石墨烯在光电子器件中的应用

石墨烯在光电子器件中的应用
石墨烯在光电子器件中的应用

石墨烯在光电子器件中的应用

摘要:石墨烯是目前发现的唯一存在的二维自由态原子晶体,有着优异的机械性能、超高的热导率和载流子迁移率、超宽带的光学响应谱,以及极强的非线性光学特性。且因其卓越的光学与电学性能及其与硅基半导体工艺的兼容性,石墨烯受到了各领域学科的高度关注。本文重点综述了石墨烯在超快脉冲激光器、光调制器、光探测器、表面等离子体等光电子器件领域的应用研究进展,并对其未来发展趋势进行了进一步的分析。

关键字:石墨烯;光调制器;光探测器;超快脉冲激光器;表面等离子体;

1、前言

石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构的一种碳质新材料,具有独特的零带隙能带结构,是一种半金属薄膜材料。石墨烯不仅有特殊的二维平面结构,还有着优良的力学、热学、电学、光学性质。其机械强度很大,断裂强度比优质的钢材还要高,同时又具备良好的弹性、高效的导热性以及超强的导电性。石墨烯又是一种禁带宽度几乎为零的特殊材料,其电子迁移速率达到了1/300光速。由于石墨烯几乎是透明的,因此光的透过率可高97.7%。此外,石墨烯的加工制备可与现有的半导体CMOS(Complementary metal-oxide-semiconductor transistor)工艺兼容,器件的构筑、加工、集成简单易行,在新型光电器件的应用方面具有得天独厚的优势。

目前,人们已利用石墨烯开发出一系列新型光电器件,并显示出优异的性能和良好的应用前景。

2、石墨烯的基本性质

石墨烯具有独特的二维结构,并且能分解为零维富勒烯,也可以卷曲成一维碳纳米管,或堆积成为三维石墨。石墨烯力学性质高度稳定,碳原子连接比较柔韧,当施加外力时,碳原子面就会发生弯曲形变。

在理想的自由状态下,单层石墨烯并非完美的平面结构,表面不完全平整,在薄膜边缘处出现明显的波纹状褶皱,而在薄膜内部褶皱并不显,多层石墨烯边缘处的起伏幅度要比单层石墨烯稍小。这也说明了石墨烯在受到拉伸、弯曲等外力作用时仍能保持高效的力学稳定性。

在一定能量范围内,石墨烯中的电子能量与动量呈线性关系,所以电子可视为无质量的相对论粒子即狄拉克费米子。通过化学掺杂或电学调控的手段,可以有效地调节石墨烯的化学势,使得石墨烯的光学透过性由“介质态”向“金属态”转变。

石墨烯的功函数与铝的功函数相近,约为4.3eV,因此在有机光电器件中有望取代铝来做透明电极。近年来所观测到的显著的量子霍尔效应和分数量子霍尔效应,证实了石墨烯是未来纳米光电器件领域极有前景的材料。

3、基于石墨烯的光调制器

3.1 直波导结构石墨烯光调制器

光学调制是改变光的一个或多个特征参数,并通过外界各种能量形式实现编码光学信号的过程。对光学调制器件的评价有调制带宽、调制深度、插入损耗、比特能耗以及器件尺寸等性能指标。大多数情况下,光在

材料中的行为可通过材料折射率的变化来预测,所以光学调制的过程实际上也是一个材料折射率变化的过程。

光学调制的方式有很多,比如电光、热光、声光调制等。在以上诸多的方式中,电光调制具有速度快、带宽高等优点,是目前研究的热点。

所谓电光调制,就是指外加电场引起材料折射率实部与虚部的变化,实部的变化称为电致折射,虚部的变化称为电致吸收。现阶段研究的调制器的有源材料主要有硅、Ⅲ-Ⅳ族化合物以及电光材料 LiNbO3等。

但是,传统光调制器工作带宽较窄、器件尺寸难以进一步缩小的缺点限制了其在宽带大数据传输当中的应用。相较之下,基于石墨烯的光调制器因具有宽波段可调、调制速度快、有源区尺寸小等优势而备受关注。

2011年,科学家在《Nature》

杂志发表研究论文报道了基于石墨烯材料的波导集成光调制器,将单层石墨烯材料铺覆在硅波导表面,通过电调谐石墨烯材料的费米能级,改变材料的光吸收特性,实现光学信“0”和“1”之间的开关调制。该器件有着众多优点,包括:宽的光学带宽(1.35~1.6μm)、大的调制深度(0.1 dB/μm)、小的尺寸(25μm^2)等。如此紧凑的尺寸及优越的性能为实现光学器件的高密度集成及片上光通信提供了新颖可行的思路和技术方案。另外,石墨烯超快的载流子迁移率以及与 CMOS 工艺可以相兼容的特性使其在调制器方面的前途一片光明。

2012年,该组在原有工作基础上,改用双层石墨烯代替单层石烯,从而避免引入硅材料作为栅极,克服了硅光子所造成的影响,从而获得更高的调制深度。

目前,这些波导集成调制器所面临的主要问题之一就是石墨烯与光的相互作用并未达到最强。针对这个问题,Kim等在2011年提出了脊形波导调制器的结构模型(下图):

主要的设计思想是在图中器件结构的基础上,在顶层单晶硅上蒸镀一层多晶硅,将光场最大地限制在石墨烯层附近,理论模拟的光场分布见下图:

此外,为防止Al2 O3降低石墨烯的载流子迁移率,故将其换成六方氮化硼(hBN)。同时由于hBN较低的介电常数,使得器件的电容电阻时间常数也降了,最终可以使调制深度与调制速率都得到较大幅度的提升。

此外,因为开关过程中有带内跃迁的参与,而带内弛豫时间小于带间弛豫时间,故该器件在理论上具有超高的调制速度。

3.2 微环结构石墨烯光调制器

环形谐振结构自2005年被应用于调制器领域后便备受青睐。环形谐振指的是光从直波导耦合进入微环当中,传输一周后会与后续进入微环中的光学信号发生干涉效应,最终选择性的输出一部分光,剩下的部分光会在微环中完全损耗掉,即发生谐振效应。

环形谐振结构的调制器有两大优点:较大的消光比以及较小的尺寸,2011年,Bao

等首次提出了基于单层

石墨烯环形谐振结构的调制器模型,见下图:

2012年,Midrio等在此工作的基础上又提出了双层石墨烯环形谐振结构调制器,并使用有限元等数值模拟方法对该器件作了深入的研究。

该调制器通过在垂直叠加的两片石墨烯上施加电压形成可以调制其费米能级的电场,并通过改变外加电压实现调节其吸收系数的目的,进而改变环形波导处的传输系数,最终实现调制器从临界耦合状态到非临界耦合状态的转换,形成开关路。模拟表明,它的消光比能够达到44 dB。此外,该调制器的开关电压以及比特能耗最低分别能达到1.2V和10~30 fJ /bit,同时它的理论带宽可达到100 GHz。

3.3垂直透射式石墨烯结构光调制器

垂直透射式石墨烯结构光调制器适用于需要低插入损耗、自由空间的应用场合,比如高Q 值激光谐振腔中的振幅调制。

2012年Lee等首次制备出基于单层石墨烯的反射式平面调制器,如下图所示:

图中的银镜既充当背电极,也作为反射面。测试结果显示,该器件的 3dB 带宽能够达到154MHz。如下图:

此外,它的有源面积大于7850 μm^2,这一特性令其有可能应用到激光器和有源干涉仪等光电器件上。

Polat等提出了另外一种垂直入射式调制器。如下图:

他们将石墨烯分别转移到两个石英基底上,并面对面放在一起,之后用电解质填充石墨烯间的空隙,最终形成一个超级电容器结构。在两端石墨烯上加电压,调节其费米能级,实现光学信号的调制。为避免单层石墨烯调制深度小这一问题,采用多层石墨烯以及反射式结构增强其与光的相

互作用,最终获得超宽的光学带宽以

及较高的调制效率。

限制石墨烯光调制器应用一主要的原因是受电阻电容时间常数的限制,石墨烯光调制器中的串联电阻还比较大,其中大部分电阻来源于石墨烯与电极的接触电阻。

目前,基于石墨烯的光调制器虽已取得重大进展,然而仍面临调制深度小(开关比小)、插入损耗大和能量消耗大等问题,要实现在光互联技术中的实际应用仍有很长路要走。

4、基于石墨烯的光探测器

4.1基于石墨烯的超快、宽波段光探测器

作为一种典型的低维形态碳质材料,石墨烯兼具超快的载流子迁移率,零带隙结构,宽带光吸收的优异特性,使其作为活性层应用到光探测器中可具有超越其他半导体探测器的显著优势。

2010年,Mueller及其团队采用非对称电极结构取代了原有的对称电极结构,增强了内建电场对载流子的分离作用器件响应度得到很大的提高,并且可工作在10 Gbit/s下,通过实验证实了石墨烯光探测器在高速光通信领域的巨大应用潜力。

石墨烯的零带隙结构导致其作为光电响应材料有不可忽视的缺陷:光生载流子复合速度过快,不能有效分离,且暗电流过高,使得石墨烯光探测器无法达到很高的响应度以及量子效率。除此之外,单层石墨烯过低的光吸收系数也是限制器件性能提高的主要因素。针对这些问题,研究者们尝试了等离子体增强、共振腔增强和异质结构复合等方法,以期能够提高石墨烯光探测器的性能。

4.2等离子体增强的石墨烯光探测器

将金属纳米颗粒耦合到石墨烯表面,通过这种纳米结构的表面等离子体效应可以将吸收的光能转化为等离子共振,从而增强局域电场,而这种局域场在促进石墨烯内部光生载流子的产生、分离和传输等方面起到了重要作用。通过改变纳米结构的构型,可实现对特定波长入射光信号的选择性响应。

纳米等离子体结构增强器件光电响应的机制主要分为两种:其中一种机制是纳米结构中产生的热载流子可以通过等离子体弛豫传输到石墨烯导带中,从而增加其载流子浓度;另一种机制则是通过纳米结构的等离子近场效应直接引发石墨烯内部电子的激发和跃迁,从而增大光电流信号。

4.3 微腔石墨烯光探测器

石墨烯较弱的光吸收能力是阻碍石墨烯光探测器效率提高的主要原因之一。利用光学共振腔增强石墨烯对光的吸收是一种较为有效的方法。

2012年,Engel等首次将石墨烯晶体管与平面光学微腔进行整片集成。他们发现,与不使用光学微腔时相比,光探测器的光电流增强了20倍,这是由于光学微腔的光学限域效应可有效增强其内部介质对特定波段光的吸收。此外,他们还发现光学微腔可以有效地调控集成在其内部的石墨烯器件的电子传输性能,进而调控器件的光电流。

4.4 波导型石墨烯光探测器

近年来,硅基光电子器件由于本身的一些材料属性,如硅具有不可调的间接带隙,弱电光调制效应特点,使得纯硅光电子器件在实际应用上面临着一些技术瓶颈。石墨烯以其优异的光电特性展露出巨大的应用潜力。将石墨烯与硅基光子器件进行集成来制备光探测器件,目前已取得了显著成果。

2013年,《Nature Photonics》杂志同一期报道了3个独立研究团队

在石墨烯-硅波导集成光探测器方面取得的最新研究进展。他制备的器件具有类似的基本结构,如下图:

(a)

(b)

这种结构的主要特点在于:波导的作用是限制和传播光信号的瞬逝电场,电场在传播过程中会不断激发石墨烯中光载流子和热载流子的产生。基于这种结构的石墨烯光探测器具有能和CMOS工艺兼容的优势,且可探测信号的波长从可见至中红外波段。

上述表明石墨烯-硅波导集成的光探测器在高速光通信领域具有较高的应用价值。

5、石墨烯在激光器上的应用

超短脉冲激光器的实现主要有调Q和锁模两种方法,调Q方法可以输出脉冲宽度在微秒级和纳秒级脉冲,具有脉冲能量极高的特点。锁模技术产生的脉冲一般为皮秒和飞秒级,峰值功率更高。调Q和锁模技术的实现都有主动和被动两种方式。相对而言,被动锁模和被动调Q方法,由于不需要外加电场或光场调制,只需要在激光腔内插入非线性光学元器件,也就是所谓的可饱和吸收体即可实现,因此更加方便高效,易于实现。2009年,第一个基于石墨烯可饱和吸收体的脉冲激光器问世,到目前为止,基于石墨烯可饱和吸收体的激光器研究已取得较大进展。

5.1基于石墨烯的锁模光纤激光器应用

光纤激光器以其优异的光束质量、小型化和集约化的器件结构、易散热、易整合到光纤通信系统中等众多优点,日益成为科研和生产中的重要光源选择。

将石墨烯可饱和吸收体整合到激光腔中的途径有很多,最普遍使用的是三明治结构,即通过将石墨烯转移到FC/PC光纤接头端面上,通过连接器将其与另一FC/PC光纤接头串联,从而整合到激光腔中。如下图:

在这种方法中,石墨烯可饱和吸收体是垂直于光路放置的,这要求样品有很高的热损伤阈值,在处理高功率脉冲时,过高的功率会很容易将石墨烯击穿。为解决上述问题,科学家们提出了石墨烯耦合到光纤激光腔中的不同方法,包括使用D型光纤或者锥形光纤侧面耦合瞬时场的石墨烯可饱和吸收体、填充了石墨烯的中空光纤可饱和吸收体以及光子晶体光纤中环绕石墨烯形成瞬逝波锁模的可饱和吸收体。

目前,大量基于石墨烯锁模的光纤激光器已被研制出来。

5.2基于石墨烯的调 Q 光纤激光器应用

通过调Q技术,光脉冲的宽度可压到ns量级,峰值功率可达到 MW

量级。相比于光纤锁模技术,通过光纤激光器调Q技术,可产生更大能量的短脉冲。石墨烯具有可观的调制深度以及宽波段工作的特性,完全满足制作调Q器件的要求。

目前1、1.5、2μm乃至2.78μm 的石墨烯调Q光纤激光器均已被报道。同时,波长可调谐的石墨烯调Q 光纤激光器也已构建成功,其最大调谐范围达到50nm。随着研究的深入,石墨烯调Q光纤激光器的性能也在不断提高。Liu等通过将氧化石墨烯沉积在一个锥形光纤上,随后固定在一个U型底座上,将其作为一个高能量饱和吸收体放置于一个线性激光腔体内,采用双包层掺铥光纤作为增益介质,从而实现了高功率的脉冲输出。

5.3石墨烯在固体激光器上的应用

2010年,Tan等开展了石墨烯锁模固体激光器的研究,通过将石墨烯沉积到石英衬底上并作为饱和吸收体置入到固体Nd:YAG激光器中,在1064nm处获得了脉冲宽度为4ps的锁模脉冲。

2011年,Xu等采用旋涂的方法将大尺寸的多层石墨烯片沉积到数层SiO2/TiO2/BK7玻璃衬底上,形成饱和吸收镜,置入Nd:GdVO4固体激光

器中,在1065nm处获得了脉冲宽度

为16ps的锁模脉冲。

2012年,Liu等使用氧化石墨烯对Tm:YAlO3激光器进行锁模,获得

了工作波长为2μm,平均输出功率为260mW的脉冲激光。Baek等将石墨烯固体激光器的工作波长延伸到800nm 波段,并取得了脉冲宽度小于70fs 的脉冲激光。

2013年,Cafiso等使用单层石墨烯对Cr:YAG激光器进行锁模,获得了工作波长为1.5μm,脉冲宽度为91fs,平均输出功率超过100mW的输出脉冲。

目前,石墨烯已被应用于Ti: Sapphire、Nd:KLu(WO4)2、Nd:YAG、Nd:GdVO4、Nd:GdVO4、Cr:YAG、Cr4 +:forsterite、Tm:LSO、Cr:ZnS等固体激光器中,其输出脉冲的波长覆盖范围广,最大输出功率达到瓦级,输出脉宽小于100fs,这些参数显示了石墨烯应用于固体激光器领域所取得的巨大成功。

随着制作工艺以及性能的不断优化,基于石墨烯的激光器的指标也不断提高,集中体现为:工作波长更长输出功率更大、脉冲宽度更短、重复率更高。未来一个可能的途径是,将石墨烯和一些二维材料相结合,构建异质结构,优势互补,从而得到更好的脉冲输出。

鉴于短短几年内石墨烯在超快激光器领域取得的成就,可以看出石墨烯在这个领域的巨大潜力。

6、石墨烯的表面等离子体

6.1石墨烯表面等离子体的激发机制

自2004年石墨烯被发现后,理论上早就预言了表面等离子体的存在。石墨烯的表面等离子体可以视为其表面电子的集体振荡,通过与其它能量的耦合获得一定的能量和动量从而在材料表面进行传播。与传统的金属材料相比,石墨烯的表面等离子体具有低损耗、高局域性和宽波段激发等优点,并且可以利用栅极电压或化学掺杂的方法调节在石墨烯表面传播的等离子体。

对于石墨烯的表面等离子体来说,其色散关系非常重要。研究者们通过构建各种理论模型和实验方法对

其进行描述,其中包括

◆半经典模型;

◆随机相变近似;

◆紧束缚近似;

◆第一性原理计算;

◆电子能量损失谱实验;

等。其中半经典模型和随机相变近似是最常用的理论分析模型,而电子能量损失谱实验是最普遍的实验研究方法。

实验上利用角分辨光电子能谱研究在SiC(0001)表面外延生长的石墨烯,证明了石墨烯的表面等离子体与电子、声子的强烈耦合作用;石墨烯的等离子体与光子耦合形成表面等离子体激元,利用近场光学显微镜已观测到了它的传播和局域性,并发现其传播波长、共振强度等参数随入射光波长、基底的介电常数以及栅极电压而变化。另外,石墨烯的微纳米带、纳米盘等几何结构甚至其本身的点缺陷、线缺陷等都可以激发表面等离子体激元。

6.2石墨烯等离子体的实空间观测

利用多种直接或间接的方式可获取二维电子体系中等离子体的信息,包括电子能量损失谱、非弹性光散射、角分辨光电子能谱和扫描隧道光谱等。其中,电子能量损失谱可以探测出材料电子结构的改变,并且具有很高的空间分辨率。

墨烯的等离子体还可以与光子耦合。2011年,Wang等利用标准的光刻技术将化学气相沉积法生长的石墨烯刻蚀成2.5×2.5mm2的微米带阵列探究了石墨烯中等离子体和光的耦合作用,并指出石墨烯有望用作太赫兹超材料。

与石墨烯的微、纳米带相比,石墨烯的微、纳米盘的等离子体与光的相互作用不依赖于光的偏振性,因此可以利用这个特点制作探测器和滤波器。上述研究工作说明石墨烯表面等离子体的传播特性以及强的光场局域性,有助于纳米级光电器件的设计和微型化。与不可调节的金属结构相比石墨烯的等离子波长非常小,并且可以通过栅极电压对其进行调控。因此石墨烯是红外表面等离子体领域的理想材料。

目前基于石墨烯等离子体的应用有如下:

◆基于石墨烯等离子体的太赫

兹激光器和天线;

◆基于石墨烯等离子体的波

导、调制器和偏振器;

综上所述,利用石墨烯的等离子体特性可以成功制备出多种有源/无

源的光电子器件。同时,由于石墨烯等离子体的强局域性、宽波段激发和可调谐性,太赫兹光探测器是一个非常重要的实际应用方向。

7、石墨烯在有机发光二极管中的应用

有机发光二极管(OLED) 是一种

基于透明导电薄膜的亮度高、视角全、结构简单、相对成熟的电致发光器件。随着石墨烯优异导电特性的发现,石墨烯作为透明导电电极在OLED 中的应用也成为研究人员关注热点。

OLED的结构一般是三明治结构,即在金属阴极和透明阳极之间通过蒸镀或旋涂一层或多层有机薄膜。在电极间施加电压后,由阳极注入的空穴和阴极注入的电子在发光层相互作用形成受激的激子,激子从激发态回到基态时,其能量差将以光子的形式释放出来,发光层薄膜就会发光。

2010年,Wu等报道了利用溶液

法制备石墨烯透明导电电极代替氧化铟锡电极在有机发光二极管领域的应用。如下图:

结果发现,石墨烯与 ITO 作为阳极的有机发光二极管在同一波矢处的发光强度相似,从而可以证明石墨烯有能力代替ITO作为有机发光二极管的阳极材料。

8、石墨烯的未来展望

由于石墨烯优异的光学特性,尤其是其宽带光响应和可调的动态光电导率,早在2012年就有提出构筑基于石墨烯的宽带光通信系统回路芯片的设想。如下图:

随着石墨烯制备工艺和转移技术的优化,尤其是硅衬底上直接制备石墨烯的生长技术的发展及完善,石墨烯与硅的混合光电子器件或回路系统将具有巨大的实际应用价值。

但是,在实现石墨烯光电子器件的商用化应用之前,还有很多基础性的科学问题迫切需要解决。要想使石墨烯材料产品化,真正为人们所用,必须能够得到大面积、高质量的石墨烯。虽然科学家已经在此方面做了很多努力 ,但仍无法实现其工业生产 ,因而 ,关于石墨烯的合成方法研究仍是一个研究热点。此外,科学家们将更多关注如何通过化学的方法对其进行修饰,进一步提高其各方面性能,促进器件化、工业化、商品化进程。

9、参考文献

1.Fei Z,Rodin A,Andreev G,

et al.Gate-tuning of

grapheneplasmons revealed by

infrared nano-imaging[J].

Nature,2012,487(7405):82-

85.

2.Choi S Y,Cho D K,Song Y W,

et al.Graphene-filled hollow

optical fiber saturable

absorber for efficient

soliton fiber laser mode-

locking[J].Optics Express,

2012,20(5):5652-5657.

3.Liu M,Yin X B,Zhang X

Double-Layer graphene optical

modulator[J].Nano Lett,

2012,12(3):1482-1485.

4.李绍娟,甘胜,沐浩然,徐庆

阳,乔虹,李鹏飞,薛运周,鲍

桥梁等.石墨烯光电子器件的应

用研究进展[J].苏州大学功

能纳米与软物质研究院.2014.10.

5.Bao Q,Loh K P.Graphene

photonics,plasmonics,and

broadband optoelectronic

devices[J].ACS Nano,2012,

6(5):3677-3694.

6.李兴鳌,任明伟,任睿毅,苏丹

杨建平等.

南京邮电大学材料科

学与工程学院.2012.11第26卷

第11期材料导报A:综述篇. 7.Fang Z,Liu Z,Wang Y,et

al.Graphene-antenna sandwich

photodetector[J].Nano

Lett,2012,12(7):3808-3813.

8.Lu Z,Zhao W.Nanoscale

electro-optic modulators

based on

graphene-slot waveguides[J]

JOSA B,2012,29(6),1490-

1496.

石墨烯的制备方法与应用

石墨烯的制备方法与应用 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的热潮。关键字: 石墨烯, 制备, 应用,氧化石墨烯,传感器 石墨烯的定义 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。 石墨烯的结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形)。 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯; 可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。 每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。 每个碳原子贡献一个多余p电子,垂直于graphene平面,形成未成键的π电子——良好的导电性。 石墨烯的性能 最薄——只有一个原子厚 强度最高——美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。 没有能隙——良好的半导体 良好的导热性 热稳定性——优于石墨 较大的比表面积 优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予

石墨烯量子点调研报告

石墨烯调研报告(石墨烯量子点) 零维的石墨烯量子点(grapheme quantum dots, GQDs),由于其尺寸在10nm以下,同二维的石墨烯纳米片和一维的石墨烯纳米带相比,表现出更强的量子限域效应和边界效应,因此,在许多领域如太阳能光电器件,生物医药,发光二极管和传感器等有着更加诱人的应用前景。 GQDs的制备 GQDs具有特殊的结构和独特的光学性质,即有量子点的光学性质又有氧化石墨烯特殊的结构特征。GQDs的粒径大多在10 nm左右,厚度只有0.5到1.0 nm,表面含有羟基、羰基、羧基基团,使得其具有良好的水溶性。 GQDs的制备方法有自上而下法(top-down)与自下而上法(bottom-up)两种。top-down 法指将大片的石墨烯母体氧化切割成尺寸较小的石墨烯纳米片,经进一步剪切成GODs,主要有水热法、电化学法和化学剥离碳纤维法。 水热法是制备GQDs最为常见的一种方法,先将氧化石墨烯在氮气保护下热还原为GNSs,接着将GNSs置于混酸(混酸体积比VH2SO4/VHNO3 =1:3)中超声氧化,再将氧化的GNSs置于高压反应釜中200℃热切割。反应机理如图3所示,Pan等采用该方法化学切割石墨烯制备GQDs,其径主要分布在5-14 nm,并发现量子点在紫外区有较强光学吸收,吸收峰尾部扩展到可见区。光致发光光谱一般是宽峰并且与激发波长有关,当激发波长从300到407 nm变化,发射峰向长波方向移动,激发波长为60nm时,量子点发出明亮的蓝色光,此时发射峰最强。 图3. 水热法制备GQDs反应机理 Fig. 3 mechanism for the preparation of GQDs by hydrothermal method Jin等采用两步法,先用水热法制备出GQDs,再将聚乙二醇二胺修饰到GQDs 上。该法制备的胺功能化的石墨烯量子点可通过功能化物的迁移效应有效地调节石墨烯量子点的光致发光性能。

石墨烯在催化方面的应用

石墨烯在催化方面的应用 1、石墨烯纳米光催化复合材料的研究 纳米材料被认为是“二十一世纪最有前途的材料”。石墨烯是一种由单层碳原子紧密排列成的二维蜂窝状晶格结构的纳米材料,由于它具有特殊的纳米结构以及优异的性能,石墨烯的复合材料已在电子学、光学、磁学、生物医学、催化等诸多领域显示出了巨大的应用潜能。光催化技术具有工艺简单,能耗低,操作条件容易控制和降解彻底的特点,被认为是具有良好发展前景的环保新技术。以光催化剂/石墨烯纳米复合材料为研究对象,通过不同的复合工艺,制备了三种石墨烯纳米复合材料。 1)以天然鳞片石墨为原料,采用Hummers法制备氧化石墨,并用热剥离成石墨烯,或者利用超声波分散剥离为氧化石墨烯,再化学还原成石墨烯。 2)二氧化钛/石墨烯纳米复合材料,二氧化钛和石墨烯复合效果较好。 3)以氧化石墨烯为基体,醋酸锌为锌源,采用溶胶法制备了氧化锌/石墨烯纳米复合材料。 研究发现了石墨烯的光催化性能,结果表明石墨烯/氧化锌有较高的催化效率,可以测定复合材料的荧光效应。 2、石墨烯负载Pt催化剂的催化氧化发光性能 Pt纳米颗粒可以很好地分散在石墨烯表面,因此合成了石墨

烯负载Pt纳米颗粒的Pt/石墨烯催化剂.并有较快的催化反应速率,Pt颗粒越小催化发光强度越大。当不同Pt负载量(0.4%-1.6%(w,质量分数)的催化剂作用于40%(φ,体积分数)以下浓度的CO/空气体系时,产生的催化发光强度均与CO浓度成正比。该催化剂在一定条件下,不但对CO氧化有较好的催化发光性能,还对乙醚、无水甲醇和甲苯有不同程度的催化氧化发光活性;但二氧化碳、甲醛、戊二醛、丙酮、乙酸乙酯、三氯甲烷、水蒸气均无响应信号。 3、与传统的Pd/Vulcan XC-72相比,Pd/石墨烯催化剂对碱性介质中乙醇电氧化的催化活性有了极大的提高,石墨烯-SnO2复合物(SnO2-GNS)可以负载高分散的Pd作为纳米颗粒催化剂,电化学测试表明,与Pd/石墨烯(Pd/GNS)相比,Pd/SnO2-GNS 催化剂对乙醇电氧化的催化活性有了很大的提高。当加入的前驱盐SnCl2·2H2O与氧化石墨的质量比为1:2时,Pd/SnO2-GNS催化剂获得最好的催化活性。 4、用石墨烯(G)代替Vulcan XC-72炭(XC)作Ir的载体制备石墨烯载Ir(Ir/G)催化剂.电化学的测量结果表明,Ir/G催化剂对氨氧化的电催化性能优于XC炭载Ir(Ir/XC)催化剂。 5、利用溶胶-凝胶法原位制备了二氧化钛/石墨烯(TiO2-GE)复合光催化剂,研究了纯TiO2以及不同方法制备的TiO2-GE复合光催化剂对亚甲基蓝及罗丹明B光催化降解性能.结果表明:石墨烯的引入提高了TiO2的光催活性,这主要是得益于石墨烯优

石墨烯在轮胎橡胶中应用技术的进展解析

石墨烯在轮胎橡胶中应用技术的进展解析 双钱集团上海轮胎研究所有限公司苏博李玉庭 一、简介 石墨烯(Graphene) 是一种由碳原子构成的单层片状结构的新材料,具有非常好的导热性和电导性,以及高强度、超轻薄、超大比表面积等特性,作为填充体系应用于胎面胶能够从三个方面提高胎面胶性能,分别是导电性、导热性和机械性能,其中,能够有效提高胎面胶的强度、耐磨性、抓地性、耐久性等性能,并能解决白炭黑静电积累问题以及胎面胶热量积累问题,从而可以很好地平衡传统填充体系无法克服的性能缺陷。 二、全球生产石墨烯的企业 国外生产情况

国内生产情况 目前,我国石墨烯产业已经有超过 50 家的制备及相关应用开发企业,目前市场竞争也主要集中在石墨烯规模化制备技术以及与下游商业化应用对接两方面。经过前期的积累,国内大型石墨烯企业(年产石墨烯粉体50吨以上)已经初步掌握了

国际相对主流的石墨烯制备方法,大部分指标足以满足低端应用需求。此外,少数企业已经具备了规模化生产的优势,产能扩建也在进行之中。

二、国内发展情况 石墨烯应用到轮胎生产中,可以使轮胎变得更加耐磨、防穿刺,而且能大大提高使用寿命。正因为具有这样的特性,一些研究机构开始进行这方面的研究和应用。四川大学高分子材料工程国家重点实验室,已经自主研发出世界首个石墨烯橡胶轮胎。 双星全球研发中心暨石墨烯轮胎中心实验室奠基仪式在青岛西海岸新区举行。其中,石墨烯轮胎中心实验室将是全国首个石墨烯轮胎实验室,目标是实现高端石墨烯轮胎的超前研发和产业化,引领世界轮胎研发制造领域的新一轮革命。据介绍,石墨烯是从石墨材料中剥离出来、是目前强度最高、韧性最好、质量最轻、透光率最高、导电性能最好的材料,被称为“新材料之王”,应用到轮胎可以提升轮胎的耐磨、抗刺扎、降低肩空等性能,使其变成超级轮胎。项目总占地面积约120亩,建筑面积约16万平方米,总投资10亿元。其中,一期全球研发中心项目占地面积25亩,建筑面积4万平方米,计划于2016年年底投入运行。 2016年9月14日,世界首条石墨烯导静电轮胎智能化生产线,在青岛森麒麟轮胎股份有限公司正式投产运行,森麒麟-华高墨烯合作生产世界首条石墨烯导静电轮胎成功下线。此次下线也标志着全球首家石墨烯导静电轮胎产业化基地正式落地,森麒麟与华高墨烯就石墨烯导静电轮胎合作集成创新向纵深发展。森麒麟采用华高墨烯提供的专利技术和石墨烯“华高2#”进行石墨烯导静电轮胎的合作生产。据介绍,石墨烯导静电轮胎采用石墨烯与胶质复合改性制备技术,克服了现有拖曳式汽车防静电技术和装备打火花、易磨短、易脱落、不能可靠导出车体静电等缺点,通过具有导静电功能的轮胎胎面接地,实现全时段、连续、可靠地导出车体静电。石墨烯导静电轮胎,其核心功能是无需额外增加车载设备导出车体静电,无安全隐患,能有效避免汽车静电对司乘人员造成的伤害,杜绝汽车火灾和爆燃,特别适用于易燃易爆品运输车、电子设备专用车、军﹙警﹚用等特种车辆。石墨烯导静电轮胎产品采用华高墨烯专有技术制造,其导电率可达到10-5S/m,能保证可靠导

石墨烯的应用领域

第二章石墨烯应用领域 石墨烯因其独特的电学性能、力学性能、热性能、光学性能和高比表面积,近年来受到化学、物理、材料、能源、环境等领域的极大重视,应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。具体在五个应用领域:一是储能领域。石墨烯可用于制造超级电容器、超级锂电池等。二是光电器件领域。石墨烯可用于制造太阳能电池、晶体管、电脑芯片、触摸屏、电子纸等。三是材料领域。石墨烯可作为新的添加剂,用于制造新型涂料以及制作防静电材料。四是生物医药领域。石墨烯良好的阻隔性能和生物相容性,可用于药物载体、生物诊断、荧光成像、生物监测等。五是散热领域。石墨烯散热薄膜可广泛应用于超薄大功耗电子产品,比如当前全球热销的智能手机、IPAD 电脑、半导体照明和液晶电视等。 中国科学院预计,到2024年前后,石墨烯器件有望替代互补金属氧化物半导体(CMOS)器件,在纳米电子器件、光电化学电池、超轻型飞机材料等研究领域得到应用。目前,全球范围内仅电子行业每年需消耗大约2500吨半导体晶硅,纯石墨烯的市场价格约为人民币1000元/g ,其若能替代晶硅市场份额的10%,就可以获得5000亿元以上的经济利益;全球每年对负极材料的需求量在2.5万吨以上,并保持了20%以上的增长,石墨烯若能作为负极材料获得锂离子电池市场份额的10%,就可以获得2500吨的市场规模。可见,石墨烯具有广阔的应用空间和巨大的经济效益。

正是在这一背景下,目前国内外对石墨烯技术的应用研究如火如荼,具体应用如下: 2.1 石墨烯锂离子电池 锂离子电池具有容量大、循环寿命长、无记忆性等优点,目前已成为全球消费类电子产品的首选电池以及新能源汽车的主流电池。高能量密度、快速充电是锂电池产品发展的必然趋势,在正极材料中添加导电剂是一种有效改善锂电性能的途径,可大大增加正负极的导电性能、提高电池体积能量密度、降低电阻,增加锂离子脱嵌及嵌入速度,显著提升电池的倍率充放电等性能,提高电动车的快充性能。 所谓石墨烯电池并非整个电池都用石墨烯材料制作,而是在电池的电

石墨烯量子点的制备方法

石墨烯量子点的制备、表征与应用研究 氧化石墨(GO)的制备 本文采用改进的Hummers法对天然鳞片石墨进行氧化处理制备氧化石墨(GO),[20, 21] 具体如下:在干燥的三颈烧瓶中加入46 mL 98%浓硫酸,低温冷却至0-4℃。强力搅拌下加入2 g天然鳞片石墨和1 g硝酸钠,且控制水浴温度至4℃以下1小时。随后分几次缓慢加入6 g高锰酸钾,继续搅拌反应1 h,溶液呈墨绿色,然后将锥形瓶置于35℃的恒温水浴中,继续搅拌反应2 h,反应结束后搅拌下加入100 mL二次蒸馏水,控制温度在90℃继续搅拌1 h,用150 mL二次蒸馏水稀释反应液,再加入10 mL 30%双氧水,搅拌至溶液呈金黄色。趁热抽滤,用5%盐酸和去离子水充分洗涤棕黄色沉淀物至pH值≈7。将棕黄色沉淀物放置在60℃的烘箱中干燥12 h,得氧化石墨烯固体,保存备用。 还原石墨烯的制备 化学还原石墨烯是用水合肼还原氧化石墨烯制得。称取4.2.2得到的氧化石墨烯50 mg置于100 mL圆底烧瓶中,加入二次蒸馏水至100 mL,超声约0.5 h 使其完全溶解。取50 mL氧化石墨烯分散液于250 mL烧杯中,然后加入50 μL 35%水合肼溶液和350 μL浓氨水,混合均匀,剧烈搅拌几分钟。置于95℃水浴中反应1 h,溶液慢慢由棕褐色变为黑色。待溶液冷却至室温时,用0.22 μm的滤膜进行抽滤,将滤得的沉淀物于60℃干燥12 h,即得到所需的还原石墨烯薄膜。 石墨烯量子点(GQDs)的制备 石墨烯量子点(GQDs)的电化学制备是在0.01 mol L-1磷酸盐缓冲溶液(PBS)中进行的。用滴管向缓冲溶液中滴加两滴4 mg/mL巯基丙氨酸溶液作为分散剂,在±0.3v电压内以0.5 v s-1的扫描速率进行循环伏安(CV)扫描。由以上制得的石墨烯薄膜(5 mm×10 mm)作工作电极,Pt丝作辅助电极,甘汞电极作参比电极。过程中有石墨烯粒子从薄膜上剥落进入溶液中,溶液由无色变为黄色。将黄色溶液进一步用透析袋透析(透析袋截留分子量:3000道尔顿,袋外初始水体积为500 mL),每天换两次水,透析三天,得到石墨烯量子点水溶液。

石墨烯在环氧树脂中的应用

石墨烯在环氧树脂中的应用 石墨烯的简介 石墨是碳单质的同素异形体,碳元素的神奇的六号元素,碳单质同素异形体从最硬到极软,从全吸收到全透光,绝缘体到半导体到导体,绝热到良导热,而石墨烯就是单原子层的石墨。 石墨烯增强树脂机理 石墨烯具有很大的表比面积,加上石墨烯的分子级的分散,可与聚合物之间形成很强的界面作用,羟基等官能团和制作过程均会使石墨烯变成褶皱的状态,这些纳米级的不平整可增强石墨烯与聚合物链之间的相互作用。官能团化石墨烯表面含有羟基,羧基等化学基团,可与极性高分子如聚甲基丙烯酸甲酯形成较强的氢键。 石墨烯在环氧树脂中的应用——导电性 改性的石墨烯于环氧树脂复合,加入2%的改性石墨烯,环氧复合材料的储能模量增大113%,加入4%是,强度增大38%。纯EP树脂的电阻为10^17欧姆.厘米,添加氧化石墨烯后电阻下降6.5个数量级。 石墨烯在环氧树脂中的应用——导热性 将碳纳米管、石墨烯加到环氧树脂中,当加入20 vol% CNTs 20 vol%

GNPs, 复合材料的导热系数可达7.3W/mK. 石墨烯在环氧树脂中的应用——阻燃性 当加入5wt%有机功能化氧化石墨烯时阻燃值提高23.7%,加入5wt%的石墨烯时阻燃性能提高43.9%。 石墨烯导热塑料的优势 石墨烯导热塑料容易加工、成型耗费能源少、密度适中做出产品轻巧、可降解对环境污染小、加工可自动化高效、颜色丰富任意调整、仓库运输成本大量降低、不易碰撞变形、可绝缘不易造成安全隐患,散热均匀。 环氧树脂的种类 1. 缩水甘油醚型树脂缩水 2.缩水甘油脂型树脂 3.缩水甘油胺型树脂

4.脂环族环氧化合物 5.线状脂肪族环氧化合物。 环氧树脂的用途 环氧树脂一般和添加物同时使用,以获得应用价值。添加物可按不同用途加以选择,常用添加物有以下几类:(1)固化剂;(2)改性剂;(3)填料;(4)稀释剂;(5)其它。 其中固化剂是必不可少的添加物,无论是作粘接剂、涂料、浇注料都需添加固化剂,否则环氧树脂不能固化。 由于用途性能要求各不相同,对环氧树脂及固化剂、改性剂、填料、稀释剂等添加物也有不同的要求。

基于石墨烯量子点的传感器在分析检测中的应用分析

基于石墨烯量子点的传感器在分析检测中的应用 姓名李丽娟学号 S131110042 摘要:石墨烯量子点优良的物理化学性质及石墨烯量子点边缘的羧基或者氨基基团使其易与多种有机的,聚合的,无机的或者生物种类相互作用。本文主要介绍了石墨烯量子点的制备方法以及基于(类)石墨烯量子点、(类)石墨烯材料的荧光传感器在分析检测中的应用,并详细介绍了分析检测的原理,以期为石墨烯量子点在分析检测中的应用提供相关参考与依据。 关键词:石墨烯量子点荧光检测 1 引言 最近,石墨烯获得了广泛的关注由于其独特的电子光学机械以及热学性质。大量基于石墨烯的生物传感器被开发来检测核酸,蛋白质,毒素和生物分子。石墨烯片层的形态包括它们的大小,形状以及厚度都可以有效的决定它们的性质。例如,石墨烯片层侧面尺寸小于100nm时被称为石墨烯量子点(GQDs),其许多新的化学和物理性质都是由于量子尺寸效应和边缘效应而引起的。GQDs毒性小,稳定性高,溶解性好,光致发旋光性质稳定,生物兼容性较好,使得它们在光电伏打器械,生物传感及成像上有很大的应用前景。本文着重介绍了石墨烯量子点的制备方法以及近年来基于石墨烯量子点与分析物发生作用的不同原理,如荧光共振能量转移,化学共振能量转移及石墨烯量子点表面性质的变化等来检测分析物质,并做出了展望。 2 石墨烯量子点的制备 Fei Liu等[1]成功地用化学剥离石墨纳米颗粒的方法合成了高度均匀的GQDs和GOQDs(氧化石墨烯量子点),如图1所示。该方法获得了高产率的直径在4nm 之内的单层和圆形的GQDs和GOQDs。GOQDs的表面富含各种含氧官能团,GQDs有纯粹的sp2碳晶体结构没有含氧的缺陷,因此提供了一种理想的平台来深入研究纳米尺寸的石墨烯的光致发光的起源。通过描述GQDs和GOQDs的发旋光性质,说明了GOQDs的绿色光致发光来自于含氧官能团的缺陷状态,而GQDs的蓝色发光是由高结晶结构中的内禀态所主导的。此外,GQDs中的蓝色发射显示了一个快速的复合寿命相比于GOQDs中的绿色发射的复合寿命。相比

石墨烯在涂料领域中的应用探析

石墨烯在涂料领域中的应用探析 自从石墨烯诞生之日起,就受到世界范围内的高度关注。石墨烯作为碳单质的第三种形式,以其优异的物理性能、化学性能、电性能和热力学性能,在涂料行业一经使用,就有着十分突出的优异表现。文章围绕石墨烯在涂料领域的相关应用进行探讨,主要介绍了石墨烯在导电涂料、防腐涂料、阻燃涂料、导热涂料和高强度涂料方面的应用情况。 标签:石墨烯;涂料;导电;防腐 引言 使用工具是人类区别于其他动物的根本特征。人类的历史本质上是人类使用工具改造自然、认知世界的过程。优质的材料是工具发展的主要动力之一。许多次人类科学乃至社会上的重大进步,都是与新材料的发现、发明密切相关。石墨烯是21世纪重要的新型材料,其由多层片状结构组成,每层结构都是由碳原子经过sp2杂化轨道组成的六角型呈蜂巢晶格平面薄膜。石墨烯的理论已经提出了一段时间,但一直到2004年英国物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,才在实验室中人工分离出石墨烯单体,从而证实了石墨烯的存在。两位学者也因此荣获2010年诺贝尔物理学奖。石墨烯是纳米材料中厚度最小、强度最大的种类。由于吸光率很低,只有 2.3%,所以外观几乎是完全透明的。石墨烯物理性能优异,导热性能比碳纳米管和金刚石还高,为5300W/m·K,室温环境下其电子迁移率大于15000cm2/vs,超过纳米碳管或硅晶体。石墨烯是当前世界上已知材料中导电性最好的材料,电阻率仅为10-8Ω·cm,低于铜或银。综上所述,石墨烯兼具比表面积大、导电性好、化学稳定性强、力学性能和导热性能优异等优点,一经问世,就受到世界各国的广泛关注。现阶段我国已经初步形成石墨烯工业化生产。石墨烯应用范围十分广阔,涂料是目前石墨烯众多应用领域中的一个重要组成部分。凭借各种优越性能,石墨烯在导电涂料、防腐涂料、阻燃涂料、导热涂料和高强度涂料等方面都有着非常深远的应用前景。下面就对石墨烯在涂料领域中的主要应用进行一下简要介绍与分析。 1 石墨烯在导电涂料领域的应用 1.1 汽车静电喷涂浅色底漆 汽车是重要的工业产品。作为汽车构成系统中的有机组成部分,汽车塑件具有很好的市场空间。当前汽车塑件涂装普遍采用常规空气喷涂方式作业。这种喷漆工业是以喷枪为工具,使用压缩空气为载体进行生产。在生产过程中,大量涂料以雾化形式散逸到空气中,不仅成本昂贵,而且会造成较为严重的空气污染。基于这个原因,汽车及涂料企业一直把更具有经济性、环保性的新型涂料作为汽车涂料的主要开发目标。其中,静电喷涂就是其中一個重要方向。静电喷涂以电场为涂装载体,不但涂料利用效率高,成本相对降低,有利于环境保护,还具有生产速度快,装饰性能高等优点。汽车组成构件中有很大一部分,比如说汽车车

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯在生活中的应用

关于大堂经理、保安上线参加营销活动的通知 各网点: 为推动我行电子银行业务发展,提升手机银行开办数量,增加柜面替代率,充分发挥大堂经理及保安的营销能动性,形成大堂内整体营销氛围,现在全行范围内开展“最强营销达人”贴片手机银行营销活动,活动分预赛和决赛两部分进行。现将预赛活动准备工作通知如下: 活动主题:狭路相逢勇者胜!不拼颜值,拼实力! 活动时间: 半决赛:2016年8月1日--2016年8月30日 决赛:时间待定 参与方式:预赛分“大堂经理组”和“保安组”两组进行,参加人员共105人,要求参赛人员(大堂经理及保安)在7月27日下班前,登录‘赤峰松山农商银行’微信公众号,回复【报名】进入活动界面(点击“点我报名”)填写个人基本信息,并上传本人近期生活照片一张。本期活动从每组中各竞选出20名优秀营销达人。 活动要求:凡营销一户贴膜卡手机银行方可用客户微信号为自己投一票,认填写客户信息,以便核查。如客户无微信,则使用本人微信号为其投票。但是客户自由投票,有权为其他参赛人员投

票。 活动奖励: 活动奖品:华为畅享5S手机、平衡车、小米盒子3、小米智能手环2、移动电源 奖励形式:所有参赛人员每人至少完成5户贴膜卡手机银行。总排名前40名有精美奖品。 注①:领取奖品的资格为双项考核:任务数量和排名。先看是否完成营销贴膜卡的任务数量,再看依次排名。 例如:李经理完成29户排名第三,则不可以领取一等奖奖品(任务数量没有完成,排名完成);王经理完成31户排名第四名,则领取平衡车一台(虽然完成任务数量,但是名次已靠后)。 注②:领取奖品按参赛人员总排名,但是进入决赛则为每组前20名。 考核办法:本次活动如有消极懈怠,不积极开展工作者将全行通报并且通知所在单位。没有达到活动要求的人员也将全行通报并且通知所在单位。如出现虚假、违规操作则取消本次参赛资格并

石墨烯产品及应用

石墨烯是已知的世上最薄、最坚硬的纳米材料,2004年问世,其发现者英国曼彻斯特大学安德烈-海姆教授于2010年获得诺贝尔物理学奖。石墨烯具有许多非凡的特性: --强度高,杨氏模量1TPa,抗拉强度130GP,是钢的100多倍。“利用单层石墨烯制作的吊床可以承载一只4kg的兔子”。如果重叠石墨烯薄片,使其厚度与食品保鲜膜相同的话,便可承载2吨重的汽车; --它几乎是完全透明的,只吸收2.3%的光; --导热系数高达5300W/m·K(铜400W/m·K); --常温下其电子迁移率超过2,00000cm2/V·s(硅1500 cm2/V·s); --电阻率只约1*10-8Ω·m,比铜(1.75*10-8Ω·m)更低,为世上电阻率最小的材料; --石墨烯可耐受1亿~2亿A/cm2的电流密度,这是铜耐受量的100倍左右。 正因为此,石墨烯或将成为可实现高速晶体管、高灵敏度传感器、激光器、触摸面板、蓄电池及高效太阳能电池等多种新一代器件的核心材料。 因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管。石墨烯电池充电快(几分钟),电容量大,重量轻,寿命长。一家西班牙公司已经开发出一款石墨烯电池,充电8分钟,行驶了1000公里。石墨烯还可以作为一种改性材料添加到树脂中,改善材料强度,导热性,导电性等。由于高透明性和高的导电性,石墨烯相比现有的I T O触摸屏,显示屏具备极大优势。 上海胜度机电科技有限公司提供真正纳米级高品质石墨烯材料。产品系列包括: 氧化石墨烯 氧化石墨烯 我们的产品呈棉絮状,疏松多孔,加入水中迅速溶解,可完全分散在水中。此外还可在酒精、DMF、T HF等多种其他溶剂中形成均匀稳定的分散液。产品表面含有丰富的含氧基团,不发生团聚,单层比可达99%以上。 产品应用: 1. 石墨烯制备,包括:氧化石墨烯薄膜和泡沫、石墨烯气凝胶; 2. 超级电容器、锂电池; 3. 纳米电子设备;传感和光学。 氧化石墨烯特性: 纯度 >99% 层数 1~10 单层比 >80% 颗粒度 1~5μm 厚度 0.8~1.2n m 外观棕黄色粉末 单层石墨烯分散液 单层石墨烯分散液 我们以实验室规模研发生产的单层氧化石墨烯分散液,性能优异,质量稳定,在不使用表面活性剂的情况下,产品可存放数月不变质。此外,我们也可根据客户不同需求,定制酒精、DMF、NM P等其他溶剂的单层氧化石墨烯分散液。 产品应用: 1. 石墨烯制备,包括:氧化石墨烯薄膜和泡沫、石墨烯气凝胶; 2. 超级电容器、锂电池; 3. 导电石墨烯薄膜、催化和能量储存。 单层氧化石墨烯分散液的特性: 浓度 1mg/m l直径?500n m 单层比 >99% 溶剂去离子水层间距0.8~1.2n m 颜色深棕色

石墨烯的制备及在橡胶中的应用

石墨烯的制备及在橡胶中的应用 姓名:罗鹏 班级:材料加工工程 学号:2015020066

1. 绪论 1.1 石墨烯的性能 石墨烯是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体,于2004年由英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫成功从石墨中分离出来,以此证实了它可以单独存在,他们这项成果也打破了在20世纪30年代,Peiers和Landau认为由于热力学不稳定性而不可能存在这种二维晶体的传统理论。 据陈莹莹等[1]报道,石墨烯独特的二维结构使它具备了许多特性,石墨烯的理论比表面积高达2.6×103 m2 /g,优异的导热性能3×103 W/( m·K),力学性能1.06×103 GPa,杨氏模量为1.0 TPa。在已知材料中,石墨烯具有最高的强度130 GPa,是钢的100多倍。石墨烯具有稳定的正六边形晶格结构使其具有优异的导电性,室温下的电子迁移率高达1.5×104 cm2 /( V·s),比目前使用的半导体材料锑化铟的最大迁移率高两倍,比商用硅片的最大迁移率高10倍。此外,石墨烯还具有很高的光透射率(可达97.7%)、室温量子隧道效应、反常量子霍尔效应。 1.2 石墨烯的制备方法 目前,伴随着对石墨烯越来越多的研究,同时也产生了一系列的制备方法。 1.机械剥离法:机械剥离法是最早制备石墨烯的一种方法。Novoselov 在首次发现石墨烯时就是使用的该方法。在实验中,首先将石墨片剥离出石墨,继而将石墨片的两面粘在一种特殊的胶带上,在撕开胶带的同时将石墨片分开。不断进行这样的机械力剥离操作,得到的石墨片越来越薄,最终得到的就是仅由一层碳原子构成的石墨烯,石墨烯层的尺寸为d≥3 nm,约100 μm 长,并且肉眼可见。机械剥离法的方法易于操作,但是制备得到的石墨烯尺寸有限,并且无法控制石墨烯的层数,且产量不高。 2.外延生长法:Berger 等通过高温加热大面积的单晶SiC 使石墨烯生长于其上,在超真空或常压下脱除Si 留下C,继而得到与原SiC 差不多面积的石墨烯薄层。在研究外延生长制备石墨烯的过程中发现,可用作石墨烯衬底的材料种类很多,分为非金属类衬底(包括SiC、SiO2、GaAs 等) 和金属类衬底(包括Cu、Ni、Co、Ru、Au、Ag等)。Sprinkle和Heer研究小组采用在超高真空下加热至1000 ℃去除表面氧化物,再在SiC表面通过加热来促使石墨烯的生长。Emtse等使用常压下SiC表面生长石墨烯,得到的石墨烯在T = 27 K 的电子迁移率可达2000 cm2V-1·S-1,室温下可达2700 cm2V-1·S-1。但是外延生长法制得的石墨烯仍然无法达到均一厚度,并且使用的衬底材料不同也会对石墨烯的生长有不同的影响,促使石墨烯不易从衬底材料上分离开来。因此,此制备方法仍然需要进一步实验与研究。 3.金属催化法:金属催化法是指固态或气态碳源在一定的温度、压强及催化

石墨烯量子点在光伏器件方面的应用研究

石墨烯量子点在光伏器件方面的应用研究 1、石墨烯量子点的基本介绍 2010年诺贝尔物理学奖的主题:石墨烯,被评审委员称为“完美原子晶体”。其是由单层碳原子排列成的二维蜂窝状的晶体结构,是构建其他维数碳质材料的基本单元,比如包裹成零维富勒烯,卷起形成一维碳纳米管或者层层堆叠构成三维石墨。1因为石墨烯是零带隙材料,几乎不可能观察到其发光特性,这也就限制了其在光电子领域的应用,然而石墨烯具有无限大的激子波尔半径,在有限尺寸的石墨烯中,量子局限效应就会很明显,可以通过改变其尺寸来调节带隙.石墨烯量子点(GQDs),2具有显著的量子限制和边缘效应,表现出低毒性、优良的溶解性、化学惰性、稳定的光致发光特性、更好的表面接枝,所以在光电器件、传感器和生物成像等领域有很大的应用。本文主要介绍石墨烯量子点作为电子受主材料和染料敏化剂在光伏器件中的作用。 2、有机光伏器件 2.1GQDs基聚合物太阳能电池 有机聚合物太阳能电池是一种混合异质结电池,光照射时,给体材料产生电子空穴对,然后在给体和受体交界面分离,电子和空穴分别传导到两个电极形成电流.受体主要用于电子分离和传输。量子点在超越Shockley-Queissar限制,尺寸调制光学响应等具有潜质优势,在光伏器件改革中发挥重要的作用。零维GQDs是从二维石墨烯变换而来,除了具有突出的电子输运性质,还有大的比表面积,高的迁移率和可调的带隙等优点,可以作为光伏器件中的电子受主材料。 图1 (a)聚合物光伏单元框图和(b)能级示意图3

图1(a)是GQDs基块材异质结聚合物太阳能电池的示意图,3功能GQDs是用电化学方法直接制备的,均一尺寸为3-5nm,具有绿色发光特性,在水中几个月都不会发生变化,即具有很高的稳定性。通过X射线衍射和X射线光电子能谱分析发现,与石墨烯薄膜相比,GQDs在25?有个比较宽的(002)衍射峰,说明电化学过程在GQDs表面引入了更多的活性空位,有更紧密的层间距。从Raman 光谱中得到,无序D带与结晶G带的相对强度只有0.5,与高质量的石墨烯纳米带相似,证明了GQDs的高质量和电化学制备方法的可行性。与单纯的P3HT器件相比,GQD基器件的短路电流,开路电压,填充因数和能量转换效率整体有所增强。一般情况下,有机半导体中激子寿命和迁移率受辐射和非辐射衰减的限制,只有在p-n结附近产生的激子会引发电荷。所以在纯的P3HT中,聚合物中电子迁移率很小,而且缺乏光生激子分离的界面,光电流就比较小,但是在P3HT:GQDs基器件中,GQDs为的p-n界面的形成提供了大的表面积,其内建电势(图1(b))有利于电子的收集,还有GQDs高的电子迁移率等,这都促使了GQDs基太阳能电池性能的提高。另外还可以通过调节GQDs的浓度,退火温度和周期,活性层的厚度进一步改善器件性能。 2.2染料敏化太阳能电池 图2 染料敏化电池工作原理图4 染料敏化电池的主要组成部分包括纳米多孔半导体薄膜,染料敏化剂,氧化还原电解质,对电级和导电基地,如图2所示4。其中光吸收是靠吸附在纳米半导体表面的染料来完成,半导体起电荷分离和传输载体的作用,靠多数载流子来实现电荷传导。染料敏化剂吸收太阳光,产生光致分离,其性能直接决定器件的

石墨烯在涂层材料中的应用

精细石油化工进展 ADVANCES IN FINE PETROCHEMICALS 44第20卷第3期石墨烯在涂层材料中的应用 罗洁玲,游慧敏,黄宝轻,陈庆华,罗富彬 福建师范大学环境学院,福州350007 摘要介绍了石墨烯在防腐涂料、导电涂料、导热涂料、阻燃涂料、电磁屏蔽涂料及其他功能性 涂料中的应用现状,着重探讨了其在涂料中表现出的独特作用及存在的问题,并展望了石墨烯的 发展前景。 关键词石墨烯涂层材料防腐电磁屏蔽 2004年NOVOSELOV等⑴采用胶带剥离的方法从石墨薄片中剥离出了单层石墨烯,并证明了石墨烯能够在室温下稳定存在,这一发现填补了二维碳材料的空白。碳纳米材料分为零维富勒烯、一维碳纳米管、二维石墨烯,而石墨烯是构成碳纳米材料的基本单元,通过自身包裹卷曲得到球状的富勒烯,平行卷曲为碳纳米管,大量堆叠则成为石墨。石墨烯具有电子迁移率高、热稳定性好、抗拉强度强和电阻率低的优点,在功能涂料中被广泛应用,并展现出了优异的发展前景。采用传统的石墨等碳材料为填料时,用量较高,性能较低,而石墨烯只需少量添加即可极大地提高聚合物的性能。本文综述了石墨烯在防腐、导电、导热、阻燃、电磁屏蔽和其他功能涂料领域的应用,并对石墨烯涂层材料的发展方向进行了展望。 1石墨烯的结构和性能 石墨烯是一种二维蜂窝状碳材料,为单层片状结构,c=C原子之间由sp2杂化结合而成,在垂直于层平面的方向上形成一个大TT键,结构非常稳定。石墨烯按照层数可分为单层、双层和多层石墨烯。石墨烯上2个相邻C原子间的键长约为0.142nm,单层石墨烯的厚度为0.335nm,仅为1个碳原子的厚度,而1mm厚的石墨中有将近150万层的石墨烯。石墨烯的基本结构单元为有机材料中最稳定的苯六元环,是最理想的二维纳米材料⑵。 石墨烯稳定的晶格结构使碳原子具有优异的电学性能,室温下载流子迁移率约为15000 cm2/(V-s),比硅材料高出了10倍。石墨烯是已知的最薄、最坚硬的纳米材料,单层石墨烯的刚度可达300-400N/m,导热系数为2000~6000 W/(m?K),电阻率为10"Q?cm,5层以下石墨烯的透光率大于90%。理想的单层石墨烯的比表面积高达2630n?/g,是一种很有潜力的储能材料⑶。 石墨烯的制备方法有物理法和化学法。物理法可分为机械剥离法、加热SiC法等;化学法有CVD法、氧化还原法等。根据表面是否具有含氧官能团,石墨烯可分为氧化石墨烯(GO)和还原石墨烯(RGO)。与石墨烯相比,氧化石墨烯的共辄结构被破坏,不再具备导电性,并且力学性能大幅降低。含氧官能团使氧化石墨烯的部分物理性质弱于石墨烯,但也使其获得了良好的分散性和反应活性。 将石墨烯添加到涂料中的方法有直接法和间接法。前者是直接将石墨烯添加到涂料中,起导电和防腐等作用;后者则是先用聚合物或其他功能性纳米填料改性石墨烯以获得复合材料,然后再将其添加到涂层中。 2石墨烯在涂层材料中的应用 石墨烯涂料可分为纯石墨烯涂料和石墨烯复合涂料。石墨烯改性聚合物的制备方法包括溶胶-凝胶法、直接共混法和原位聚合法⑷。溶胶-凝胶法的缺点是前驱体的成本较高,且毒性较大。直接共混法分为熔融共混法、溶液共混法和乳液共混法。熔融共混法可避免使用有机溶剂,但石墨烯的密度较小,熔融混合的难度大,不易分散;溶液共混法的分散性较好,但需使用有机溶剂;乳液共混法是将石墨烯改性或者将氧化石墨烯分散均匀后再还原,可以避免有机溶剂的使用,但石墨烯与乳液的界面相容性差。原位聚合 收稿日期:2019-04-24O 作者简介:罗洁玲,在读硕士,研究方向为环境友好塑料(材料)设计与加工。

石墨烯的性能与应用

ANYANG INSTITUTE OF TECHNOLOGY 《材料物理》期末论文 石墨烯的性能及应用 学院名称:数理学院 专业班级:应用物理学11-1班 学生姓名:邢俊俊 学号: 201111020026 2014年6月

石墨烯的性能及应用 摘要:石墨烯其貌不扬,其微片看上去就好像是棉花一样的黑色絮状物,可它为什么如此受追捧?答案其实并不复杂。因为它太轻薄了,只有一个原子厚度,却又非常坚硬。除此之外,它还拥有优秀的导热性、极低的电阻率。在轻薄坚固的同时,它还几乎是完全透明的。这些特性让研究者们能够创造出无限的可能性,无怪乎石墨烯横空出世之时业界震惊。 关键词:石墨烯、新材料、物质、科技 Abstract:Graphene does not seem good, its microchip looks like black cotton floc, but why it can be so popular these days? The answer is not complicated. Because it is so thin and only has one atom thick, it is very hard, however. In addition, it has excellent thermal conductivity and low resistivity. It is in strong light while almost completely transparent. These features allow the researchers are able to create infinite possibilities, no wonder when the industry turned out of graphene shocked. Key words: Graphene, new materials, substances, Technology 1、前言: 石墨烯是一种由碳原子构成的单层片状结构的新材料。是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直至2004年,英国曼彻斯特大学物理学家安德烈?海姆(Andre Geim)和康斯坦丁?诺沃肖洛夫(Konstantin Novoselov),成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”,共同获得2010年诺贝尔物理学奖。 石墨烯是已知的世上最薄、最坚硬的纳米材料,它几乎是完全透明的,只吸

解读石墨烯四大应用领域

石墨烯四大应用领域全解读 石墨烯(Graphene)又称单层墨,是一种新型的二维纳米材料,是目前发现的硬度最高、韧性最强的纳米材料。因其特殊纳米结构和优异的物理化学性能,石墨烯在电子学、光学、磁学、生物医学、催化、储能和传感器等领域应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。石墨烯相关专利开始呈现爆发式增长(2010 年353 件,2012年达1829 件)。总体看来,石墨烯技术开始进入快速成长期,并迅速向技术成熟期跨越。全球石墨烯技术研发布局竞争日趋激烈,各国的技术优势正在逐步形成。 石墨烯出现在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈;杰姆和克斯特亚;诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。因此,两人在2010年获得诺贝尔物理学奖。 石墨烯应用领域 中科院近期发布的一份报告指出,石墨烯的研究和产业化发展持续升温,从石墨烯专利领域分布来看,其应用技术研究布局热点包括:石墨烯用作锂离子电池电极材料、太阳能电池电极材料、薄膜晶体管制备、传感器、半导体器件、复合材料制备、透明显示触摸屏、透明电极等。主要集中在如下四个领域: (一)传感器领域。 石墨烯因其独特的二维结构在传感器中有广泛的应用,具有体积小、表面积大、灵敏度高、响应时间快、电子传递快、易于固定蛋白质并保持其活性等特点,能提升传感器的各项性能。主要用于气体、生物小分子、酶和DNA 电化学传感器的制作。新加坡南洋理工大学开发出了敏感度是普通传感器1000 倍的石墨烯光传感器;美国伦斯勒理工学院研制出性能远超现有商用气体传感器的廉价石墨烯海绵传感器。 (二)储能和新型显示领域。 石墨烯具有极好的电导性和透光性,作为透明导电电极材料,在触摸屏、液晶显示、储能电池等方面有很好的应用。石墨烯被认为是触摸屏制造中最有潜力替代氧化铟锡的材料,三星、索尼、辉锐、3M、东丽、东芝等龙头企业均在此领域作了重点研发布局。美国德州大学奥斯汀分校研究人员利用KOH对石墨烯进行化学修饰重构形成多孔结构,得到的超级电容的储能密度接近铅酸电池。密歇根理工大学科学家研发出一种独特蜂巢状结构的三维石墨烯电极,光电转换效率达到7.8%,且价格低廉,有望取代铂在太阳能电池中的应用。东芝公司研发出石墨烯与银纳米线复合透明电极,并实现了大面积化。 (三)半导体材料领域。

相关文档
最新文档