以匀速圆周运动是变速运动。又由于作匀速圆周运动时,它的向心加速度的大小不变,但方向时刻改变,故匀速圆周运动是变加速运动。“匀速圆周运动”一词中的“匀速”仅是速率不变的意思。做匀速圆周运动的物体仍然具有加速度,而且加速度不断改变,因其加速度方向在不断改变,其运动轨迹是圆,所以匀速圆周运动是变加速曲线运动。匀速圆周运动加速度方向始终指向圆心。做变速圆周运动的物体总能分解出一个指向圆心的加速度,我们将方向时刻指向圆心的加速度称为向心加速度。 公式解析 计算公式 1、v(线速度)=ΔS/Δt=2πr/T=ωr=2πrf (S代表弧长,t代表时间,r代表半径,f代表频率) 2、ω(角速度)=Δθ/Δt=2π/T=2πn (θ表示角度或者弧度) 3、T(周期)=2πr/v=2π/ω 4、n(转速)=1/T=v/2πr=ω/2π 5、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2 6、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2 7、vmax=√gr (过最高点时的条件) 8、fmin (过最高点时的对杆的压力)=mg-√gr (有杆支撑)

物理教案-匀速圆周运动的实例分析

物理教案-匀速圆周运动的实例分析 教学目标 知识目标 1、进一步理解向心力的概念. 2、理解向心力公式,进一步明确匀速圆周运动的产生条件,掌握向心力公式的应用. 能力目标 1、培养在实际问题中分析向心力来源的能力. 2、培养运用物理知识解决实际问题的能力. 情感目标 1、激发学生学习兴趣,培养学生关心周围事物的习惯. 教学建议 教材分析 教材首先明确提出向心力是按效果命名的力,任何一个力或几个力的合力只要它的作用效果是使物体产生向心加速度,它就是物体所受的向心力,接着详细介绍了火车转弯和汽车过拱桥两个常见的实际问题.后面又附有思考与讨论,开拓学生的思维. 教法建议 1、培养学生分析向心力来源的能力,分析问题时,要首先引导学生对做周围运动的物体进行受力情况分析,并让学生清楚地认识到求出物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力. 2、培养学生运用物体知识解决实际问题的能力.通过例题的分析与讨论(结合动画或课件),引导学生从中领悟掌握运用向心力公式的思路和方法.即:第一:根据物体受力情况分析向心力的来源,做匀速圆周运动的物体. 第二:运用向心力公式计算做圆周运动所需的向心力. 第三:由物体实际受到的力提供了它所需要的向心力,列出方程求解. 3、可多举一些实例让学生分析.向心力可由重力、弹力、摩擦力等单独提供,也可由它们的合力提供.

4、在讲述汽车过拱桥的问题时,汽车做的是变速圆周运动,对此要根据牛顿第二定律的瞬时性向学生指出:在变速圆周运动中,物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.同时,还可以向学生指出:此问题中出现的汽车对桥面的压力大于或小于车重的现象,是发生在圆周运动中的超重或失重现象. 教学设计方案 匀速圆周运动的实例分析 教学重点:分析向心力来源. 教学难点:实际问题的处理方法. 主要设计: 一、讨论向心力的来源: 例如:万有引力提供向心力(人造地球卫星);弹力提供向心力(绳系小球在光滑水平面上的匀速圆周运动);摩擦力力提供向心力(物价在转盘上随转盘一起转动);合力提供向心力(圆锥摆等). 二、讨论火车转弯: (一)展示图片1:火车车轮有凸出的轮缘. (二)展示课件1:外轨作用在火车轮缘上的力F是使火车必须转弯的向心力. (三)展示课件2:外轨高于内轨时重力与支持力的合力是使火车转弯的向心力. (四)讨论:为什么转弯处的半径和火车运行速度有条件限制? 三、讨论汽车过拱桥: (一)思考:汽车过拱桥时,对桥面的压力与重力谁大? (二)展示课件3:汽车过拱桥在最高点的受力情况(变变) (三)展示课件4:汽车过凹形桥时低点时的受力情况(变变) (四)总结在圆周运动中的超重、失重情况.

高中物理必修二曲线运动圆周运动平抛运动综合

1.民族运动会上有一个骑射项目,运动员骑在奔驰的马背上,弯弓放箭射击侧向的固定目标. 假设运动员骑马奔驰的速度为v 1,运动员静止时射出的弓箭速度为v 2.直跑道离固定目标 的最近距离为 d.要想在最短的时间内射中目标,则运动员放箭处离目标的距离应该为 ( ) A.21 222 v v v -d B.22221v v v +d C.21v v d D.1 2v v d 2..如图所示,小物体A 与圆柱保持相对静止,跟着圆盘一起作匀速圆周运动,则A 受力情 况是受( ) (A)重力、支持力 (B)重力、向心力 (C)重力、支持力和指向圆心的摩擦力 (D)重力、支持力、向心力和摩擦力 3.一个人相对于水以恒定的速度渡河,当他游到河中间时,水流速度突然变大,则他游到 对岸的时间与预定的时间相比 (A )不变 (B )减小 (C )增加 (D )无法确定 4.如图所示,在水平转台上放一个质量M=2kg 的木块,它与转台间最大静摩擦 力f=6N ,绳的一端系住木块,穿过转台中心光滑的孔O ,另一端挂一个质 量为m=1.0kg 的物体,当转台以角速度ω=5rad/s 转动时,木块相对转台 静止,则木块到O 点的距离可以是(g=10m/s 2 ): A 、0.04m ; B 、0.08m ; C 、0.16m ; D 、0.32m 6.如图所示,两小球a 、b 从直角三角形斜面的顶端以相同大小的水平速率v 0向左、向右水 平抛出,分别落在两个斜面上,三角形的两底角分别为30°和60°,则两小球a 、b 运动时 间之比是() A.1∶3 B.1∶3 C.3∶1 D.3∶1 7.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最 大的地段应是

匀速圆周运动 教案

《认识匀速圆周运动》教案 普通高中课程标准实验教科书物理(必修2)山东科学技术出版社第四章:匀速圆周运动第一节:匀速圆周运动快慢的描述 一、教学目标 1、认识匀速圆周运动,认识线速度、角速度、周期、频率、转速。 2、学会用线速度、角速度等物理量描述一个匀速圆周运动。 3、掌握线速度、角速度等几个物理量之间的关系。 二、教材分析 教材以生活中的圆周运动为导入,让学生对匀速圆周运动有一个大概的认识。然后引入线速度、角速度等概念。对于线速度的讲解,教材是用了自行车轮的模型,以车轮上转过的弧长来定义线速度。重点讲解了线速度的大小与方向。强调了线速度方向是一直在变化的(沿切线方向)。对于角速度,教材仍然引入了自行车的传动装置。一大一小两个齿轮由一链条相连。线速度相等,角速度不等。 教材同样借用生活中的事物,介绍了周期、频率和转速等概念。 三、教学重难点 重点:线速度、角速度、周期的概念及其之间的关系。 难点:线速度、角速度、周期之间的关系。 四、教学方法 圆周运动在生活中非常常见,介绍这一运动并不太大障碍。而且还可以借助于生活中的具体事例来讲解圆周运动的规律。在讲线速

度、角速度的时候,可以借助于生活中的物品,比如自行车轮或光盘等,让学生直观的了解到这一物理量的意义。 五、教学设计 1、导入 身边的圆周运动。比如自行车上、水车、磨盘、DVD光盘等。那么我们在生活中,一般是怎么描述这些圆周运动快慢的呢?由于圆周运动的特殊性,我们分别以单位时间转过的弧长和角度来度量圆周运动的快慢。 2、展开 在演示圆盘上,在同一条半径上,设定A、B两点,对比两点的线速度大小。线速度是矢量,既有大小又有方向。方向是沿着圆周的切线方向的。在自行车大、小齿轮轮缘上的A、B两点贴上不同颜色的彩纸。当齿轮匀速转动时,在相同的时间内,A、B转过的弧长相同,但相对于圆心转过的角度不同。 再结合生活中的具体实物,简单介绍周期、频率和转速。我们把周期性运动每重复一次所需要的时间叫周期。频率就是单位时间没运动重复的次数。转动是单位时间内的转动次数。 3、关于实验演示 用一根绳子,拴着一个重物,手捏着绳的一端,不停地做圆周运动。演示圆周运动的快慢及转速和频率等概念。条件允许,也可做一个像摇奖用的转盘,在转盘上标出A、B两点,让学生深入直观的理解线速度和角速度的概念及关系。

匀速圆周运动的实例分析 -

匀速圆周运动的实例分析 - 教学 知识目标 1、进一步理解向心力的概念. 2、理解向心力公式,进一步明确匀速圆周运动的产生条件,掌握向心力公式的应用. 能力目标 1、培养在实际问题中分析向心力来源的能力. 2、培养运用物理知识解决实际问题的能力. 情感目标 1、激发学生学习兴趣,培养学生关心周围事物的习惯. 教学 教材分析 教材首先明确提出向心力是按效果命名的力,任何一个力或几个力的合力只要它的作用效果是使物体产生向心加速度,它就是物体所受的向心力,接着详细介绍了火车转弯和汽车过拱桥两个常见的实际问题.后面又附有思考与讨论,开拓学生的思维. 教法建议 1、培养学生分析向心力来源的能力,分析问题时,要首先引导学生对做周围运动的物体进行受力情况分析,并让学生清楚地认识

到求出物体沿半径方向受到的合外力,就是提供给物体做圆周运动的向心力. 2、培养学生运用物体知识解决实际问题的能力.通过例题的分析与讨论(结合动画或课件),引导学生从中领悟掌握运用向心力公式的思路和方法.即:第一:根据物体受力情况分析向心力的来源,做匀速圆周运动的物体. 第二:运用向心力公式计算做圆周运动所需的向心力. 第三:由物体实际受到的力提供了它所需要的向心力,列出方程 3、可多举一些实例让学生分析.向心力可由重力、弹力、摩擦力等单独提供,也可由它们的合力提供. 4、在讲述汽车过拱桥的问题时,汽车做的是变速圆周运动,对此要根据牛顿第二定律的瞬时性向学生指出:在变速圆周运动中,物体在各位置受到的向心力分别产生了物体通过各位置的向心加速度,向心力公式仍是适用的.但要注意,对于物体做匀速圆周运动的情况,只有在物体通过最高点和最低点时,向心力才是合外力.同时,还可以向学生指出:此问题中出现的汽车对桥面的压力大于或小于车重的现象,是发生在圆周运动中的超重或失重现象. 教学 教学 教学 主要设计: 一、讨论向心力的来源:

曲线运动第6讲 圆周运动(基础篇)

圆周运动(基础篇) 知识点梳理 一、基础知识点梳理 1、运动学 <1>线速度:<3>周期: <2>角速度:<4>频率 <5>向心加速度 2、动力学 <1>向心力 <2>向心力的表达式 二、本节重点 1、同环、同轨道上圆周运动运动学特点 2、圆周运动中的两种物理模型——“绳与杆”的爱恨情仇(上) <1>绳(内轨道)模型 说好的“杆”模型呢? 说好的天长地久呢? 下次见

r A O a C r B b B 方法突破之典型例题 题型一 圆周运动中的运动学 如图所示,a 、b 两轮靠皮带传动,A 、B 分别为两轮边缘上的点,C 与A 同在a 轮上,已知B A r r 2=,B r OC =,在传动时,皮带不打滑。求: (1)=B C ωω: ; (2)=B C v v : ; (3)=B C a a : 。 光说不练,等于白干 1.如图所示,有一皮带传动装置,A 、B 两点分别在两轮的边缘上,A 、B 两点到各自转轴的距离分别为R A 、R B ,已知R B =3 R ,若在传动过程中,皮带不打滑,则( ) A .A 与B 点的角速度大小相等 B .A 与B 点的线速度大小相等 C .A 与B 点的周期之比为3:1 D .A 与B 的向心加速度大小之比1:9 2.如图所示的皮带传动装置中,已知两轮半径的关系为r 1=2r 2,A 、B 分别为两轮边缘上的 点,C 为大轮的半径中点.若传动轮皮带不打滑,则A 、B 、C 三点的向心加速度之比为( ) A .2:1:1 B .2:4:1 C .4:2:1 D .1:4:2 3.如图为一皮带传动装置.左轮半径为4r ,右轮半径为r ,a 、b 分别是左右轮边缘上的点,c 点到左轮圆心的距离为2r ,若传动过程中皮带不打滑,则( ) A .a 、b 点的向心加速度大小相等 B .a 、b 点的角速度大小之比为4:1 C .a 、c 点的线速度大小相等 D .b 、c 点的向心加速度之比为8:1 4.如图所示,A 、B 为咬合传动的两齿轮,R A =2R B ,则A 、B 两轮边缘上两点的( ) A .角速度之比为2:1 B .向心加速度之比为1:2 C .周期之比为1:2 D .转速之比为2:1

鲁科版高一第4章匀速圆周运动第1节匀速圆周运动快慢的描述天天练

鲁科版高一第4章匀速圆周运动第1节匀速圆周运动快慢的 描述天天练 学校:___________姓名:___________班级:___________考号:___________ 一、单选题 1.如图所示,A、B分别为电子钟分针和时针的端点.在电子钟正常工作时() A.A点的角速度小于B点的角速度 B.A点的角速度大于B点的角速度 C.A点的线速度等于B点的线速度 D.A点的线速度小于B点的线速度 2.如图所示,因为地球的自转,静止在地面上的一切物体(两极除外)都要跟随地球一起由西向东转动,下列说法不正确的是() A.随地球转动的物体的运动周期都是相同的 B.随地球转动的物体的转动频率都相同 C.随地球转动的物体的角速度大小都是相同的 D.随地球转动的物体的线速度都是相同的 3.汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长.某汽车的车轮的半径约为30cm,当该车在公路上行驶时,速率计的指针指在“120km/h”上,可估算该车轮的转速约为( ) A.1000r/s B.1000r/min C.1000r/h D.2000r/s 4.如图所示,两个小球固定在一根长为l的杆的两端,绕杆上的O点做圆周运动.当小球A的速度为v A时,小球B的速度为v B,则轴心O到小球A的距离是( ).

A .v A (v A +v B )l B . A A B v l v v + C . ()A B A v v l v + D . ()A B B v v l v + 5.图所示是一个玩具陀螺。a 、b 和c 是陀螺上的三个点。当陀螺绕垂直于地面的轴线以角速度ω稳定旋转时,下列表述正确的是( ) A .a 、b 和c 三点的线速度大小相等 B .a 、b 和c 三点的角速度相等 C .a 、b 的角速度比c 的大 D .c 的线速度比a 、b 的大 6.机械手表的分针与秒针从重合至第二次重合,中间经历的时间为( ) A . 59 min 60 B . 61 min 60 C .1min D . 60 min 59 7.现在许多汽车都应用了自动无级变速装置,不用离合器就可连续变换速度;如图所示为截锥式变速模型示意图,主动轮、从动轮之间有一个滚动轮,它们之间靠彼此的摩擦力带动.当滚动轮处于主动轮直径为D 1、从动轮直径为D 2的位置时,主动轮转速n 1与从动轮转速n 2的关系是( ) A .12 21n D n D = B .11 22 n D n D = C .12n n = D .2 12 2 21n D n D = 8.如图一个学生把风刮倒的旗杆绕着O 点扶起来,已知旗杆的长度为L ,学生的手离地高度恒为h ,当学生以速度v 向左运动时,旗杆转动的角速度为(此时旗杆与地面的夹角为α)( )

匀速圆周运动的实例分析例题[1][1]

匀速圆周运动的实例分析例题[1][1]

匀速圆周运动的实例分析 典型例题1——关于汽车通过不同曲面的问题分析 一辆质量t的小轿车,驶过半径m的一段圆弧形桥面,求: (重力加速度) (1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大? (2)若桥面为凸形,汽车以10m/s的速度通过桥面最高点时,对桥面压力是多大? (3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力? 解: (1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f.在竖直方向受到桥面向上的支持力和向下的重力,如图(甲)所示.圆弧形轨道的圆心在汽车上方,支持力与重力的合力为,这个合力就是汽车通过桥面最低点时的向心力,即.由向心力公式有: , 解得桥面的支持力大小为 根据牛顿第三定律,汽车对桥面最低点的压力大小是N.

(2)汽车通过凸形桥面最高点时,在水平方向受到牵引力F和阻力f,在竖直方向受到竖直向下的重力和桥面向上的支持力,如图(乙)所示.圆弧形轨道的圆心在汽车的下方,重力与支持力的合力为,这个合力就是汽车通过桥面顶点时的向心力,即,由向心力公式有 , 解得桥面的支持力大小为 根据牛顿第三定律,汽车在桥的顶点时对桥面压力的大小为N. (3)设汽车速度为时,通过凸形桥面顶点时对桥面压力为零.根据牛顿第三定律,这时桥面对汽车的支持力也为零,汽车在竖直方向只受到重力G作用,重力就是汽车驶过桥顶点时的向心力,即,由向心力公式有 , 解得: 汽车以30 m/s的速度通过桥面顶点时,对桥面刚好没有压力. 典型例题2——细绳牵引物体做圆周运动的系列问题 一根长的细绳,一端拴一质量的小球,使其在竖直平面内绕绳的另一端做圆周运动,求:

第2章 第1节 匀速圆周运动—2020-2021学年新教材粤教版高中物理必修第二册讲义学案

第一节匀速圆周运动 学习目标:1.[物理观念]知道什么是圆周运动和匀速圆周运动。 2.[物理观念]会描述圆周运动的快慢,掌握线速度、角速度、周期的定义及它们之间的关系。 3.[科学思维]学会用比值定义法来描述物理量。会应用公式进行线速度、角速度、周期、频率、转速的计算。 4.[科学态度与责任]会分析常见的传动装置问题。 一、线速度和角速度 1.圆周运动:质点的运动轨迹是的运动。 2.匀速圆周运动:质点的不随时间变化的圆周运动。 3.线速度 (1)定义:质点做匀速圆周运动时,质点通过的跟通过这段弧长所用的比值。 (2)公式:v=。 (3)矢量性:线速度是量,其方向在圆周该点的方向上。 (4)单位:国际单位制中其单位是米每秒,符号是m/s。 (5)意义:表示匀速圆周运动的。 4.角速度 (1)定义:质点做匀速圆周运动时,质点所在半径转过的跟所用的比值。 (2)公式:ω=θt。 (3)单位:国际单位制中其单位是。符号是。 (4)意义:表示匀速圆周运动转动的快慢。 5.周期 (1)定义:匀速圆周运动的质点运动一周所用的,用符号表示。 (2)单位:国际单位制中其单位是秒,符号s。 6.转速

(1)定义:物体转过的与所用时间的比值,用符号表示。 (2)单位:转速的单位是转每秒,符号是,或者转每分,符号是。 二、线速度、角速度、周期间的关系 1.线速度与周期的关系为v=。 2.角速度与周期的关系为ω=。 3.线速度与角速度的关系为v=。 1.思考判断(正确的打“√”,错误的打“×”) (1)匀速圆周运动是变速曲线运动。() (2)匀速圆周运动的线速度恒定不变。() (3)匀速圆周运动的角速度恒定不变。() (4)若匀速圆周运动的周期相同,则角速度大小及转速都相同。() 2.(多选)关于匀速圆周运动,下列说法正确的是() A.匀速圆周运动是匀速运动 B.匀速圆周运动是变速运动 C.匀速圆周运动是线速度不变的运动 D.匀速圆周运动是线速度大小不变的运动 3.关于地球上不同位置的物体随地球自转的角速度关系、线速度大小关系,下列说法正确的是() A.处于同一纬度线上的海拔相同的物体线速度大小相等 B.处于同一经度线上的物体线速度大小相等 C.在赤道上的物体角速度最大 D.在两极处的物体线速度最大 匀速圆周运动及描述的物理量 日常生活中,时钟指针的尖端、摩天轮上的座舱、电风扇工作时叶片上的点都在做圆周运动,它们的运动有何共同点?有什么不同之处?

相关文档
最新文档