WGS84经纬度坐标到北京54高斯投影坐标的转换

WGS84经纬度坐标到北京54高斯投影坐标的转换
WGS84经纬度坐标到北京54高斯投影坐标的转换

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换

张兢1 王文瑞2 陈溪1

(1.广西第一测绘院广西南宁530023;

2.南宁市勘测院广西南宁530022)

【摘要】本文针对从事测绘工作者普遍遇到的坐标转换问题,简要介绍ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标转换原理和步骤。

【关键词】ArcGIS 坐标转换投影变换

1 坐标转换简介

坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及相同坐标系的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的转换。在两个空间角直坐标系中,假设其分别为O--XYZ和O--XYZ,如果两个坐标系的原来相同,通过三次旋转,就可以两个坐标系重合;如果两个直角坐标系的原点不在同一个位置,通过坐标轴的平移和旋转可以取得一致;如果两个坐标系的尺度也不尽一致,就需要再增加一个尺度变化参数;而对于大地坐标和高斯投影平面坐标之间的转换,则需要通过高斯投影正算和高斯投影反算,通过使用中央子午线的经度和不同的参考椭球以及不同的投影面的选择来实现坐标的转换。

如何使用ArcGIS实现WGS84经纬度坐标到BJ54高斯投影坐标的转换?这是很多从事GIS工作或者测绘工作者普遍遇到的问题。本文目的在于帮助用户解决这个问题。

我们通常说的WGS-84坐标是指经纬度这种坐标表示方法,北京54坐标通常是指经过高斯投影的平面直角坐标这种坐标表示方法。为什么要进行坐标转换?我们先来看两组参数,如表1所示:

表1 BJ54与WGS84基准参数

很显然,WGS84与BJ54是两种不同的大地基准面,不同的参考椭球体,因而两种地图下,同一个点的坐标是不同的,无论是三度带六度带坐标还是经纬度坐标都是不同的。当要把GPS接收到的点(WGS84坐标系统的)叠加到BJ54坐标系统的底图上,那就会发现这些GPS点不能准确的在它该在的地方,即“与实际地点发生了偏移”。这就要求把这些GPS点从WGS84的坐标系统转换成BJ54的坐标系统了。

有关WGS84与BJ54的坐标转换问题,实质是WGS-84椭球体到BJ54椭球体的转换问题。如果我们是需要把WGS84的经纬度坐标转换成BJ54的高斯投影坐标,那就还会涉及到投影变换问题。因此,这个转换过程,一般的GPS数据处理软件都是采用下述步骤进行的:

1)(B,L)84——(X,Y,Z)84,空间大地坐标到空间直角坐标的转换。

2)(X,Y,Z)84——(X,Y,Z)54,坐标基准的转换,即Datum转换。通常有三种转换方法:七参数、简化三参数、Molodensky。

3)(X,Y,Z)54——(B,L)54,空间直角坐标到空间大地坐标的转换。

4)(B,L)54——(x,y)54,高斯投影正算。

从以上步骤不难看出,转换的关键是第二步,转换的参数。鉴于我国曾使用不同的坐标基准(BJ54、State80、Correct54),各地的重力值又有很大差异,所以很难确定一套适合全国且精度较好的转换参数。在WGS-84坐标和北京54坐标之间是不存在一套转换参数可以全国通用的,在每个地方会不一样。

必须了解,在不同的椭球之间的转换是不严密的。那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法,即3个平移因子(X平移,Y平移,Z平移),3个旋转因子(X旋转,Y旋转,Z旋转),一个比例因子(也叫尺度变化K)。国内参数来源的途径不多,一般当地测绘部门会

有。通行的做法是:在工作区内找三个以上的已知点,利用已知点的BJ54坐标和所测WGS84坐标,通过一定的数学模型,求解七参数。若多选几个已知点,通过平差的方法可以获得较好的精度。如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即只考虑3个平移因子(X平移,Y 平移,Z平移),而将旋转因子及比例因子(X旋转,Y旋转,Z旋转,尺度变化K)都视为0,所以三参数只是七参数的一种特例。北京54和西安80也是两种不同的大地基准面,不同的参考椭球体,他们之间的转换也是同理。在ArcGIS中提供了三参数、七参数转换法。而在同一个椭球里的转换都是严密的,在同一个椭球的不同坐标系中转换需要用到四参数转换,举个例子,在深圳既有北京54坐标又有深圳坐标,在这两种坐标之间转换就用到四参数,计算四参数需要两个已知点。

2 ArcGIS坐标转换例子

2.1 应注意问题

使用ArcGIS如何实现WGS84经纬度坐标到BJ54高斯投影坐标的转换呢?在ArcGIS中,这个坐标转换步骤简化了,用户只需要两个步骤就能够直接从最初的WGS84经纬度坐标转换到BJ54高斯投影坐标。这就是ArcGIS的强大之处。

接下来,我们做一个例子。假设我们已经知道了7参数,应该如何操作呢?在具体的操作前,请大家一定注意以下三点:

WGS84的经纬度坐标值是用度来表示,而不能是度分秒表示

七参数的平移因子单位是米,旋转因子单位是秒,比例因子单位是百万。在ArcGIS中,7参数法的名字是Coordinate_Frame 方法。

有人在用ArcGIS进行不同椭球体间的坐标转换时,转换出来的结果不对,然后就写文章说变形如何如何,很可能是由于他们没有注意上面这三个关键的问题造成的。

2.2 转换步骤

a、定义7参数的地理转换(Create Custom Geographic Transformation)

在Arctool中打开Create Custom Geographic Transformation工具,如图1所示:

图1

在弹出的窗口中,输入一个转换的名字,如wgs84ToBJ54。在定义地理转换方法下面,在Method中选择合适的转换方法如COORDINATE_FRAME,然后输入平移参数、旋转角度和比例因子,如图2所示:

图2

b、投影变换

打开工具箱下的Projections and Transformations>Feature>Project,在弹出的窗口中输入要转换的数据以及Output Coordinate System,然后输入第一步自定义的地理坐标系如wgs84ToBJ54,开始投影变换,如图3所示:

图3

点击“确定”,完成坐标转换。

3 结束语

我国现已启用新的坐标系统2000国家大地坐标系,2000国家大地坐标系与现行国家大地坐标系转换、衔接的过渡期仍需一段较长时期,在实际工作、工程中还遇到不同坐标系之间转换,本文针对在生产中从事测绘工作遇到的坐标转换问题提供解决方法和经验,希望对同行有所参考。

【参考文献】

[1] 孔祥元、郭际明、刘宗泉.《大地测量学基础》.武汉大学出版社,第一版,2001年9月

[2] 李征航、黄劲松.《GPS测量与数据处理》.武汉大学出版社,第一版,2005年3月

[3] MAPGIS使用教程

使用cass进行北京54坐标与西安80坐标相互转换教程

使用cass进行北京54坐标与西安80坐标相互转换教程 北京54坐标和西安80坐标是使用比较多的,有的时候涉及到这两个坐标系的转换,我们在这里介绍一下使用cass来进行互转的方法。当然还有其他的方法,比如利用COORD4.1进行坐标转换。COORD 4.1是一个免费的坐标转换软件,也是测绘工作者常备的工具之一。以后有机会再来介绍。先跟大家介绍如何使用cass来进行坐标系的互转。 第一步:输入公共点坐标数据 首先准备好2至3个公共点,即同时拥有54和80两套坐标,这些点要覆盖要转换数据所在在地区。然后打开CASS2008,选择“地物编辑”菜单下的“坐标转换”进入坐标转换界面,在“公共点”下面“转换前”后面的三个输入框中输入第一个公共点的54坐标, 再在“转换后”的三个输入框中输入该点的80西安坐标, 输完点击右侧“添加”按钮, 依次输入第二、第三个点的“54、80坐标并添加;如果经常在此区域进行坐标转换,可点击“存到公共点文件”,输入文件存储路径及文件名称,保存,下次使用时直接读入公共点文件即可。 第二步:输入转换前、后的数据文件名 在“转换前”右侧的输入框中输入转换前即54坐标数据的文件路径及文件名,也可以直接点击最右侧的查找按钮直接查找,然后在“转换后”右侧的输入框中输入转换后的文件名。 第三步:计算转换参数 如果用仅有两个已知点,可以计算四参数,三个或三个以上已知点则可以计算七参数。利用四参数转换就点击“计算转换四参数”按钮,如果用七参数转换还需选择转换前、后的坐标系统及转换点所在的中央子午线,点击“计算转换七参数”,软件就自动计算出了七参数。 第四步:进行数据转换 如果转换的是数据就把“转换数据”前面的对勾选上,点击“使用七参数”,即完成了数据的转换,当然也可点击“使用四参数”,完成转换。 补充:北京54坐标与西安80坐标转换原理 北京54坐标与西安坐标之间的转换其实是一种椭球参数的转换,作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密的,因此不存在一套转换参数可以全国通用,也没有现成的公式来完成转换因此必须利用具有两套坐标值的公共点实现转换。

南方CASS坐标转换方法

南方CASS坐标转换方法 摘要本文介绍了1954年北京坐标系、1980西安坐标系及其相互关系、转换原理及利用软件进行数据转换的两种方法。 关键词:坐标系坐标转换方法 近几年来,在测绘行政主管部门的推动下,我国西安80坐标系正在逐步得到使用,第二次全国土地调查已明确要求平面控制使用80西安坐标系统,省级基础测绘成果1:10000地形图也采用了1980西安坐标系,现有1954年北京坐标系将逐渐向1980西安坐标系过渡,但是,五十年来,我国在1954年北京坐标系下完成的大地控制及基本系列地形图数量巨大,价值巨大,必须充分利用。在当前测绘生产中既存在将54系转成80系的问题,也有相反的情况。

一、北京54坐标系、西安80坐标系及其相互关系 1954年北京坐标系是我国五十年代由原苏联1942年普尔科沃坐标系传算而来,采用克拉索夫斯基椭球体,其参数为:长半轴为6378245米,扁率为1/298.3。这个坐标系的建立在我国国民经济和社会发展中发挥了巨大的作用,但该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合,在中国东部地区大地水准面差距自西向东增加最大达+68米;其椭球的长半轴与现代测定的精确值相比109米的缺陷;定向不明确,椭球短轴未指向国际协议原点CIO,也不是中国地极原点JYD1968.0;起始大地子午面也不是国际时间局BIH所定义的格林尼治平均天文台子午面。同时,该系统提供的大地点坐标是通过局部平差逐级控制求得的,由于施测年代不同、承担单位不同,不同锁段算出的成果相矛盾,给用户使用带来困难。 1978年4月,中国在西安召开了全国天文大地网平差会议,在会议上决定建立中国新的国家大地坐标系,有关部门根据会议纪要,开展并进行了多方面的工作,建成了1980西安国家大地坐标系(GDZ80),该坐标系全面描述了椭球的4个基本参数,同时反映了椭球的几何特性和物理特性,这4个参数的数值采用的是1975年国际大地测量与地球物理联合会第16届大会的推荐值(简称IGA-1975椭球) 。其主要参数为:长半轴为6378140 米,扁率为1/298.257。IAG-1975椭球参数精度较高,能更好地代表和描述地球的几何形状和物理特征。在其椭体定位方面,以我国范围内高程异常平方和最小为原则,做到了与我国大地水准面较好的吻合。

北京54坐标系转换工具

北京54坐标系转换工具 利用ARCGIS进行自定义坐标系和投影转换 ARCGIS种通过三参数和其参数进行精确投影转换 注意:投影转换成54坐标系需要下载无偏移卫星图像进行转换,有偏移的转换将导致转换后的卫星图像扭曲,坐标错误,无法配准。 第一步:选择无偏移地图源,下载你所需要的卫星图像。 第二步:选择BIGEMAP软件右边工具栏,选择【投影转换】,如下图所示: 2.1 选择说明: 1. 源文件:选择下载好的卫星图像文件(下载目录中后缀为tiff的文件) 2. 源坐标系:打开的源文件的投影坐标系(自动读取,不需要手动填写) 3. 输出文件:选择转换后你要保持文件的文件路径和文件名 4. 目标坐标系:选择你要转换成的目标坐标系,如下图:

选择上图的更多,如下图所示: 1:选择 -Beijing 1954 2:选择地区3:选择分度带对应的带号(一般默认,也可以手动修改)

选择对应的分度带或者中央子午线(请参看:如何选择分度带?),点击【确定】 5. 重采样算法:投影转换需要将影像的像素重新排列,一次每种算法的效率不一样,一般选择【立方卷积采样】,以达到最好的效果。如下图: 6. 指定变换参数:在不知道的情况下,可以不用填此处信息,如果√上,则如下图:

此参数为【三参数】或者【七参数】,均为国家保密参数,需要到当地的测绘部门或者国土部门,以单位名义签保密协议进行购买,此参数各地都不一样,是严格保密的,请不要随便流通。 第三步:点击【确定】,开始转换,如下图:

第四步:完成后,打开你刚才选择的输出文件夹,里面就是转换后的卫星图像。 第五步:如果你需要套合你手里已经有的矢量文件,请参看:【BIGEMAP无偏移影像叠加配准】

WGS84经纬度坐标到北京54高斯投影坐标的转换

使用ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标的转换 张兢1 王文瑞2 陈溪1 (1.广西第一测绘院广西南宁530023; 2.南宁市勘测院广西南宁530022) 【摘要】本文针对从事测绘工作者普遍遇到的坐标转换问题,简要介绍ArcGIS实现WGS84经纬度坐标到北京54高斯投影坐标转换原理和步骤。 【关键词】ArcGIS 坐标转换投影变换 1 坐标转换简介 坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及相同坐标系的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的转换。在两个空间角直坐标系中,假设其分别为O--XYZ和O--XYZ,如果两个坐标系的原来相同,通过三次旋转,就可以两个坐标系重合;如果两个直角坐标系的原点不在同一个位置,通过坐标轴的平移和旋转可以取得一致;如果两个坐标系的尺度也不尽一致,就需要再增加一个尺度变化参数;而对于大地坐标和高斯投影平面坐标之间的转换,则需要通过高斯投影正算和高斯投影反算,通过使用中央子午线的经度和不同的参考椭球以及不同的投影面的选择来实现坐标的转换。 如何使用ArcGIS实现WGS84经纬度坐标到BJ54高斯投影坐标的转换?这是很多从事GIS工作或者测绘工作者普遍遇到的问题。本文目的在于帮助用户解决这个问题。 我们通常说的WGS-84坐标是指经纬度这种坐标表示方法,北京54坐标通常是指经过高斯投影的平面直角坐标这种坐标表示方法。为什么要进行坐标转换?我们先来看两组参数,如表1所示: 表1 BJ54与WGS84基准参数

北京54坐标与西安80坐标相互转换的两种方法

北京54坐标与西安80坐标相互转换的两种方法 一、北京54坐标系、西安80坐标系及其相互关系 1954年北京坐标系是我国五十年代由原苏联1942年普尔科沃坐标系传算而 来采用克拉索夫斯基椭球体其参数为长半轴为 6378245米扁率为 1 。这个坐标系的建立在我国国民经济和社会发展中发挥了巨大的作用但 该坐标系存在着定位后的参考椭球面与我国大地水准面不能达到最佳拟合在中国东部地区大地水准面差距自西向东增加最大达+68米其椭球的长半轴与现代测定的精确值相比109米的缺陷定向不明确椭球短轴未指向国际协议原点CIO也不是中国地极原点起始大地子午面也不是国际时间局BIH 所定义的格林尼治平均天文台子午面。同时,该系统提供的大地点坐标是通过局部平差逐级控制求得的由于施测年代不同、承担单位不同不同锁段算出的成果相矛盾给用户使用带来困难。 1978年4月,中国在西安召开了全国天文大地网平差会议,在会议上决定建 立中国新的国家大地坐标系有关部门根据会议纪要,开展并进行了多方面的工作,建成了1980西安国家大地坐标系(GDZ80)该坐标系全面描述了椭球的4个基本参数,同时反映了椭球的几何特性和物理特性这4个参数的数值采用的是1975年国际大地测量与地球物理联合会第16届大会的推荐值(简称IGA-1975椭球 ) 。其主要参数为长半轴为6378140 米扁率为 1/。IAG-1975 椭球参数精度较高能更好地代表和描述地球的几何形状和物理特征。在其椭体定位方面以我国范围内高程异常平方和最小为原则做到了与我国大地水准面较好的吻合。 此外,1982年我国已完成了全国天文大地网的整体平差,消除了以前局部平 差和逐级控制产生的不合理影响提高了大地网的精度在上述基础上建立的1980西安坐标系比1954年北京坐标系更科学、更严密、更能满足科研和经济建设的需要。 由于北京54坐标系和西安80坐标系是两种不同的大地基准面这两个椭球

部分地区WGS84坐标系转换BJ54坐标系参数

部分地区WGS84坐标系转换BJ54坐标系参数 部分地区WGS84坐标系转换BJ54坐标系参数 转换参数来自 https://www.360docs.net/doc/3c11139568.html,/forum_view.asp?forum_id=14&view_id=61&page =4鼎星在线GPS俱乐部,来自全国各地网友的共享,使用中最好验证一下该参数的正确性。注:以下参数仅供参考!! 拉萨GPS参数 DX=11.9 DY=-120.8 DZ=-62.4 DA=-108.0 DF=0.00000050 E=93°00.000 +1.0000000 +5000000.0 0.0 藏东可用99°,其它参数不变,可对照地形图校对。 广东省GPS参数:这是WGS84转北京54的,适宜河源、惠州、深圳、东莞地区 DX=-19 DY=-112 DZ=-55 DA=-108.0 dF=0.00000050 E=114°00.000 +1.0000000 +5000000.0 0.0 ,WGS84转西安80的是 DX=-96 DY=-51 DZ=12 DA=-3 DF=0.00000000 E=114°00.000 +1.0000000 +5000000.0 0.0 适宜整个广东。 广东?河源GPS参数转换参数/ DX=12 DY=-121 DZ=-62 DA=-108 dF=0.00000050 E=114°00.000 +1.0000000 +5000000.0 0.0

坐标参数 海南坐标转换参数: dx=-9.8 dy=-114.6 dz=-62.7 da=-108.0 df=0.0000005 中央子午线:111 DX = -18 DY = -104.5 DZ = -57.5 DA= -108; DF= 0.0000005 中央子午经度:117或123(东为123,西为117) 新疆乌鲁木齐地区坐标转换参数: DX = 19 DY = -33 DZ = 5 DA= -108; DF= 0.0000005 中央子午经度:87 各地WGS84坐标系转换BJ54坐标系参数(不断加入中...)以下为四川盆地坐标系转换参数 Dx=-4 Dy=-104 Dz=-45 Da=-108 Df=+0.0000005 中央子午经度:105 以下为包头地区坐标系转换参数 Dx=-92 Dy=-49 Dz=-4 Da=-108 Df=+0.0000005 中央子午经度:114 安徽省坐标转换区域化参数: DX = -15 DY = -120 DZ = -48 DA= -108; DF= 0.0000005 中央子午经度:117

北京54转80坐标系软件操作步骤

“北京54 坐标系”转“西安80坐标系” 北京54坐标系和西安80坐标系其实是一种椭球参数的转换,作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为他们是两个不同的椭球基准。那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即X平移,Y平移,Z平移,X旋转(WX),Y旋转(WY),Z旋转(WY),尺度变化(DM)。若求得七参数就需要在一个地区提供3个以上的公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z),如果区域范围不大,最远点间的距离不大于30km(经验值),这可以用三参数,即X 平移,Y平移,Z平移,而将X旋转,Y旋转,Z旋转,尺度变化面DM视为0。 方法: 第一步:向地方测绘局(或其他地方)找本区域三个公共点坐标对(即北京54坐标下x、y、z和西安80坐标系下x、y、z); 第二步:讲三个点的坐标对全部转换以弧度为单位。(菜单:投影转换——输入单点投影转换,计算出这三个点的弧度值并记录下来); 第三步:求公共点操作系数(菜单:投影转换——坐标系转换)。如果求出转换系数后,记录下来; 第四步:编辑坐标转换系数(菜单:投影转换——编辑坐标转换系数),最后进行投影变换,“当前投影”输入80坐标系参数,“目的投影”输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。 详细步骤如下:

首先将MAPGIS平台的工作路径设置为“…..\北京54转西安80”文件夹下。 下面我们来讲解“北京54 坐标系”转“西安80坐标系”的转换方法和步骤。 一、数据说明 北京54 坐标系和西安80 坐标系之间的转换其实是两种不同的椭球参数之间的转换,一般而言比较严密的是用七参数布尔莎模型,即X 平移,Y 平移,Z 平移,X 旋转(WX),Y 旋转(WY),Z 旋转(WY),尺度变化(DM)。若得七参数就需要在一个地区提供3 个以上的公共点坐标对(即北京54 坐标下x、y、z 和西安80 坐标系下x、y、z),可以向地方测绘局获取。 二、“北京54 坐标系”转“西安80 坐标系”的操作步骤 启动“投影变换模块”,单击“文件”菜单下“打开文件”命令,将演示数据“演示数据_北京54.WT”、“演示数据_北京54.WL”、“演示数据_北京54.WP”打开,如图1 所示: 图1 1、单击“投影转换”“单下“S坐标系转换”“令,系统弹出“转换坐标值”“话框,如图2所示:

ArcGIS中的北京54和西安80投影坐标系详解

ArcGIS中的北京54和西安80投影坐标系详解 (2013-02-25 20:26:39) 转载▼ ArcGIS中的北京54和西安80投影坐标系详解 1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system 直译为 地理坐标系统,是以经纬度为地图的存储单位的。很明显,Geographic coordinate syst em是球面坐标系统。我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。这样的椭球体具有特点:可以量化计算的。具有长半轴,短半轴,偏心率。以下几行便是Krasovsky_1940椭球及其相应参数。 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening(扁率): 298.300000000000010000 然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。在坐标系统描述中,可以看到有这么一行: Datum: D_Beijing_1954 表示,大地基准面是D_Beijing_1954。 -------------------------------------------------------------------------------- 有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。 完整参数: Alias: Abbreviation: Remarks: Angular Unit: Degree (0.017453292519943299) Prime Meridian(起始经度): Greenwich (0.000000000000000000) Datum(大地基准面): D_Beijing_1954 Spheroid(参考椭球体): Krasovsky_1940

COORD软件坐标转换等方法

、COORD 软件批量转换(平面坐标转为经纬度) 文他冃 程帕 T i 潮 I 面霜换 迭择目标坐标类型 「空闻直駕坐标 怫球冈 输型 *= |K 护|7 计算四碁数(口. 计算三珊Q ) 计旦t 套数(K ). 氛帝计輒円… 大地坐标應芬莎三] 平面坐标 店 |O.OOOGOO 38:49.52602711 COORD GM —JN?u] 113:06:13.6S5003E 椭玮北京別 输出目标坐标 地圏投飘m. 櫛球删(习… 平面躺⑹.” 齟拟舍 (H )?,? -■ 7

COORD GM —[New! 文件{円设量;P)稷帥闰 高程拟合 坐标 3 单占转换文件转换I 迭择憑坐标类型 「空厠直角塑标 坐标鞘赧 「七參数转换r 平画皓换 迭择目标坐标奘型 空屁直甬坐标 「大地坐标甘腔标]庫分砂—耳 广平面坠标 滞球’北京54 输入源坐标 椭玮|it^54 输出目标坠标 r丸地坐标r年面辑换 |高理握舍 橢玮尿帝 般击列表中的文件RJH R IM内容 支件轄楼 单点转换 选痢砂梳类型 厂空间盲角坐标 遞择目标坐标类型 广空间盲角坐标 文件? iSBi'P)帮勛⑷ 地坐标]度:分秒二j 厂平面坐标 COORDGM —[Nevz] 1 Ik

选择源坐桶类型广空 间直角坐标厂犬地坐 标 坐标转换 厂七彗数转换 厂年面错换 厂鬲程拟合 、坐标换带(同一坐标下下3度带转为6度带等) 农件格式.自定义格弍|轲換方克| 恥肯 椭琲 制瞭格式 遷 点号」&51切你36向右水灌高 COORD GM —:乂刚 x 文件㈢设置眉骞訓闪 韓球北東卫v_'H^ 选择格式 警辅换丨交件转挽收击别乘中的文件即可查看内容 选择目标坐标真型 广空河直角坐标 j度分秒~Z1 厂平面坐标

在ArcGIS中的西安80坐标系转北京54坐标系

在ArcGIS中的西安80坐标系转北京54坐标系 一、数据说明 本次投影变换坐标的源数据采用的是采用1980西安的地理坐标系统,1985国家高程基准的1:50000的DLG数据。 二、投影变换基础知识准备 北京54坐标系和西安80坐标系之间的转换其实是两种不同的椭球参数之间的转换。 在ArcGIS中定义了两套坐标系:地理坐标系(Geographic coordinate system)和投影坐标系(Projected coordinate system)。 1、地理坐标系,是以经纬度为地图的存储单位的,是球面坐标系统。地球是一个不规则的椭球,为了将数据信息以科学的方法放到椭球上,这就需要有一个可以量化计算的椭球体。具有长半轴,短半轴,偏心率。一下几行是GCS_Xian_1980椭球及其相应的参数。Geographic Coordinate System: GCS_Xian_1980 Datum: D_Xian_1980 Prime Meridian: Greenwich Angular Unit: Degree 每个椭球体都需要一个大地基准面将这个椭球定位,因此可以看到在坐标系统中有Datum: D_Xian_1980的描述,表示,大地基准面是D_Xian_1980。 2、有了椭球体和基准面这两个基本条件,地理坐标系便可以定义投影坐标系统了。以下是已定义Beijing_1954坐标的投影坐标系统的参数: Projected Coordinate System: Beijing_1954_GK_Zone_19 Projection: Gauss_Kruger False_Easting: 19500000.00000000 False_Northing: 0.00000000 Central_Meridian: 111.00000000 Scale_Factor: 1.00000000 Latitude_Of_Origin: 0.00000000 Linear Unit: Meter Geographic Coordinate System: GCS_Beijing_1954 Datum: D_Beijing_1954 Prime Meridian: Greenwich Angular Unit: Degree 投影坐标系统,实质上是平面坐标系统,其地图单位是米。将球面坐标转化为平面坐标的过程便称为投影,即投影的条件一是有球面坐标,二是要有转化的算法。因此,从参数中可以看出,每一个投影坐标系统都必定会有Geographic Coordinate System。 3、关于坐标偏移量的问题 (1)偏移量的由来 不同国家由于采用的参考椭球及定位方法不同,因此同一地面点在不同坐标系中大地坐标值也不相同。北京1954坐标系的原点在原苏联西部的普尔科夫,采用的是克拉索夫斯基椭球体;西安1980坐标系选用的是1975年国际大地测量协会推荐的参考椭球,其坐标原点设在我国中部的西安市附近的泾阳县境内。 因此,通常情况下,直接转换过来的数据会有一定的误差存在,所以为了保证数据的精度,在转换的过程中通过设置横坐标和纵坐标的偏移量来修正转换后的坐标值。 由西安1980坐标系转换成北京1954坐标系,那么它们的偏移量就是北京1954坐标系相对于WGS84椭球体的偏移量减去西安1980坐标系相对于WGS84偏移量。 (2)偏移量的计算方法

相关文档
最新文档