振动测试作业报告

振动测试作业报告
振动测试作业报告

振动测试技术期末总结

学号:

班级:建筑与土木工程(1504班)

姓名:杨允宁

2016年4月27日

目录

1 振动测试概述 (1)

1.1 振动的分类: (1)

1.1.1 按自由度分类: (1)

1.1.2 按激励类型分类: (1)

1.1.3 振动规律分类: (1)

1.1.4 按振动方程分类: (1)

1.2 振动基本参量表示方法: (2)

1.2.1 振幅(u): (2)

1.2.2 周期(T)/频率(f): (2)

1.2.3 相位( ): (2)

1.2.4 临界阻尼(C cr) (2)

1.2.5 结构的阻尼系数(c): (2)

1.2.6 对数衰减率(δ): (3)

1.3 振动测试仪器分类及配套使用: (3)

1.3.1 振动测试仪器分类 (3)

1.3.2 振动测试仪器配套使用: (4)

1.4 窗函数的分类及用途 (5)

1.4.1 矩形窗(Rectangular窗): (5)

1.4.2 三角窗(Bartlett或Fejer窗): (5)

1.4.3 汉宁窗(Hanning窗): (5)

1.4.4 海明窗(Hamming窗) (6)

1.4.5 高斯窗(Gauss窗) (6)

1.5 信号采集及分析过程中出现的问题及解决方法 (7)

1.5.1 信号采集和分析过程中出现的问题 (7)

1.5.2 解决方法 (7)

2 惯性式速度型与加速度型传感器 (8)

2.1 惯性式传感器的分类: (8)

2.2 常用加速度计传感器的工作原理及力学模型: (8)

2.2.1 电动式(磁电式)传感器: (8)

2.2.2 压电式传感器: (9)

2.3 非惯性传感器: (11)

2.3.1 电涡流式传感器: (11)

2.3.2 参量型传感器: (11)

3 振动特性参数的常用量测方法 (11)

3.1 简谐振动频率的量测: (12)

3.1.1 李萨(Lissajous)如图形比较法: (12)

3.1.2 录波比较法: (12)

3.1.3 直接测频法: (12)

3.2 机械系统固有频率的测量 (13)

3.2.1 自由振动法: (13)

3.2.2 强迫振动法: (13)

3.3 简谐振幅值测量 (13)

3.3.1 指针式电压表直读法: (13)

3.3.2 数字式电压表直读法 (13)

3.3.3 光学法 (14)

3.4 同频简谐振动相位差的测量 (14)

3.4.1 示波器测量法 (14)

3.4.2 相位计直接测量法 (14)

3.5 衰减系数测量 (14)

4 振动测试及动载测试实验报告 (15)

4.1 振动测试实验报告 (15)

4.1.1 测量梁模型一阶振型的数据处理 (15)

4.1.2 模态分析 (17)

4.2 动应变实验报告 (18)

4.2.1 测量梁模型的数据处理 (18)

4.2.2 模态分析 (21)

5 概念 (21)

5.1 功率谱 (21)

5.2 相关函数 (22)

5.2.1 自相关函数 (23)

5.2.2 互相关函数 (23)

5.3 相干函数 (24)

5.4 传递函数 (24)

6 模态分析 (25)

6.1 基本概念 (25)

6.2 方法分类和理解 (26)

6.2.1 频域法 (26)

6.2.2 时域法 (26)

6.2.3 时频法 (27)

1振动测试概述

1.1振动的分类:

1.1.1按自由度分类:

单自由度系统振动(结构只有一个质点体系);

多自由度系统振动(结构具有一个以上的质点体系)。

1.1.2按激励类型分类:

自由振动(系统受初始干扰或原有的外激励取消后产生的振动);

受迫振动(系统在外激励作用下产生的振动);

自激振动(系统在输入和输出之间具有反馈特性并有能源补充而产生的振动)。

1.1.3振动规律分类:

简谐振动(能用一项时间在正弦或余弦函数表示系统响应的振动);

周期振动(能用时间的周期函数表示的系统响应的振动);

瞬态振动(只用时间的非周期衰减函数表示系统响应的振动);

随机振动:(不能通用简单的函数或函数的组合表示运动规律,只能用统计方法表示系统响应的振动)。

1.1.4按振动方程分类:

线性振动:(能用常熟系数线微分方程描述的振动);

非线性振动:(只能用非线性微分方程描述的振动)。

1.2 振动基本参量表示方法:

1.2.1 振幅(u):

表示物体动态运动或振动的幅度,它是机械振动强度的标志,也是机器振动严重程度的一个重要指标。用u(t)表示,是对于时间t 的函数。其中速度表示为()u t ,加速度表示为ü(t)。

1.2.2 周期(T)/频率(f):

周期是物体完成一个完整的振动所需要的时间,用T 表示,频率f=1/T 。频率是指振动物体在单位时间(1秒)内所产生振动的次数。

1.2.3 相位(?):

相位是对于一个波特定的时刻在它循环中的位置:一种它是否在波峰、波谷或它们之间的某点的标度。相位描述信号波形变化的度量,通常以度 (角度)作为单位,也称作相角。通常表示为:ωx+φ。

1.2.4 临界阻尼(C cr )

体系自由振动反应中不出现往复振动所需的最小阻尼值,即

2cr n c m ω==2n n f ωπ=为圆频率。

1.2.5 结构的阻尼系数(c ):

是结构在每一振动循环中消耗能量大小的度量。结构的阻尼比是结构的重要动力特性参数,利用结构自由振动试验可以获得结构的阻尼比。

1.2.6 对数衰减率(δ):

定义为

i i+j 1ln u j u δ==, i i+j

u u 为相邻振动峰值比。振动由i u 衰减至i+j u 。

1.3 振动测试仪器分类及配套使用:

1.3.1 振动测试仪器分类

工程振动的各种参数的测量方法,按照按照测量过程的物理性质来区分,可以分为三大类:

a.机械式的测量仪器:将工程振动的参量转换成机械信号,再经机械系统放大后,进行测量、记录。此法常用的仪器有杠杆式测振仪和盖格尔测振仪,能测量的频率较低,精度也较差。但在现场测试时较为简单方便。

b.光学式的测量仪器:将工程振动的参量转换为光学信号,经光学系统放大后显示和记录。常用的仪器有读数显微镜(图1.3.1b1)和激光测振仪(图1.3.1b2)等。目前光学测量方法主要是在实验室内用于振动仪器系统的标定及校准。

图1.3.1b1 读数显微镜 图1.3.1b2 激光测振仪

c.电测仪器:将工程振动的参量转换成电信号,经电子线路放大

后显示和记录。常见仪器有DH5938加速度计(图1.3.1c)等,这是目前应用得最广泛的测量方法。

图1.3.1c DH5938 振动测试仪

1.3.2振动测试仪器配套使用:

振动测试仪器往往配套不同的振动传感器进行使用,形成一整套的测量系统(图1.3.2a)。

一般分为三种形式,用以测量系统的应变,速度,加速度。应变常常采用应变传感器如:应变片、应变花;配合放大器如:动态电阻应变仪使用。速度常采用磁电式传感器,配合电压放大器使用。加速度采用压电式传感器配合电荷放大器使用。

1.4 窗函数的分类及用途

1.4.1 矩形窗(Rectangular 窗):

矩形窗属于时间变量的零次幂窗。矩形窗使用最多,习惯上不加窗就是使信号通过了矩形窗。这种窗的优点是主瓣比较集中,缺点是旁瓣较高,并有负旁瓣,导致变换中带进了高频干扰和泄漏,甚至出现负谱现象。 其函数形式为:;

相应的谱窗为: ()2s i n t W t

ωωω=; 1.4.2 三角窗(Bartlett 或Fejer 窗):

是幂窗的一次方形式。与矩形窗比较,主瓣宽约等于矩形窗的两倍,但旁瓣小,而且无负旁瓣。 其函数形式为:1(1)0()0t t T w t T T t T ?-????

≤≤≥; 相应的谱窗为: ()2s i n t W t

ωωω=; 1.4.3 汉宁窗(Hanning 窗):

又称升余弦窗,汉宁窗可以看作是3个矩形时间窗的频谱之和,而括号中的两项相对于第一个谱窗向左、右各移动了 π/T ,从而使旁瓣互相抵消,消去高频干扰和漏能。可以看出,汉宁窗主瓣加宽并

降低,旁瓣则显著减小,从减小泄漏观点出发,汉宁窗优于矩形窗.但汉宁窗主瓣加宽,相当于分析带宽加宽,频率分辨力下降。

其函数形式为:()111(cos ),t 220t t T T T w t T π?+≤?=??≥?

相应的谱窗为:

sin 1sin()sin()()2T T T W T T T ωωπωπωωωπωπ+-??=++??+-??

; 1.4.4 海明窗(Hamming 窗)

海明窗也是余弦窗的一种,又称改进的升余弦窗。海明窗与汉宁窗都是余弦窗,只是加权系数不同。海明窗加权的系数能使旁瓣达到更小。

其函数形式为:()1(0.540.46cos ),t 0t t T T T w t T π?+≤?=??≥?

相应的谱窗为:

sin sin()sin()() 1.080.46T T T W T T T ωωπωπωωωπ

ωπ+-??=++??+-??; 1.4.5 高斯窗 (Gauss 窗)

高斯窗是一种指数窗。高斯窗谱无负的旁瓣,第一旁瓣衰减达一55dB 。高斯富谱的主瓣较宽,故而频率分辨力低.高斯窗函数常被用来截短一些非周期信号,如指数衰减信号等。

其函数形式为:()1t 0t T T w t T ?≤?=??≥?

2

-at e , ;

式中:a 为常数,决定了函数曲线衰减的快慢。高斯窗谱的主瓣较宽,故而频率分辨力低,高斯窗函数常被用来截断一些非周期信号,如指数衰减信号等。

1.5 信号采集及分析过程中出现的问题及解决方法

1.5.1 信号采集和分析过程中出现的问题

信号分析和采集过程中会出现信号频率混叠、连续信号的截断和抽样所引起的泄露、时域到频域转化、处理不好引起的误差和错误、信号中的信噪比等等问题。

以及采样频率过低,导致的数据分析误差。

1.5.2 解决方法

对于信号频率混叠需要进行对输入信号的抗混滤波,波样采集和模数转换。

对于连续信号的截断和抽样所引起的泄露需要进行加窗处理,通常所用的窗有矩形窗,汉宁窗,三角窗和海明窗等等。再通过FFT (傅里叶变换)变换,进行时域到频域的变换和数据计算。信息论指出:对常用频宽为F 的限时、白色高斯噪声信道,信道容量 。当容量不变时,增大带宽可降低信噪比,提高信噪比必须压缩带宽。因此,抗干扰为主要矛盾时,可扩展频带换取低信噪比下接收,调频与扩频均基于这一原理。频带为主要矛盾时,则可用信噪比换取频带,多进制、

多电平传输均基于这一原理。

对于采样频率过低导致的误差,我们可以提高采样频率,来增加采样点。

2 惯性式速度型与加速度型传感器

2.1 惯性式传感器的分类:

惯性传感器是检测和测量加速度、倾斜、冲击、振动、旋转和多自由度(DoF)运动的传感器。

惯性传感器分为两大类:一类是角速率陀螺;另一类是线加速度计。在土木工程上大都采用线加速度计。线加速度计又分为电动式(磁电式)传感器和压低式传感器。

2.2 常用加速度计传感器的工作原理及力学模型:

2.2.1 电动式(磁电式)传感器:

工作原理:基于电磁感应原理,当运动的导体在固定的磁场力切割磁力线时,导体两端就感应出电动势。磁电式传感器一般还分为绝对式(惯性式)电动传感器(图2.2.1a )和相对式电动传感器(图

2.2.1b )。

根据电磁感应定律,感应电动势:

4x u=-Blx 10()V

式中:

B ——磁通密度(特斯拉);

l ——线圈在磁场内的有效长度;

x x ——线圈在磁场中的相对速度。

图2.2.1a 绝对式(惯性式)电动传感器

图2.2.1b 相对式电动传感器

力学模型:在测量时,必须先将顶杆压在被测物体上,并满足当传感器顶杆跟随物体运动时,顶杆质量m和弹簧刚度k附属于被测物体上(图2.2.1c),它们成了被测振动系统的一部分。

=-。

运动方程为:mx N F

图2.2.1c传感器力学模型示意图

2.2.2压电式传感器:

工作原理:基于压电效应的传感器。是一种自发电式和机电转换式传感器。它的敏感元件由压电材料制成。压电材料受力后表面产生

电荷。此电荷经电荷放大器和测量电路放大和变换阻抗后就成为正比于所受外力的电量输出。压电式传感器用于测量力和能变换为力的非电物理量。它的优点是频带宽、灵敏度高、信噪比高、结构简单、工作可靠和重量轻等。一般分为压电式加速度传感器(图2.2.2a )和压电式力传感器。

图2.2.2a 压电式加速度计及内部构造图

力学模型:当有外力作用时(图2.2.2b ),则晶体出现变形,使得原极化向上的极化强度减弱,这样被束缚在电极面上的自由电荷就有部分被释放,这就是通常所说的压电效应。q 为释放的电荷,F 为作用力,A 为电极化面积。

力学关系为: F q x x q d d F A A

==或; 式中:

x d ——是压电系数;

图2.2.2b 压电式力学模型示意图

2.3非惯性传感器:

2.3.1电涡流式传感器:

电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。

图2.3.1a 电涡式传感器工作原理示意图

2.3.2参量型传感器:

一般分为电感式传感器和电容式传感器。

电感式传感器是利用电磁感应把被测的物理量如位移,压力,流量,振动等转换成线圈的自感系数和互感系数的变化,再由电路转换为电压或电流的变化量输出,实现非电量到电量的转换。

电容式传感器是将被测非电量的变化转换为电容量变化的传感器。

3振动特性参数的常用量测方法

振动基本参数: 振幅、周期、频率、相位、阻尼比、动力放大系数等描述振动所必须的量统称为振动基本参数。

3.1简谐振动频率的量测:

3.1.1李萨(Lissajous)如图形比较法:

利用示波器,信号发生器以及常用的振动信号测试设备所组成的测试系统,来测简谐振动的振动频率。

运动方向相互垂直的两个简谐振动的合成运动轨迹,称为李萨如图形。使用李萨如图形法测量振动频率的测量系统(图3.1.1a),它把被测振动信号送入阴极射线示波器的垂直偏转轴Y,而把已知频率的比较电压信号送入水平偏转轴X。

图3.1.1a 李萨如图形测频实验框图

3.1.2录波比较法:

这种方法是将被测振动信号和时标信号(一般为等距离的时间脉冲信号)一起送入光线示波器中并同时记录在记录纸上,然后根据记录纸上的振动波形和时标信号两者之间的周期比测定被测振动波形的频率。

3.1.3直接测频法:

这种方法是使用频率计数器直接测定简谐波形电压信号的频率和周期。频率计数器有指针式和数字式两种。

3.2机械系统固有频率的测量

3.2.1自由振动法:

自由振动法一般都是测量此系统的最低阶固有频率,因为较高阶自由振动的衰减比较快,几乎在振动波形中无法看到。通常为了让机械系统产生自由振动方法有:初位移法、撞击法。

系统作衰减振动的固有频率f d与系统的固有频率f n之间存在函

数关系为:

f=。

d

但一般体系振动都为小阻尼体系,故认为f d=f n。

3.2.2强迫振动法:

利用共振的特点来测量机械系统的固有频率,在振动测量中,产生强迫振动的方法很多,常用的有:调节转速法、调节干扰力频率法。

3.3简谐振幅值测量

分别用压电加速度传感器、磁电式传感器等测量系统,选择适当的量程,从电压表或在示波器中就可读出其振动的幅值。

3.3.1指针式电压表直读法:

指针式电压表是振动测量中最常见的显示仪表,用以测量振动位移、速度或加速度的数值(峰值、有效值或平均绝对值)。

3.3.2数字式电压表直读法

直流数字电压表(DVM)由模拟/数字转换器(A/D转换器)及电子计数显示器两大部分组成。数字仪表读数直观,测量精度高逐渐

替代了传统指针式电压表。

3.3.3光学法

用激光做光源的干扰仪可测量很小的幅值,振幅量级甚至是微米以下,其测量精度高,结果可靠。一般可分为:读书显微镜观察、楔形观察法。

3.4同频简谐振动相位差的测量

相位差是对两个同频率的简谐振动而言的。

3.4.1示波器测量法

用电子示波器测量相位差,通常采用线性扫描法、椭圆法。3.4.2相位计直接测量法

根据通道A的信号正向过零时与通道B的信号正向过零时的时间差及信号周期来计算相位差,如(图3.4.2a)。

图3.4.2a 模拟式相位计

3.5衰减系数测量

机械振动系统的衰减系数是机械振动导出参量。一般采用:振动波形衰减图、共振曲线图进行计算。

4振动测试及动载测试实验报告

4.1振动测试实验报告

4.1.1测量梁模型一阶振型的数据处理

实验目的:

用激振法测量并计算梁模型的固有频率和阻尼比、阻尼系数。掌握结构固有频率和振型的简单测量方法。结构模型如(图4.1.1a)所示。

图4.1.1a 结构示意图

实验原理:

电测法是将工程振动转换为电信号,经过电子线路放大后显示和记录。通过对振动信号的拾取及信号转换,通过振动的波形得出振动周期,并计算出阻尼系数、阻尼比及结构的固有频率。

实验内容:

将加速度传感器按(图4.1.1a)位置布置在简支梁上,将加速度传感器连接,将电荷放大器输出端与数据采集仪的输入端连接。

打开所有仪器电源。打开控制计算机,打开做此次试验所需的测试软件,进入页面设置好各项参数。

本次采用初位移法,在周围无振动干扰的情况下,对结构右侧跨

中施加一个力使系统产生一个初始位移,待无振动型号产生后,开始记录振动信号。将施加力快速地卸除。待信号开始有明显衰减,停止记录。振型图见(图4.1.1b ):

图4.1.1b 结构示意图

数据分析:

图中丈量尺寸精度较低采用结构动力学公式计算(可以从任意时间t i 开始取幅值计算)则:

通过衰减频率图计算: 阻尼比:11179.44ln ln 0.14%2210164.22i i j

x j x ζ+===?ππ 衰减震动的固有频率:1113.510.074d d

f HZ T === 阻尼系数:13.51179.44ln ln 0.12010164.22d i i j

f x c j x +=== 由于1ζ<,得系统为低阻尼体系,则:

对数衰减率:20.88%δπξ==

通过共振峰值计算:

采用半功率点法,如(图4.1.1c ):

图4.1.1c 频谱分析频率加速度关系图

衰减震动的固有频率:13.67d f HZ = 周期为:10.0731d d

T s f == 阻尼系数:11(13.7813.58)0.122

c ω=??=?-= 阻尼比:0.10.12%213.672

d c

f ζππ===? 对数衰减率:20.754%δπξ==

4.1.2 模态分析

固有频率与初始条件无关,仅与系统的固有特性有关(如质量、形状、材质等),通过Midas 建模计算固有频率。模型见(图4.1.2a )。

高层楼房震动测试报告

目录 第1章测试的目的 (1) 第 2 章高层建筑结构现场动力特性测试方法 (3) 2.1概述 (3) 2.2 影响高层建筑动力测试的环境因素 (3) 2.3高层建筑结构脉动测试测点分类 (3) 2.3.1水平振动测点 (3) 2.3.2扭转振动测点 (4) 2.4测点及测站布置原则 (4) 2.4.1找好中心位置布置平移振动测点。 (4) 2.4.2在建筑物的两侧布置扭转测点 (4) 2.5 传感器布置的方法 (5) 第3章西安建筑科技大学XX大楼现场动力测试 (6) 3.1 结构概况 (6) 3.2 测试目的 (6) 3.4 测试仪器设备 (6) 3.5 测试方案 (6) 3.6 脉动过程记录 (7) 3.7结果分析 (9) 3.8 结论 (11) 参考文献 (12)

第1章测试的目的 高层建筑结构的动力特性指它的自振频率、振型及阻尼比.虽然这些动力特性可以通过理论计算求得,但通过测试所得的动力特性仍然具有重要意义。主要表现在以下几个方面: ①.检验理论计算 理论计算方法求结构的自振频率时存在误差。于在理论计算过程中,要先确定计算简图和结构刚度,而实际结构往往是比较复杂的,计算简图都要经过简化,常填充墙等非结构构件并不记入结构刚度,而且结构的质量分布、材料实际性能、施工质量等都不能很准确的计算。因此,计算周期与实测周期相比,往往相差很多,据统计,大约前者为后者的1.5--3倍。这样,如果直接采用理论计算的自振周期计算等效地震荷载,往往使内力及位移偏小,设计的结构不够安全。因此,理论周期要用修正系数加以修正。现场实测可以得到建筑物建成后实际的动力特性,因此是准确可靠的。所得数据可以与理论计算数据进行对照比较,验证理论计算,也可为设计类似的对于超高层建筑提供经验及依据。 ②.验证经验公式 通过实测手段对各种不同类型的建筑物进行测试以后,可归纳总结出结构周期的规律,得到计算结构振动周期的经验公式。在估算结构动力特性及估算地震作用时采用经验公式可快速得到结果,方便实用。由于实测周期大都采用脉动试验的方法得到,是反映结构在微小变形下的动力特性,得的周期都比较短,如果激振力加大,结构周期会加长。在地震作用下,随着地震烈度不同,房屋会有不同程度的开裂破坏,刚度降低,自振周期会变长。因此,完全按照脉动测试的周期来确定同类型结构的周期,将使计算等效地震力加大,设计偏于保守。所以由脉动方法得到的实测周期需要乘以修正系数,再计算等效地震力。在大量测试工作和积累了丰富资料的基础上,这个修正系数的大小视结构类型、填充墙的多少而定,大约在1.1-1.5之间。在给出经验公式时,计入这一修正系数,这样既可以简化计算,又与实际周期较为接近。 ③.为结构安全性评估及损伤识别提供依据 建筑结构的质量问题不容忽视,它是直接关系着千家万户的生命财产安全和安居乐业的大事,建筑结构的质量状态评估日益受到人们的重视。传统的经验性的评估方法存在许多缺陷和不足,静力检测结构的缺陷也有许多局限性。动力检测应用于整体结构的质量评估受到国内外学者的广泛关注。近10年来,国内外学者一直在寻找一种能适用于复杂结构整体质量评估的方法。目前,到

爆破振动观测报告

爆破振动观测报告 (2009年3月14日-4月28日) 一、工程概况 深圳市罗湖区田贝德弘天下华府孔桩爆破工程桩井爆破工程位于罗湖区文锦北路与田贝三路交汇处,该工程基础开挖过程中遇有中、微风化岩石,需用爆破方法处理孔桩。 爆破环境较为复杂,为了评价和控制爆破振动对天俊幼儿园、天俊宿舍楼、柏丽花园、嘉多利花园和配电房等周边建(构)筑物的影响程度,为合理的调整爆破参数提供科学依据,深圳市岩土工程有限公司委托惠州中安爆破技术咨询有限公司对本次爆破施工的爆破振动强度进行观测。 我公司接受委托后,制定了《德弘天下华府孔桩爆破振动观测方案》。于2009年3月14日至2009年4月28日,依照需保护对象,分别在天俊幼儿园、天俊宿舍楼、柏丽花园、嘉多利花园和配电房设了7个观测点,进行了96次观测。通过对实测波形进行时域分析和频谱分析,提交了各观测点的质点峰值振动速度、主频率、振动持续时间等描述爆破振动的物理参数值,为科学管理和爆破施工提供了详细的数字依据,确定了观测期间爆破振动对周边建构筑物的影响程度,达到了本次爆破振动阶段性观测目的。 二、观测物理量的选择 在描述振动强度的各物理量中,速度与建(构)筑物破坏相关性最好,经常被用来表示振动强度,这是因为振动对于人体和建筑物的作用强度是与

振动能量相对应的,因此用质点振动速度来表示振动强度是合适的,已逐渐被国内外学者认可使用。在我国有关振动安全的标准中,有许多行业采用质点振动速度作为破坏判据。 三、观测系统的选择 合理地选择观测系统、正确地操作和使用系统各部分是非常重要的,它直接关系到观测结果的真实性,甚至观测的成败。 选择爆破振动速度观测系统时,应根据现场实际情况预估被测信号的幅值范围和频率分布范围,选择的观测系统幅值范围上限应高于被测信号幅值上限的20%频响范围应包含被测信号的频率分布范围,依据这个原则选择的观测系统就不会出现削波、平台等情况。根据这个选择观测系统原则,选择由CD—1型速度传感器、低噪声屏蔽电缆、IDTS3850爆破振动记录仪和计算机组成的观测系统作为本次强夯振动速度观测系统,仪器的技术性能如下: 1.CD-1型速度传感器 最大可测位移士1mm 灵敏度604mv/cm/s 2.IDTS3850爆破振动记录仪 12bit 精度

振动测试作业报告

振动测试技术期末总结 学号: 班级:建筑与土木工程(1504班) 姓名:杨允宁2016年4月27日

目录 1 振动测试概述 (1) 1.1 振动的分类: (1) 1.1.1 按自由度分类: (1) 1.1.2 按激励类型分类: (1) 1.1.3 振动规律分类: (1) 1.1.4 按振动方程分类: (1) 1.2 振动基本参量表示方法: (2) 1.2.1 振幅(u): 2 1.2.2 周期(T)/频率(f): (2) 1.2.3 相位(:): (2) 1.2.4 临界阻尼(C cr) (2) 1.2.5 结构的阻尼系数(C): (2) 1.2.6 对数衰减率(3): (3) 1.3 振动测试仪器分类及配套使用: (3) 1.3.1 振动测试仪器分类 (3) 1.3.2 振动测试仪器配套使用: (4) 1.4 窗函数的分类及用途 (5) 1.4.1 矩形窗(Rectangular窗) : (5) 1.4.2 三角窗(Bartlett 或Fejer 窗) : 5 1.4.3 汉宁窗(Hanning 窗): 5 1.4.4 海明窗(Hamming 窗) (6) 1.4.5 高斯窗(Gauss 窗) (6) 1.5 信号采集及分析过程中出现的问题及解决方法 (7) 1.5.1 信号采集和分析过程中出现的问题 (7) 1.5.2 解决方法 (7) 2 惯性式速度型与加速度型传感器 (8) 2.1 惯性式传感器的分类: (8) 2.2 常用加速度计传感器的工作原理及力学模型:8 2.2.1 电动式(磁电式)传感器: (8) 2.2.2 压电式传感器: (9) 2.3 非惯性传感器: (11) 2.3.1 电涡流式传感器: (11) 2.3.2 参量型传感器: (11) 3 振动特性参数的常用量测方法 (11) 3.1 简谐振动频率的量测: (12) 3.1.1 李萨(Lissajous)如图形比较法: (12) 3.1.2 录波比较法: (12) 3.1.3 直接测频法: (12) 3.2 机械系统固有频率的测量 (13) 3.2.1 自由振动法: (13) 3.2.2 强迫振动法: (13)

冲隧道爆破振动测试报告.doc

东苗冲隧道爆破振动测试报告 云南省公路工程监理咨询公司 1、工程特点 贵州省清镇至镇宁高速公路东苗冲双联拱隧道为上下行合建的六车道高速公路联拱隧道。起止里程K9+290?K9+710,全长420m,隧道 进出口均为削竹式洞门。建筑限界净宽28m,净高5.0m,由中隔墙分隔 为左右两洞,内轮廓采用双心圆型式,外边墙为曲墙,中隔墙为直墙。左洞净空面积 83.62m2,右洞88.51m2。最大埋深约为77米,最浅埋深约为5米,进口较长地段地形偏斜严重。本隧道处于剥蚀、溶蚀丘陵地貌类型,隧道垂直穿越一脊向南北的丘体,地质情况复杂多变,其中I类围岩总长255 m (溶洞极为发育区,充填物为软流塑状含碎石粘土,富水性强,开挖后极易坍塌地段长度50m ;围岩为强风化泥岩,围岩原结构构 造已被破坏,风化成富含水份的砂粘土状,地基承载力较低地段长度205 m);n类围岩(全强风化粉砂质泥岩、砂质页岩,遇水易软化,沿节理 面产生崩塌或剥落)地段90m ,m类围岩(中-弱风化灰岩)地段75 m。 隧道无地表水体,地下水较贫乏,地下水主要为孔隙潜水及基岩裂隙水,均接受大气降水补给。在K9+580?K9+640段岩溶极发育区,在雨 季时涌水量相对较大,水文地质情况相对较差。 2、爆破振动测试目的 (1)为使既有工作面爆破对邻近围岩、已施作的初支或二衬不致产 生破坏,必须进行爆破震动测试,确保实际振速小于相应介质的允许振速。 (2)爆破震动衰减规律测试:通过对爆破时,距爆源不同距离的质 点振动参数(振速、持续时间和频率)的测试,通过回归分析得出该爆破

方法在该施工地质环境条件下的爆破震动衰减规律,即取得爆破震动的场地系数和衰减系数,用以对以后各次爆破及类似工程爆破产生的振动参数量值进行预报。 (3)测量和比较不同爆破方法的实际减振效果,以此得到适合本工 程的最佳爆破方案,确保邻近结构特别是中隔墙或围岩受到的影响最小。 3、系统组成及测振原理3.1系统组成 系统配置如下表所示: 本测振系统由测试系统(野外测试用)和分析处理系统(室内数据处 理用)两部分组成。 测试系统:拾振器T测振仪T数据存储体分析处理系统:数据存储体T测振仪T计算机及专用分析软件T打印 3.2测振原理 成都中科动态仪器有限公司研制生产的IDTS3850爆破震动记录仪,

随机振动试验报告

随机振动试验报告 高等桥梁结构试验报告 讲课老师: 张启伟(教授) 姓名: 史先飞 学号: 1232627 试验报告 1 试验目的 1.过试验进一步加深对结构模态分析理论知识的理解; 2.熟悉随机振动试验常用仪器的性能与操作方法; 3.复习和巩固随机振动数据测量和分析中有关基本概念; 4.掌握通过多点激振、单点拾振的方法,利用DASP2005软件进行模态分析的基本操作步骤。

2 试验仪器和设备 1. ZJY-601振动与控制教学实验仪系统(ZJY-601A型振动教学实验仪、激励锤、YJ9-A型压电型加速度传感器等)。 2. DASP 16通道接口箱。 3. 装有“DASP2005智能数据采集和信号分析系统”软件的PC机。 4. 有关设备之间的联接电缆。 3 试验原理 3.1模态叠加原理 N自由度线性振动系统的运动微分方程是一组耦合的方程组: 引入模态矩阵Φ和模态坐标(广义坐标或主坐标)q,使X= Φq。 如果阻尼矩阵能对角化,方程组即可解耦: 解耦后的第i个方程为: 可见,采用固有振型描述振动的模态坐标后,N自由度线性振动系统的振动响应可以表示为N阶模态响应的叠加。 3.2实模态理论 实模态理论建立在无阻尼的假设基础上。在实模态理论中,模态频率就是系统的无阻 ,尼模态固有频率错误~未找到引用源。;而固有振型矩阵中的各元素都是实数,它们之间i 的相位差是0?或180?。 系统在P点激励,l点测量的频响函数为:

K,,式中,称为频率比,,为模态固有频率。当,则: ,,,,,/,,,iiiiiMi 取频响函数矩阵的一列或一行,如第P列,就可确定振动系统的全部动力特性(模态参数)。 3.3伪实模态理论 某些有阻尼振动系统有时会出现与实模态一样的实数振型,而非复数振型,但其模态 2,,,,,1固有频率为,具有这种性质的振动系统的模态称为伪实模态。伪实模态理diii 论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化模态称为伪实模态。在伪实模态下,各测点的相位差都是0?或180?。 伪实模态理论仅适应于阻尼矩阵可解耦,即可采用固有振型矩阵正交化的情况。一般情况下,阻尼矩阵对角化的充要条件为: 上式也是有阻尼振动系统方程解耦的充要条件。 总之,H(ω)建立了模态参数与频响函数的关系。因此,利用实验测出的H(ω) 值,即可计算出系统的模态参数。根据频响函数的互易定理及模态理论,只需 H(ω)矩阵的一列(或一行)即可求出全部模态参数。

爆破振动鉴定机构

竭诚为您提供优质文档/双击可除 爆破振动鉴定机构 篇一:爆破震动检测合同 爆破振动监测合同 甲方:深圳市建工建设工程有限公司 乙方:广东省地震工程勘测中心 莲墉东片区规划一路、规划二路的路基和挡土桩石方爆破工程项目因距离周边建(构)筑物较近,为避免爆破振动对其产生不良影响,控制振速不超出安全标准,需进行爆破振动监测。根据《中华人民共和国合同法》、《中华人民共和国建筑法》及其它有关法律、法规、规章和国家工商行政管理和建设部颁发的(g-1999-02-01)《建设工程施工合同(示范文本)》,结合深圳市有关规定以及本工程的具体情况,遵循平等、自愿、公平和诚实信用的原则,经甲、乙双方协商一致签订本合同。 一、工程概况: 1、工程名称:莲墉东片区规划一路、规划二路的路基和挡土桩石方爆破振动监测工程。

2、工程地点:深圳市莲塘东片区 3、监测内容:对爆破产生的振动进行监测,根据实测数据指导爆破施工, 控制振速不超标。布设观测点1-2个,位于距爆区最近或较近的周边建筑物基础处。根据监测结果对监测范围、内容、频度及爆破参数进行优化调整。 二、合同工期: 自爆破施工起始,至爆破施工完毕终止。 三、合同价款: 测试费总额5万元,测试点次20—25次,若超过25点次,价格另议。此工程款不含税费。 四、双方权利和义务 (一)甲方责任 1、进行施工现场管理。 2、与周边单位协调,帮助乙方监测人员顺利进入现场工作。 3、按合同支付监测费用。 (二)乙方责任 1、乙方在可能产生振动有害效应的范围内进行监测工作,并按照国家的有关技术规范、规定及甲方与相关单位的要求进行监测。 2、乙方须认真分析监测数据,对监测数据的真实性、

爆破振动观测报告

*********工程 爆破振动检测报告 报告编号:2015-12-001 委托单位:****集团淮萧客车联络线二分部 工程名称:*******隧道出口土石方爆破工程爆破工程地址:省****杜楼镇境 施工单位:****爆破工程 签发日期:年月日

地址:*************(传真):0550-3121**** Emil:******163.邮编:239000 注意事项 1.报告无“检测专用章”或检测单位公章无效。 2.复制报告未重新加盖“检测专用章”或检测单位公章无效。 3.报告无检测、核验、批准人签字无效。 4.报告涂改无效。 5.对检测报告若有异议,应于收到报告之日起十五日向检测单位提出, 逾期不予受理。 6.委托检测仅对当次爆破负责。 7.未经本公司同意,该检测报告不得用于商业性宣传。

爆破振动检测报告

爆破振动观测报告 2015年12月28日 一、工程概况 *****隧道位于省萧县杜楼镇境,隧道全长2425m。隧道出口里程为DK16+140,位于古尚村境,隧道为铁路单洞双线隧道。 爆破区域环境一般,周围有村庄、居民区。为了评价和控制爆破振动对居民区、村庄房屋等周边建(构)筑物的影响程度,为合理的调整爆破参数提供科学依据,中铁四局集团淮萧客车联络线二分部委托*********工对本次爆破施工的爆破振动强度进行观测。 我公司接受委托后,制定了《市萧县*****隧道出口土石方爆破工程爆破振动观测方案》。于2015年12月25日,依照需保护对象,在爆心最近距离100米的建筑物设1个观测点,进行了1次观测。通过对实测波形进行时域分析和频谱分析,提交了观测点的质点峰值振动速度、主频率、振动持续时间等描述爆破振动的物理参数值,为科学管理和爆破施工提供了详细的数字依据,确定了观测期间爆破振动对周边建构筑物的影响程度,达到了本次爆破振动阶段性观测目的。 二、观测物理量的选择 在描述振动强度的各物理量中,速度与建(构)筑物破坏相关性最好,经常被用来表示振动强度,这是因为振动对于人体和建筑物的作用强度是与振动能量相对应的,因此用质点振动速度来表示振动强度是合适的,已逐渐被国外学者认可使用。在我国有关振动安全的标准中,有许多行业采用质点振动速度作为破坏判据。

机械振动实验报告

《机械振动基础》实验报告 (2015年春季学期) 姓名 学号 班级 专业机械设计制造及其自动化报告提交日期2015.05.07 哈尔滨工业大学

报告要求 1.实验报告统一用该模板撰写,必须包含以下内容: (1)实验名称 (2)实验器材 (3)实验原理 (4)实验过程 (5)实验结果及分析 (6)认识体会、意见与建议等 2.正文格式:四号字体,行距为1.25倍行距; 3.用A4纸单面打印;左侧装订; 4.报告需同时提交打印稿和电子文档进行存档,电子文档由班长收 齐,统一发送至:liuyingxiang868@https://www.360docs.net/doc/3b2273458.html,。 5.此页不得删除。 评语: 教师签名: 年月日

实验一报告正文 一、实验名称:机械振动的压电传感器测量及分析 二、实验器材 1、机械振动综台实验装置(压电悬臂梁) 一套 2、激振器一套 3、加速度传感器一只 4、电荷放大器一台 5、信号发生器一台 6、示波器一台 7、电脑一台 8、NI9215数据采集测试软件一套 9、NI9215数据采集卡一套 三、实验原理 信号发生器发出简谐振动信号,经过功率放大器放大,将简谐激励信号施加到电磁激振器上,电磁激振器振动杆以简谐振动激励安装在激振器上的压电悬臂梁。压电悬臂梁弯曲产生电流显示在示波器上,可以观测悬臂梁的振动情况;另一方面,加速度传感器安装在电磁激振器振动杆上,将加速度传感器与电荷放大器连接,将电荷放大器与数据采集系统连接,并将数据采集系统连接到计算机(PC机)上,操作NI9215数据采集测试软件,得到机械系统的振动响应变化曲线,可以观测电磁激振器的振动信号,并与信号发生器的激励信号作对比。实验中的YD64-310型压电式加速度计测得的加速度信号由DHF-2型电荷放大器后转变为一个电压信号。电荷放大器的内部等效电路如图1所示。 q

爆破振动检测报告(模板)

某某安防工程检测有限公司 爆破振动检测报告 报告编号:2014-07-001 委托单位:某某爆破科技咨询有限公司 工程名称:高地阳光居住小区Ⅱ标土石方爆破工程工程地址:贵阳市云岩区三桥中坝路 施工单位:某某爆破科技咨询有限公司 签发日期:2014年7月20日 单位信息:

注意事项 1.报告无“检测专用章”或检测单位公章无效。 2.复制报告未重新加盖“检测专用章”或检测单位公章无效。 3.报告无检测、核验、批准人签字无效。 4.报告涂改无效。 5.对检测报告若有异议,应于收到报告之日起十五日内向检测单位提出, 逾期不予受理。 6.委托检测仅对当次爆破负责。 7.未经本公司同意,该检测报告不得用于商业性宣传。

测 点 布 置 爆破振动监测记录表 起始时间2014-7-10 13:56:13至2014-7-10 13:57:50天气晴爆破位置爆破区域东南角 爆破参数孔数:26个孔深:6m孔距:3.5m排距:3.5m 单孔装药量:15kg最大段药量:15kg总装药量:390kg 孔内雷管:11段孔间雷管:7段排间雷管:7段分段数:26段 监测数据 测点号 爆心 距 (m) 仪器编号 X(水平径向)Y(水平切向)Z(垂直向)合速度 振速 (cm/s ) 主振频 率 (Hz) 振速 (cm/s ) 主振频 率 (Hz) 振速 (cm/s ) 主振频 率 (Hz) 振速 (cm/s ) 主振频 率 (Hz)

①号测点:实测波形图(1) 高地阳光居住小区Ⅱ标土石方爆破工程 检测单位:XXX安防工程检测有限公司检测地点:贵阳市云岩区三桥中坝路 记录时间2014-7-10 操作员:赵勇炮次:2 距离:101 M 记录长度 5.0000 S仪器编 号:STMT11153089/00053 9 记录速率2000,SPS试验设备:NUBOX-8016药量:15 KG 通道号通道名称最大值主频时刻单位量程灵敏度 1 通道X -0.408CM/S 16.393HZ 1.19150S M/S 37.313CM/S 26.800 2 通道Y 0.311CM/S 22.727HZ 1.11250S M/S 35.088CM/S 28.500 3 通道Z -0.679CM/S 26.316HZ 1.15100S M/S 36.630CM/S

振动实验报告..

振动与控制系列实验 姓名:李方立 学号:201520000111 电子科技大学机械电子工程学院

实验1 简支梁强迫振动幅频特性和阻尼的测量 一、实验目的 1、学会测量单自由度系统强迫振动的幅频特性曲线。 2、学会根据幅频特性曲线确定系统的固有频率f 0和阻尼比。 二、实验装置框图 图3.1表示实验装置的框图 图3-1 实验装置框图 K C X 图3-2 单自由度系统力学模型 三、实验原理 单自由度系统的力学模型如图3-2所示。在正弦激振力的作用下系统作简谐强迫振动, 设激振力F 的幅值B 、圆频率ωo(频率f=ω/2π),系统的运动微分方程式为: 扫频信号源 动态分析仪 计算机系统及分析软件 打印机或 绘图仪 简支梁 振动传感器 激振器 力传感器 质量块 M

或 M F x dt dx dt x d M F x dt dx n dt x d F Kx dt dx C dt x d M /2/222 22 2 222=++=++=++ωξωω (3-1) 式中:ω—系统固有圆频率 ω =K/M n ---衰减系数 2n=C/M ξ---相对阻尼系数 ξ=n/ω F ——激振力 )2sin(sin 0ft B t B F πω== 方程①的特解,即强迫振动为: ) 2sin()sin(0?π?ω-=-=f A A x (3-2) 式中:A ——强迫振动振幅 ? --初相位 2 0222024)(/ωωωn M B A +-= (3-3) 式(3-3)叫做系统的幅频特性。将式(3-3)所表示的振动幅值与激振频率的关系用图形表示,称为幅频特性曲线(如图3-3所示): 3-2 单自由度系统力学模型 3-3 单自由度系统振动的幅频特性曲线 图3-3中,Amax 为系统共振时的振幅;f 0为系统固有频率,1f 、2f 为半功率点频率。 振幅为Amax 时的频率叫共振频率f 0。在有阻尼的情况下,共振频率为: 2 21ξ-=f f a (3-4) 当阻尼较小时,0f f a =故以固有频率0f 作为共振频率a f 。在小阻尼情况下可得 01 22f f f -= ξ (3-5) 1f 、2f 的确定如图3-3所示: M X C K

爆破安全评估报告模板

爆破作业安全评估报告 委托单位: 工程名称: 爆破设计施工单位: 爆破评估单位: ************有限公司 二〇一八年十月

前言 随着我国社会主义经济的逐步深化和科学技术的高速发展,工程爆破在国民经济建设中越来越显示出巨大的作用,成为高速、有效、经济的作业手段。随之而来的爆破安全成为突出问题,如何做到爆破既要达到设计要求又要将危险降到最低点,避免发生大的爆破事故,成为爆破业面临的一个主要课题。因此,安全是进行一切工程爆破的重要前提,而安全评估工作是做到爆破安全的重要手段,安全评估真正做到科学、全面、安全无事故,达到预期目的非常不易。 《民用爆炸物品安全管理条例》(国务院令第466号)规定,在城市、风景名胜区和重要工程设施附近实施爆破作业的,爆破作业单位应向爆破作业所在地设区的市级人民政府公安机关提出申请,提交《爆破作业单位许可证》和具有相应资质的安全评估企业出具的爆破设计、施工方案评估报告。实施爆破作业时,应由具有相应资质的安全监理企业进行监理。 《爆破安全规程规定》(GB 6722-2003)第4.4.1款规定:A级.B级、C级和对安全影响较大的D级爆破工程,都应进行安全评估。 受工程建设单位委托,我单位抽调了三人组成评估组,由专家担任评估组组长,于2018年10月13日对项目施工现场进行了勘察,对提交的《*************8*****爆破技术方案及施工组织设计》等相关文件进行了审查修改,并对其单位及作业人员资质进行了审核,按照《爆破安全规程》规定的评估内容,依据评估组人员达成一致的评估意见编制出本评估报告。

目录 一.设计施工单位资质评价及工程建设单位相关信息 (1) 二.参与设计和施工主要技术人员构成 (2) 三.工程条件及评估等级确定 (3) 四.工程爆破区现场环境条件示意图 (4) 五.设计依据的法律、法规和工程合法性的评估 (5) 六.设计选择方案可行性评估 (6) 七.技术设计和爆破参数选择的合理性评估 (7) 八.起爆网路准爆性评估 (9) 九.存在的有害效应及可能影响范围的评估 (10) 十.保证工程环境安全措施可靠性的评估 (11) 十一.预防事故对策和预防措施的评估 (12) 十二.专家在现场评议会提出的要求 (13) 十三.评估结论 (14) 十四.评估公司附件及现场照片 (15)

爆破振动观测报告

爆破振动观测报告 (2009 年 3月 14 日-4 月 28日) 一、工程概况 深圳市罗湖区田贝德弘天下华府孔桩爆破工程桩井爆破工程位于罗湖区文锦北路与田贝三路交汇处,该工程基础开挖过程中遇有中、微风化岩石,需用爆破方法处理孔桩。 爆破环境较为复杂,为了评价和控制爆破振动对天俊幼儿园、天俊宿舍楼、柏丽花园、嘉多利花园和配电房等周边建(构)筑物的影响程度,为合理的调整爆破参数提供科学依据,深圳市岩土工程有限公司委托惠州中安爆破技术咨询有限公司对本次爆破施工的爆破振动强度进行观测。 我公司接受委托后,制定了《德弘天下华府孔桩爆破振动观测方案》。于 2009 年 3 月 14 日至 2009 年 4 月 28 日,依照需保护对象,分别在天俊幼儿园、天俊宿舍楼、柏丽花园、嘉多利花园和配电房设了 7 个观测点,进行了 96 次观测。通过对实测波形进行时域分析和频谱分析,提交了各观测点的质点峰值振动速度、主频率、振动持续时间等描述爆破振动的物理参数值,为科学管理和爆破施工提供了详细的数字依据,确定了观测期间爆破振动对周边建构筑物的影响程度,达到了本次爆破振动阶段性观测目的。

二、观测物理量的选择 在描述振动强度的各物理量中,速度与建(构)筑物破坏相关性 最好,经常被用来表示振动强度,这是因为振动对于人体和建筑物的 作用强度是与振动能量相对应的,因此用质点振动速度来表示振动强 度是合适的,已逐渐被国内外学者认可使用。在我国有关振动安全的 标准中,有许多行业采用质点振动速度作为破坏判据。 三、观测系统的选择 合理地选择观测系统、正确地操作和使用系统各部分是非常重要 的,它直接关系到观测结果的真实性,甚至观测的成败。 选择爆破振动速度观测系统时,应根据现场实际情况预估被测信号 的幅值范围和频率分布范围,选择的观测系统幅值范围上限应高于被测 信号幅值上限的 20%,频响范围应包含被测信号的频率分布范围,依 据这个原则选择的观测系统就不会出现削波、平台等情况。根据这 个选择观测系统原则,选择由CD—1 型速度传感器、低噪声屏蔽电缆、IDTS3850 爆破振动记录仪和计算机组成的观测系统作为本次强夯振动速度观测系统,仪器的技术性能如下: 1.CD—1 型速度传感器 最大可测位移±1mm 灵敏度604mv/cm/s 2.IDTS3850 爆破振动记录仪 精度12bit

振动试验系统测试报告

振动试验系统测试报告

振动试验系统测试报告 一、系统组成:BTH-1208LS数据采集卡、CT5210恒流适配器、传感器: CT1005L(电荷灵敏度为52.20mV/g)、CT1010LC(电荷灵敏度为99.1mV/g)、CT1050LC(电荷灵敏度为505mV/g),DAQami数据采集应用软件 二、系统参数设置: 1、通道设置:如图1所示,设置3个模拟输入通道,其中AI0代表CT1005L ,AI1代表CT1010LC ,AI2代表CT1050LC。在图表中分别用红色,黄色,绿色表示。量程选择±5V。 图1 通道配置 2、采样率设定:如图2,采样率配置为1000采样点/秒/通道。

图2 采样率配置 三、测试试验 本测试设置两种试验,敲击试验(用手敲击适配器顶端)和手机来电振动试验。 1、敲击试验: 将实验仪器顺次连接起来,如图3所示。 图3 振动敲击试验系统 依次单独开启通道AI0、AI1、AI2,用手敲击适配器顶端同一位置,采集软件中采集到的波形如图4、5、6所示;3个通道同时开启时的波形如图7所示。

图4 单独应用CT1005L时的波形图 图5 单独应用CT1010LC时的波形图

图6单独应用CT1050LC时的波形图 图7三个传感器同时应用时的波形图 从图4—7可看出,在受到同样的外界振动(用手敲击)时,CT1005L 对振动的反应很不灵敏,CT1010LC对振动的反应也不灵敏,而CT1050LC 对振动反应很灵敏,能清楚的反应出它每次受到的振动。 2、手机来电振动试验 系统连接图如图8所示

图8 手机来电振动试验系统 依次单独开启通道AI0、AI1、AI2,当手机来电振动时,采集软件中采集到的波形如图9、10、11所示。 图9 单独应用CT1005L时的波形图

隧道爆破震动测试报告

C4合同段XXX隧道爆破振动 测 试 报 告 XX交大工程检测咨询有限公司 二〇一五年十二月

C4合同段XXX隧道爆破振动 编制: 审核: XX交大工程检测咨询有限公司 二〇一五年十二月

目录 1、工程概况 (1) 1.1 线路概况 (1) 1.2 隧道概况 (1) 2、监测目的 (1) 3、仪器简介 (1) 4、测点布置 (2) 5、测试结果 (3) 6、结论及建议 (6) 6.1 爆破振动结论 (6) 6.2 建议 (7)

1、工程概况 1.1 线路概况 XX高速公路连接XX与XX、沟通内地与藏区,是国家高速公路网XX至叶城(新疆喀什)国家高速公路的重要组成部分,是成都平原经济区、川南经济区和攀西经济区连接甘孜藏区进而通往西藏的重要通道。 XX高速公路起于XX市雨城区草坝镇,东接乐雅高速公路,西经天全县、泸定县,止于XX城东,路线全长约135公里,设计时速80公里/小时。全线桥梁、隧道众多,桥隧比高达82%,是目前全省桥隧比最高的高速公路。其中,桥梁129座36.176公里,隧道44座73.182公里。届时,从成都前往XX将由目前的6个小时缩短为3小时以内。 1.2 隧道概况 XXX隧道本标段左线长2245m,右线长2329m。隧道平面为双洞分离式隧道,左右洞间距15~40米。进出口左右线均位于曲线上,纵断面设计为单向坡,左线坡率为ZK7+500~ZK8+310段1.2%,ZK8+310~ZK9+745段-0.5%,右线坡率为K7+500~K8+310段1.2%,K9+310~K9+830段-0.5%(XX至XX方向上坡为正)。在K9+200右侧设置支洞,长324m,纵坡-4.05%,开挖宽度6.1m,开挖高度7.32m,每100m设置会车道,长20m。与主洞K9+040相交。 隧道路面按双向四车道设置,设计行车速度为80km/h,隧道建筑限界主洞净宽10.25m,隧道净高5.0m;防水等级:二级;二次衬砌抗渗等级不小于S8;汽车荷载等级为公路-Ⅰ级。 2、监测目的 为预防爆破产生的振动效应影响爆区周围建筑设施安全,依照《爆破安全规程》(GB6722-2014)的有关规定,受中国中铁二局第四工程有限公司委托,对XXX隧道爆破作业进行振动监测,采集爆破振动数据,为爆破作业现场提供科学数据,对有可能发生由爆破振动引起的纠纷提供可靠的依据。 3、仪器简介 TC-4850振动分析仪主要用于对地震波、机械振动或各种冲击进行信号记录

爆破震动公式

爆破震动安全技术爆破震动安全允许震速

爆破振动强度计算 (1)V=K ·(Q 1/3/R)α 式中Q :一次起爆最大药量;kg V —控制的震动速度,cm/s K-爆破介质为普坚石,但保护的民房与爆破地岩石之间的有些软岩与土层相隔, R-装药中心至保护目标的距离 m 在不同距离上的的地面质点震动速度计算如表: 爆破震动速度表 爆破振动安全允许距离 3 11.Q V K R α??? ??= 式 中:K R —— 爆破振动安全允许距离,单位为米(M); Q —— 炸药量,齐发爆破为总药量,延时爆破为最大一段药量,单位为千克(kg); V —— 保护对象所在地质点振动安全允许速度,单位为厘米每秒(cm/s); K 、α —— 与爆破点至计算保护对象间的地形、地质条件有关

的系数和衰减指数, 为确保爆区周围人员和建筑物等的安全,必须将爆破震动效应控制在允许围之。目前通常采取如下技术措施来控制或减弱爆破地震效应 1)限制一次齐发爆破的最大用药量 确定合理的爆破规模及正确的爆破设计与施工,充分利用爆炸能的有用功,也就是根据爆破的目的要求和周围环境情况,按允许最震效应原则应用公式计算确定一次允许起爆的最大药量。如:一般砖房、非抗震的大型砌块建筑物最大安全允许震速为3.0cm/s,可计算出最大起爆药量为17kg。(K取250,a取1.8,R为30m)。 2)采用微差爆破技术 根据微差爆破原理,采用微差爆破技术可以使爆破地震波的能量在时空上分散,使主震相的相位错开,从而有效地降低爆破地震强度,一般可降低30%~50%。 3)预裂爆破或减震沟减震 在爆破区域与被保护物体之间,预先钻凿一排或二排密集减震孔、或采用预裂爆破形成一定宽度的预裂缝和预开挖减震沟槽等,均可收到明显的减震效果,一般可减弱地震强度30%~50%。为了提高减震效果,预裂孔、缝和沟应有一定的超深(20~30cm)或宽度(不小于1.0cm),而且切忌

振动实验报告(填写参考)

振动力学实验报告 学院:___________________ 班级:___________________ 学号:___________________ 姓名:___________________ 山东科技大学

单自由度系统振动实验报告 实验者姓名:________ 院系:_______系_______专业_______班_______组实验日期:________年________月________日 自由振动法测量单自由度系统的参数 一、实验目的 测量系统自由振动的衰减曲线,并对曲线进行时域分析,确定其振动频率、周期、固有频率、衰减系数、相对阻尼系数等参数. 二、实验对象和装置 三、实验步骤 1:将系统安装成单自由度无阻尼系统,在质量块的侧臂安装一个"测量平面". 2:将电涡流传感器对准该平面,进行初始位置的调节.

3:用手轻推质量块,采集一段信号,计算振动频率、周期、固有频率、衰减系数、相对阻尼系数等参数。 4:将系统安装成单自由度有阻尼系统,重做上面试验。 四、实验数据记录和整理 1、无阻尼单自由度自由振动系统实验测量: 计算单自由度振动的振动频率、周期、固有频率、衰减系数、相对阻尼系数周期、频率和阻尼系数: 2、有阻尼单自由度自由振动系统实验测量: 计算单自由度振动的振动频率、周期、固有频率、阻尼系数、相对阻尼系数:

五、简答 1、上述无阻尼自由振动实验中,为什么振动曲线呈现衰减状态? 2、简述阻尼对于自由振动周期、频率的影响。

计算公式: 对数衰减比3 1 ln A A =δ 则有: d T n δ = 而2 221 n p f T d d -= =π 为衰减振动的周期,π π222 2n p p f d d -= =为衰减振动的频率,22n p p d -= 为衰减振动的圆频率。

爆破测试实验报告

1、实验目的 1、通过爆破震动测试实验进一步深入与拓宽对爆破测试知识的了解; 2、了解和掌握爆破地震波的特征、传播规律以及对建筑物的影响、破坏机理等, 以防止和减少对建筑物的破坏,达到最有效地控制爆破地震波危害的目的。 3、熟悉爆破测试实验测试仪器并熟练操作; 4、理解爆破震动测试技术的基本原理,熟练并掌握爆破震动测试技术的测试步骤 及数据分析处理; 5、提高学生的现场测试和科研试验的基本能力 2、仪器与材料 乳化炸药、雷管、TC-4850传感器、震动记录仪 3 实验步骤 1)用木棒或钢棒在土地上钻一直径与乳化炸药药卷直径相当,深度适当的装药爆破测试孔,测量其直径直径为40mm,孔深60cm。 2)取一重65g,长11cm的乳化炸药药卷插入—个8#工业电雷管,使雷管管体全部没入药卷内并固定雷管与药卷使两者不宜分离。 3)将上述药卷放置至炮孔底部,填土冲实。 4)操作震动记录仪,熟悉震动记录仪的原理及各项参数设置。 5)安置3个传感器,测量3点至炮孔中心的安全距离,并记录数据第1点8.1m,第2点7.7m,第3点7m;各传感器端口与震动记录仪的3个端口对应连接。 6)人员撤离到安全距离以外的掩体内,然后进行起爆。 7)实验场地整理及数据回收记录。 4、测试结果分析与处理 从震动记录仪测得数据组为2组,其中1组数据没有测试出来。通过办公数据处理得出两曲线图,如下图所示:

1号点-0.25-0.2 -0.15 -0.1 -0.050 0.05 0.1 0.15 0.2 0.25 1 15294357718599113127141155169183197211225239253267 时间(ms)电压(v) 3号点-0.3-0.2 -0.10 0.1 0.2 0.3 0.41 15294357718599113127141155169183197211225239253267 时间(ms)电压(v) 第1号点的振幅0.2v 。第3号点的振幅0.29v 代入公式 d E V A = 式中:d E ——值为28v/m/s 解得第1号点的最大速度为0.00714m/s ,第3号点的最大速度为0.0104 m/s 。 一般认为,爆破震动强度质点振动速度、加速度的最大值随爆心距和炸药量的变化规律,可用经验公式表示为: 对于集中药包爆破:α ????? ??=R Q k A 3 1 式中 A--质点振动最大速度,cm/s , Q--炸药量,kg (齐发爆破时为总装药量,延迟爆破时,为最大一段的装药量); R--测点距爆源中心的距离,m ;

隧道爆破震动测试报告.doc

XX省 XX 至 XX 高速公路工程项目C4 合同段 XXX 隧道爆破振动 测 试 报 告 XX交大工程检测咨询有限公司 二〇一五年十二月

XX省 XX 至 XX 高速公路工程项目C4 合同段 XXX 隧道爆破振动 编制: 审核: XX交大工程检测咨询有限公司 二〇一五年十二月

目录 1、工程概况 (1) 1.1 线路概况 (1) 1.2 隧道概况 (1) 2、监测目的 (1) 3、仪器简介 (1) 4、测点布置 (2) 5、测试结果 (3) 6、结论及建议 (6) 6.1 爆破振动结论 (6) 6.2 建议 (7)

1、工程概况 1.1 线路概况 XX 高速公路连接XX 与 XX 、沟通内地与藏区,是国家高速公路网XX 至 叶城(新疆喀什)国家高速公路的重要组成部分,是成都平原经济区、川南经济 区和攀西经济区连接甘孜藏区进而通往西藏的重要通道。 XX高速公路起于 XX 市雨城区草坝镇,东接乐雅高速公路,西经天全县、泸 定县,止于 XX 城东,路线全长约 135 公里,设计时速 80 公里 /小时。全线桥梁、隧道众多,桥隧比高达 82%,是目前全省桥隧比最高的高速公路。其中,桥梁 129 座 36.176 公里,隧道 44 座 73.182 公里。届时,从成都前往 XX 将由目前的 6 个 小时缩短为 3 小时以内。 1.2 隧道概况 XXX隧道本标段左线长 2245m,右线长 2329m。隧道平面为双洞分离式隧道,左右洞间距 15~40 米。进出口左右线均位于曲线上,纵断面设计为单向坡,左线坡率为 ZK7+500~ ZK8+310 段 1.2%,ZK8+310 ~ZK9+745 段 -0.5%,右线坡 率为 K7+500~K8+310 段 1.2%, K9+310~K9+830 段-0.5%( XX 至 XX 方向上坡为正)。在 K9+200 右侧设置支洞,长 324m,纵坡 -4.05%,开挖宽度 6.1m,开挖高度 7.32m,每 100m 设置会车道,长 20m。与主洞 K9+040 相交。 隧道路面按双向四车道设置,设计行车速度为80km/h,隧道建筑限界主洞 净宽 10.25m,隧道净高 5.0m;防水等级:二级;二次衬砌抗渗等级不小于S8; 汽车荷载等级为公路 -Ⅰ级。 2、监测目的 为预防爆破产生的振动效应影响爆区周围建筑设施安全,依照《爆破安全规 程》( GB6722-2014)的有关规定,受中国中铁二局第四工程有限公司委托,对 XXX隧道爆破作业进行振动监测,采集爆破振动数据,为爆破作业现场提供科 学数据,对有可能发生由爆破振动引起的纠纷提供可靠的依据。 3、仪器简介 TC-4850振动分析仪主要用于对地震波、机械振动或各种冲击进行信号记录 与数据分析、结果输出、显示打印存盘而设计的便携式仪器。它直接与压力、速

爆破震动公式

爆破震动安全技术爆破震动安全允许震速 序号保护对象类别 安全允许振速(cm/s) < 10 Hz 10 Hz~ 50 Hz 50 Hz~ 100 Hz 1 土窑洞、土坯房、毛石房屋 q 0.5~1.0 0.7~1.2 1.1~1.5 2 一般砖房、非抗震的大型砌 块建筑物q 2.0~2.5 2.3~2.8 2.7~ 3.0 3 钢筋混凝土结构房屋q 3.0~4.0 3.5~4.5 4.2~5.0 4 一般古建筑与古迹b0.1~0.3 0.2~0.4 0.3~0.5 5 水工隧道c7~15 6 矿山巷道x10~20 7 交通隧道c15~30 8 水电站及发电厂中心控制 室设备c 0.5 9 新浇大体积混凝土d: 龄期:初凝~3d 龄期:3d ~7d 龄期:7d ~28d 2.0 ~ 3.0 3.0~7.0 7.0~12 注1:表列频率为主振频率,系指最大振幅所对应波的频率。注2:频率范围可根据类似工程或现场实测波形选取。选取频率 时亦可参考下列数据:酮室爆破<20 Hz;深孔爆破10 H ~60 Hz;浅孔爆破40Hz~100 Hz 。 a 选取建筑物安全允许振速时,应综合考虑建筑物的重要性、建筑质量、新旧程度、自振频率、地基条件等因素。 b 省级以上(含省级)重点保护古建筑与古迹的安全允许振速,应经专家论证选取,并报相应文物管理部门批准。 c 选取隧道、巷道安全允许振速时,应综合考虑构筑物的重要性、围岩状况、断面大小、深埋大小、爆源方向、地震振动频率等因素。 d 非挡水新浇大体积混凝土的安全允许振速,可按本表给出的上

限值选取。 爆破振动强度计算 (1)V=K ·(Q 1/3/R)α 式中Q :一次起爆最大药量;kg V —控制的震动速度,cm/s K-爆破介质为普坚石,但保护的民房与爆破地岩石之间的有些软岩与土层相隔, R-装药中心至保护目标的距离 m 在不同距离上的的地面质点震动速度计算如表: 爆破震动速度表 爆破振动安全允许距离 3 11.Q V K R α??? ??= 式 中:K R —— 爆破振动安全允许距离,单位为米(M); Q —— 炸药量,齐发爆破为总药量,延时爆破为最大一段药量,单位为千克(kg); V —— 保护对象所在地质点振动安全允许速度,单位为厘米每秒(cm/s); K 、α —— 与爆破点至计算保护对象间的地形、地质条件有关的R(m) 30 50 100 200 300 V(cm/s) 1.76 0.70 0.20 0.06 0.03

相关文档
最新文档