高速切削加工技术作业

高速切削加工技术作业
高速切削加工技术作业

高速切削加工技术

许磊

(合肥学院机械工程系13机制(1)班 1306011031)

摘要:高速切削加工作为模具制造中最为重要的一项先进制造技术,与传统加工技术相比是质的飞越,具有高生产效率、小切削力、高加工精度、低能耗等特点。可以解决在模具常规切削加工中备受困扰的一系列问题,有着强大的生命力和广阔的应用前景。

关键词:高速加工工艺、高速加工应用、高速加工趋势。

引言:对于某种机械零件而言,高速加工就是以较快的生产节拍进行加工。一个生产节拍:零件送进

→定位夹紧→刀具快进→刀具工进(在线检测)→刀具快退→工具松开、卸下→质量检测等7个基本生产环节。而高速切削是指刀具切削刃相对与零件表面的切削运动(或移动)速度超过普通切削5~10 倍,主要体现在刀具快进、工进及快退三个环节上,是高速加工系统技术中的一个子系统。对于整条自动生产线而言,高速加工的表征是以简捷工艺流程,以较短、较快的生产节拍的生产线进行生产加工。这就要求突破机械加工传统观念,在确保产品质量的前提下,改革原有加工工艺(方式),尽可能地缩短整条生产线的工艺流程。对于某一产品而言,高速加工也意味着企业要以较短的生产周期,完成研发产品的各类信息采集与处理、设计开发、加工制造、市场营销及反馈相关信息。

一、高速切削工艺

加工工艺是成功进行高速切削加工的关键技术之一。选择不当,会使刀具磨损加剧,完全达不到高速加工的目的。高速切削工艺技术包括切削参数、切削路径、刀具材料及刀具几何参数的选择等。

1.切削参数的选择

在高速切削加工中,必须对切削参数进行选择,其中包括刀具接近工件的方向、接近角度、移动的方向和切削过程(顺铣还是逆铣)等.

2.切削路径的选择

切削路径的选择与优化在高速切削加工中,除了刀具材料和刀具几何参数的选择外,还要采取不同的切削路径才能得到较好的切削效果。切削路径优化的目的是提高刀具耐用度,提高切削效率,获得最小的加工变形,提高机床走刀利用率,充分发挥高速加工的优势。主要包括:

1)走刀方向的优化在走刀方向的选择上,以曲面平坦性为评价准则,确定不同的走刀方向选取方案;对

于曲率变化大的曲面以最大曲率半径方向为最优进给方向,对曲率变化小的曲面,以单条刀轨平均长度最长为原则选择走刀方向。

2)刀位轨迹生成按照刀位路径尽可能简化,尽量走直线,路径尽量光滑的要求选择加工策略,选择合适

的插补方法,保证加工面残留高度的要求,采用过渡圆弧的方法处理加工干涉区,这样在加工时就不需要减速,提高加工效率。

3)柔性加减速和断刀的几率。选取合适的加减速方式,减少启动冲击,保持机床的精度,减少刀具颤振。

3.刀具材料的选择

刀具材料的合理选择遵循以下原则:

1)切削刀具材料与加工对象的力学性能匹配,主要指刀具与工件材料的强度、韧性和硬度等力学性能相

匹配,具有优良高温力学性能的刀具尤其适合高速切削加工。对于硬脆刀具(如硬质合金和陶瓷)的磨损起决定作用的主要因素是其力学性能。

2)切削刀具材料与加工对象的物理性能匹配,主要是指刀具与工件材料的熔点、弹性模量、导热系数、

热膨胀系数、抗热冲击能力等物理参数要相匹配。加工导热性差的工件时,应采用导热较好的刀具材料,以使切削热得以迅速传出而降低切削温度。对于精密加工则要选用热膨胀系数小的刀具材料(金刚石等)。高速干切削、高速硬切削和高速加工黑色金属的最高切削速度主要受限于刀具材料的耐热

性,要求刀具材料熔点高、导热性能好、氧化温度高、耐热性好、抗热冲击性强。

3)切削刀具材料与加工对象的化学性能匹配主要是指刀具材料与工件材料化学亲和性、化学反应、扩散

和溶解等化学性能相匹配。

高速切削工艺研究是一项很有意义的工作。实践证明如果只有高速机床和刀具而没有良好的工艺作指导,昂贵的高速加工设备也不能充分发挥作用高速切削的工艺和传统的工艺方法有很大差别,至今还远不如传统工艺方法那样成熟和普及。这一点在高速机床使用中应特别加以注意.

二、高速加工应用

由于高速切削具备一系列显著优点,因而首先受到航空航天、模具、汽车等行业的青睐航空部门大型整体薄壁飞机结构件加工将普遍采用高速铣削工艺,减轻整机重量,提高飞机整机性能。模具制造业中普遍采用高速加工中心,形成高切削速度、高进给速度、小切深、小走刀步距、能连续长路程切削的模具加工新工艺,对淬硬钢的高速铣削成为缩短模具开发周期、降低制造成本的主要途径。汽车制造业将更加积极地采用高速切削加工中心,完成高效高精度生产。

飞机机体材料 60 % -70 %为铝合金,而且绝大多数坯料的去除需要切削加工,零件通常采用“整体去除”法制造,即在整块毛坯上去除大量材料后形成高精密度的铝合金复杂构件,其切削时间占整个零件制造总工时的比例很大。对这样的大型、壁薄、加强肋复杂的铝合金零件进行高精度、高效率加工是切削加工技术中的一个难题。采用高速切削加工,可大幅度提高生产效率,切削效率是传统切削的 25 - 28 倍,并可节省经费,降低制造成本。 Marwm Produc tlon System ,公司生产的机床 Automa 可加工规格达 5 mx25m 的整体铝合金薄壁航空零件而专门加工飞机蒙皮的机床长度可达 87m ,能同时加工 6 件空中客车的机冀蒙皮板.目前在航空工业中,使用高速铣削铝合金已经比较普遍,收到了缩短制造周期、提高飞机性能的双重功效。

高速切削的研究让我们发现了它的很多优点,这些优点也被运用到很多行业中,航空航天、汽车以及模具等行业最先将其优点收入囊中。航空部门的一种飞机的机构部件就大部分采用高速切削加工技术,这样可以提高飞机整机性能。模具制造业主要应用的是高速切削加工技术的高速的优势,缩短了开模的周期,同时也降低了制造成本。汽车制造业也渐渐的引进高速切削加工技术,进行高效高精度的生产。目前高速切削加工技术应用还比较收到限制,但是随着不断的研究,它的应用会越来越广泛。

三、高速加工趋势

在二十一世纪全球化制造的市场环境下,高速加工技术必将在各类制造企业中得到广泛的应用。我国的高速加工技术水平也将呈现出跨越式发展的态势,现就其中一些重要技术的发展趋势简述如下:1.零件毛坯制造技术

新型快速成形技术的实用化以及精铸、精锻等毛坯制造技术水平的进一步提高,将使零件毛坯的几何尺寸精度能更好满足少无切屑加工的要求;零件材料的选择将逐步适应绿色制造技术要求,材料的可加工性能将进一步适应高速切削技术要求。

2.刀具技术

制造业将普遍应用高速(超高速)干式切削技术;超硬刀具材料的应用、各类复合(组合)式高速切削刀具(工具)的结构设计与制造技术将成为刀具(工具)品种发展的主导技术;采用无屑加工方式的搓、挤、滚压成形类刀具(工具)的应用会更加广泛;超硬材料在各类刀具涂层材料、SiN陶瓷、Ti基陶瓷等领域将有更快的发展和更广泛的应用。

3.机床技术

随着数控系统、关健功能部件、网络通讯技术的完善与发展,多轴联动、多面切削的高速加工中心、集铣、车功能为一体的复合加工中心等先进机床技术将进一步实用化;各类数控专用高效加工机床的应用将更为普遍;激光技术将更为广泛地应用于机械成形加工、切割加工领域;机床数控系统将具有网络化通讯与生产功能,从而可进一步提高数控机床的利用率。

4.自动生产线技术

自动生产线将由各类高速加工中心组成;柔性制造、敏捷制造工程技术将获得快速发展。

二十一世纪人类已进入信息时代,发展高速加工技术必然要涉及到信息技术、自动化技术、现代经营管理技术及系统工程技术等。对于机械加工而言,信息技术主要包括以计算机技术为基础的各类信息采集与处理技术、网络通讯技术、各类数据库的构建与运行技术等;自动化技术主要包括控制过程的数字化、智能化、信息化等;现代经营管理技术主要包括以网络通讯技术为基础的企业运行机制与管理模式、产品市场营销理念与技术、对各类信息的采集与处理、科学决策和生产全过程控制(绿色制造)、企业内外各类有效资源的集成与优化处理等;系统工程技术内涵丰富,包括对企业与社会、产品制造与市场营销、生产与环保以及不同技术领域、不同种类产品进行科学、系统、配套的优化处理与操作运行,其中的每一环节又可具体化为某一子项系统工程。我国企业要开发、应用现代高速加工技术,必须学习、掌握上述科技领域的基础知识。

四、结束语

高速加工技术为机械制造企业快速响应市场信息提供了强有力的支持。而机械制造中,要实现高速加工,必须集成、优化多学科领域的基础科研与知识,实施系统工程技术。进入二十一世纪,随着加入WTO,我国正逐步融入全球化生产制造的序列中,随着国外先进制造技术设备大量引进及大力实施国家"863"、创新基金、国家重大科技产业工程项目等重大科技计划,综合科学技术水平将日益提高,高速加工技术在国内机械制造业将日趋实用与普及。

【参考文献】

[1]王先逵.《制造技术的未来》.中国机械工程,1994.

[2]张根保.《先进制造技术》.重庆大学出版社,1996.

[3]机械工程手册编辑委员会.《机械工程手册(第2版)》.机械工业出版社,1997

[4]哀峰等.《高速切削技术的发展与研究》.2005

[5]左敦稳.《现代加工技术》.北京航空航天大学出版社.2005.3.

[6]倪小青等.《高速切削的关键技术与研究展望》机械,2007

高速干式切削加工技术及其应用

高速干式切削加工技术及其应用 来源:慧聪网 1.引言 随着“21世纪绿色制造工程”的提出和实施,高速干式切削加工技术日益成为人们关注的焦点和热点。迄今,大多数金属切削加工仍是以使用切削液的湿式加工方式来进行。 切削液具有冷却、润滑、排屑、清洗、防锈等功能,并对延长刀具使用寿命、保证加工表面质量起着重要作用。但是,在切削过程中使用切削液,一方面造成了资源和能源的巨大浪费(据德国公司的统计资料,切削液使用费用占总制造成本的16%,而切削刀具费用仅占总制造成本的3%~4%)。另一方面,切削液会对环境产生较严重的污染,甚至会危害工人健康。随着全球环境保护意识的不断增强和环境保护立法的日益严格,对环境无污染的“绿色制造”被认为是可持续发展的现代制造业模式。为使金属切削加工尽可能达到绿色制造的要求,可减少环境污染、节省资源和能源的高速干式切削技术越来越多地受到人们的关注。 所谓高速干式切削加工,是指在高速机械加工中,为保护环境、降低成本而有意识地减少或完全停止使用切削液。高速切削加工具有以下优越性: (1)随着切削速度的提高,单位时间内的材料切除率(切削速度、进给量和切削深度的乘积,v×f×ap)增加,切削加工时间减少,从而可大幅度提高加工效率,降低加工成本。 (2)在高速切削加工范围内,切削力随着切削速度的提高而减小,根据切削速度的提高幅度,切削力平均可减少30%以上,有利于对刚性较差的零件和薄壁零件的切削加工。 (3)高速切削加工时,切屑以很高的速度排出,可带走大量切削热。切削速度愈高,带走的热量愈多(约90%以上),传给工件的热量大幅度减少,有利于减小加工零件的内应力和热变形,提高加工精度。 (4)从动力学的角度,在高速切削加工过程中,切削力随切削速度的提高而降低,而切削力正是切削过程中产生振动的主要激励源。转速的提高使切削系统的工作频率远离机床的低阶固有频率,而工件的加工表面粗糙度对低阶固有频率最敏感,因此高速切削加工可大大降低加工表面粗糙度。 (5)高速切削可加工硬度45~65HRC的淬硬钢铁件,如采用高速切削加工淬硬后的模具,可减少甚至取代放电加工和磨削加工,满足加工质量的要求。 2.实现高速干式切削加工的关键技术 在高速干式切削加工中,由于切削过程缺少切削液的润滑、冷却、排屑等作用,相应地会出现以下问题: (1)由于缺少切削液的润滑作用,高速干式切削加工中的切削力会大大增加,刀具与工件之间的振动会加剧,从而导致工件加工表面质量变差,刀具磨损加快,刀具使用寿命缩短。 (2)由于缺少切削液的冷却作用,高速干式切削加工会在加工瞬间产生大量热量,这些热量主要集中在切屑中,会影响切屑的成型,过热的高温环境会导致形成带状和缠结状切屑并缠绕在刀具上,影响后续切削,加剧刀具磨损。如不及时将热量从机床的主体结构中排出,同样会使机床产生严重的热变形,影响加工精度和降低工件表面质量。 (3)在高速干式切削加工某些材料(如石墨电极等)时,会产生大量粉尘,如不能及时清除,会严重损害操作工人的身体健康,同时细微颗粒也会侵入丝杠、轴承等机床关键部件,加大机床的磨损,影响机床的加工精度和稳定性。 (4)由于高速干式切削加工与高速湿式切削加工的切削过程有所不同,为使机床能够稳定地完成切削过程,需要对原来高速湿式切削加工选用的切削参数作相应修改和调整,才能应用于高速干式切削加工。 为了解决以上问题,使高速干式切削加工在规定时间内达到与高速湿式切削加工相当(甚至更高)的加工质量和刀具耐用度,就必须对包括机床、刀具、工件以及切削参数在内的整个工艺系统进行全面的考虑权衡,并采取相应的工艺措施,以弥补高速干式切削加工的不足。

机械制造中高速切削加工的应用参考文本

机械制造中高速切削加工的应用参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

机械制造中高速切削加工的应用参考文 本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 高速切削加工是一种重要的机械制造技术,被广泛的 应用在机械制造领域。高速切削加工技术不仅提高了加工 的效率,还提高了机械制造产品的质量。通过深入分析机 械制造中高速切削加工的应用,不断提高高速切削加工技 术,从而推动机械制造行业的快速发展。本文分析了高速 切削加工技术概述和高速切削加工技术的应用领域,阐述 了机械制造中高速切削加工的关键技术。 机械制造中高速切削加工的应用,不仅能够提高模具 的精度,确保机械加工的正常使用和高速运转,并且有效 地简化机械制造的工作程序,提高工作质量和效率,满足 机械加工的需要。机械制造中高速切削加工,推动了机械

制造领域的快速发展。 一、高速切削加工技术概述 高速切削加工技术是机械制造领域最重要的一项技术,集低耗、优质、高效为一体,高速切削加工技术在机械制造中的应用,解决了机械制造领域的中一系列问题,和传统的切削加工技术相比,给进速度、切削速度都有了明显的提高,并且具有很高的加工精度。高速切削加工是一项综合性的系统工作,主要由高速切削软件系统、高速切削刀具、高效的刀具夹持系统等构成。 高速切削加工技术有很多的优点,工件变形小、切削力低、切削周期短、去除材料率高,高速切削加工技术的应用主要依据产品所需的几何形状和工件材料,在机械制造中高速切削加工技术也有很多的缺点,高速切削加工技术需要使用大量的刀具,由于速度过快,刀具的磨损严重,经常需要高质量的机床,最重要的是高速切削加工技

高速切削

1. 论述高速切削的特点。 材料去除率高,切削力较小,工件热变形小,工艺系统振动小,可加工各种难加工材料,可实现绿色制造,简化加工工艺流程。高速切削追求高转速、中切深、快进给、多行程的加工工艺,高速切削加工可大大降低加工表面粗糙度,加工表面质量可提高1~2等级。加快产品开发周期,大大降低制造成本。 2.阐述高速切削技术研究体系、关键技术。 数控高速切削加工技术是建立在机床结构与材料、高速主轴系统、高性能CNC控制系统、快速进给系统、高性能刀具材料、数控高速切削加工工艺、高效高精度测试技术等许多相关的软件和硬件技术基础之上的一项复杂的系统工程,是将各单元技术集成的一项综合技术。关键技术:高速切削机理;高速切削刀具技术;高速切削机床技术;高速切削工艺技术;高速加工的测试技术。 3.阐述高速切削发展趋势。 机床结构将会具有更高的刚度和抗振性,使在高转速和高级给情况下刀具具有更长的寿命;将会用完全考虑高速要求的新设计概念来设计机床;在提高机床进给速度的同时保持机床精度;快换主轴;高、低速度的主轴共存;改善轴承技术;改进刀具和主轴的接触条件;更好的动平衡;高速冷却系统。(新一代高速大功率机床的开发和研制;新一代抗热振性好、耐磨性好、寿命长的刀具材料的研制及适宜于高速切削的刀具结构的研究;进一步拓宽高速切削工件材料及其高速切削工艺范围;高速切削机理的深入研究;高速切削动态特性及稳定性的研究;开发适用于高速切削加工状态的监控技术;建立高速切削数据库,开发适于高速切削加工的编程技术以进一步推广高速切削加工技术;基于高速切削工艺,开发推广干式(准干式)切削绿色制造技术;基于高速切削,开发推广高能加工技术) 4结合典型工件材料和加工工艺方法,讨论高速切削的速度范围。 (1)根据工件材料:刚才380m/min以上、铸铁700m/min以上、铜材1000m/min以上、铝材1100m/min以上、塑料1150m/min以上时,认为是合适的速度范围。(2)根据加工工艺方法:车削700~7000m/min,铣削300~6000m/min,钻削200~1100m/min,磨削5000~10000m/min,认为是合适的速度范围。 5讨论高速切削加工的切削力变化规律。 (1)切削用量对切削力的影响:背吃刀量ap增大,切削力成正比增加,背向力和进给力近似成正比增加。进给量f增大,切削力与增大,但切削力的增大与f不成正比(75%)(2)工件材料对切削力的影响:较大的因素主要是工件材料的强度、硬度和塑性。a材料的强度、

数控高速切削加工

浅析数控高速切削加工 【摘要】数控高速切削加工以高效率和高精度为基本特征,它在切削机理上是对传统切削的重大突破,是近20多年来迅速崛起的先进制造技术之一。文章介绍了“数控高速切削加工”的内涵、优势、应用现状和发展趋向,提出了在实现高速切削加工中应关注的主要问题。 【关键词】高速;加工机理;优势;推广价值 1.前言 高速切削加工是集高效、优质、低耗于一身的先进制造技术,在常规切削加工中备受困扰的一系列问题,通过高速切削加工的应用能够得到解决。“高速切削”的概念是由德国物理学家 carl.j.salomon提出,于1931年4月提出了著名的切削速度与切削温度理论。该理论的核心是:在常规的切削速度范围内,切削温度随着切削速度的增大而提高,当到达某一速度极限后,切削温度随着切削速度的提高反而降低。随后,高速切削技术的发展经历了4个阶段:高速切削的设想与理论探索阶段(193l—l971年),高速切削的应用探索阶段(1972-1978年),高速切削实用阶段(1979--1984年),高速切削推广阶段(20世纪90年代至今)。 对高速切削加工的界定有以下几种划分思路:一是以主轴转速作为界定高速切削加工的尺度,认为主轴转速在10000-20000r/min 以上即为高速切削加工;二是以主轴直径d和主轴转速n的乘积dn 来界定,当dn值达到(5~2000)×105mm.r/min,则认为是高速

切削加工,新近开发的加工中心主轴dn值大都已超过100万;三是以切削速度高低来区分,认为切削速度跨越常规切削速度5至10倍即为高速切削加工。 2.数控高速切削加工的优势 随着切削速度的提高,单位时间毛坯材料的去除率增加,加工效率提高,从而缩短了产品的制造周期,提高了产品的市场竞争力。同时,高速切削加工的“量小速快”使切削力减少,切屑的高速排除,减少了工件的切削力和热应力变形,十分有利于刚性差和薄壁零件的加工。高速切削加工中,主轴转速的提高使切削系统的工作频率远离了机床的低阶固有频率,提高了切削系统的刚性,进而使产品表面质量获得提高。 数控高速切削加工和常规切削相比的主要优势可归纳为:第一,生产效率可提高3~10倍。第二,切削力可降低30%以上。第三,切削热95%被切屑及时带走,特别适合加工容易热变形的零件。第四,机床的激振频率远离工艺系统的固有频率,工作平稳,适合加工精密零件。第五,经济效益明显。 3.数控高速切削加工的应用 数控高速切削工艺的应用,能使制造成本降低20%左右,产生新的经济增长点。以某锻造厂加工曲轴和连杆锻模为例,传统的加工工序为:外形粗加工→仿形铣粗加工型槽→热处理→外形精加工→数控电火花粗、精加工型槽→钳工打磨抛光型槽→表面强化处理。而采用高速切削加工后的工序为:外形粗加工→热处理→外形精加

高速切削加工技术作业

高速切削加工技术 许磊 (合肥学院机械工程系13机制(1)班 1306011031) 摘要:高速切削加工作为模具制造中最为重要的一项先进制造技术,与传统加工技术相比是质的飞越,具有高生产效率、小切削力、高加工精度、低能耗等特点。可以解决在模具常规切削加工中备受困扰的一系列问题,有着强大的生命力和广阔的应用前景。 关键词:高速加工工艺、高速加工应用、高速加工趋势。 引言:对于某种机械零件而言,高速加工就是以较快的生产节拍进行加工。一个生产节拍:零件送进 →定位夹紧→刀具快进→刀具工进(在线检测)→刀具快退→工具松开、卸下→质量检测等7个基本生产环节。而高速切削是指刀具切削刃相对与零件表面的切削运动(或移动)速度超过普通切削5~10 倍,主要体现在刀具快进、工进及快退三个环节上,是高速加工系统技术中的一个子系统。对于整条自动生产线而言,高速加工的表征是以简捷工艺流程,以较短、较快的生产节拍的生产线进行生产加工。这就要求突破机械加工传统观念,在确保产品质量的前提下,改革原有加工工艺(方式),尽可能地缩短整条生产线的工艺流程。对于某一产品而言,高速加工也意味着企业要以较短的生产周期,完成研发产品的各类信息采集与处理、设计开发、加工制造、市场营销及反馈相关信息。 一、高速切削工艺 加工工艺是成功进行高速切削加工的关键技术之一。选择不当,会使刀具磨损加剧,完全达不到高速加工的目的。高速切削工艺技术包括切削参数、切削路径、刀具材料及刀具几何参数的选择等。 1.切削参数的选择 在高速切削加工中,必须对切削参数进行选择,其中包括刀具接近工件的方向、接近角度、移动的方向和切削过程(顺铣还是逆铣)等. 2.切削路径的选择 切削路径的选择与优化在高速切削加工中,除了刀具材料和刀具几何参数的选择外,还要采取不同的切削路径才能得到较好的切削效果。切削路径优化的目的是提高刀具耐用度,提高切削效率,获得最小的加工变形,提高机床走刀利用率,充分发挥高速加工的优势。主要包括: 1)走刀方向的优化在走刀方向的选择上,以曲面平坦性为评价准则,确定不同的走刀方向选取方案;对 于曲率变化大的曲面以最大曲率半径方向为最优进给方向,对曲率变化小的曲面,以单条刀轨平均长度最长为原则选择走刀方向。 2)刀位轨迹生成按照刀位路径尽可能简化,尽量走直线,路径尽量光滑的要求选择加工策略,选择合适 的插补方法,保证加工面残留高度的要求,采用过渡圆弧的方法处理加工干涉区,这样在加工时就不需要减速,提高加工效率。 3)柔性加减速和断刀的几率。选取合适的加减速方式,减少启动冲击,保持机床的精度,减少刀具颤振。 3.刀具材料的选择 刀具材料的合理选择遵循以下原则: 1)切削刀具材料与加工对象的力学性能匹配,主要指刀具与工件材料的强度、韧性和硬度等力学性能相 匹配,具有优良高温力学性能的刀具尤其适合高速切削加工。对于硬脆刀具(如硬质合金和陶瓷)的磨损起决定作用的主要因素是其力学性能。 2)切削刀具材料与加工对象的物理性能匹配,主要是指刀具与工件材料的熔点、弹性模量、导热系数、 热膨胀系数、抗热冲击能力等物理参数要相匹配。加工导热性差的工件时,应采用导热较好的刀具材料,以使切削热得以迅速传出而降低切削温度。对于精密加工则要选用热膨胀系数小的刀具材料(金刚石等)。高速干切削、高速硬切削和高速加工黑色金属的最高切削速度主要受限于刀具材料的耐热

高速切削加工技术

高速切削加工技术 在现代机械切削加工技术中,高速切削正在越来越多地被人提及,其技术已开始被使用,随之而来的,首先是高速机床,那么,高速切削与传统切削技术究竟有什么不同? 其实现的条件是什么? 实现它有哪些益处? 其适用性怎么样呢? 本文将试图回答这些问题,并且尽可能结合目前在世界上居领先水平的瑞士MIKRON公司的机床的结构、特点来分析,用它同目前国内仍在普遍应用的传统的加工方法和切削理论相比较,促进高新技术在国内的应用和普及。 缩短加工时的切削与非切削时间,对于复杂形状和难加工材料及高硬度材料减少加工工序,最大限度地实现产品的高精度和高质量,是我们提高劳动生产率、实现经济性生产的一个重要的目标。有人认为,一提高速加工,就是主轴转速要几万转;只要主轴转速一达到几万转,就可以实现高速切削,这其实是不全面的。 随着科学技术的发展,现代机床已经具备了下面的条件,也只有具备这些条件,才会使得高速切削成为可能。 1.机电一体化的主轴,即所谓电主轴。现代化的主轴是电机与主轴有机地结合成一体,采用电子传感器来控制温度,自有的水冷或油冷循环系统,使得主轴在高速下成为“恒温”;又由于使用油雾润滑、混合陶瓷轴承等新技术,使得主轴可以免维护、长寿命、高精度。由于采用了机电一体化的主轴,减去了皮带轮、齿轮箱等中间环节,其主轴转速就可以轻而易举地达到0~42000r/min,甚至更高。不仅如此,由于结构简化,造价下降,精度和可*性提高,甚至机床的成本也下降了。噪声、振动源消除,主轴自身的热源也消除了。MIKRON公司便采用了本集团“STEP-TEC”公司生产的电主轴,这种电主轴采用了其特别的、最先进的矢量式闭环控制、高动平衡的主轴结构、油雾润滑的混合陶瓷轴承,可以随室温调整的温度控制系统,确保主轴在全部工作时间内温度衡定。 何为矢量式闭环控制呢?其实就是借助数/模转换,将交流异步电动机的电量值变换为直流电模型,这样,既可实现用无电刷的交流电机来实现直流电机的优点,即在低转速时,保持全额扭矩,功率全额输出,主轴电机快速起动和制动。以UCP710机床切削45#钢为例,用STEP-TEC 的主轴铣削,铣刀直径?63mm, 主轴转速为1770r/min,金切量为540cm3/min;在无底孔钻孔时,钻头直径?50mm, 转速1350r/min,可一次钻出,而无需常用的先打中心孔,而后钻孔再扩孔的方法。 2.机床普遍采用了线性的滚动导轨,代替过去的滑动导轨,其移动速度、摩擦阻力、动态响应,甚至阻尼效果都发生了质的改变。用手一推就可以将几百公斤甚至上千公斤的重工作台推动。其特有的双V型结构,大大提高了机床的抗扭能力;同时,由于磨损近乎为零,导轨的精度寿命较之过去提高几倍。又因为配合使用了数字伺服驱动电机,其进给和快速移动速度已经从过去最高的6m/min,提高到了现在的20~60m/min,MIKRON公司的最新型机床使用线性电机,进给和快移速度可达80m/min。 3.目前最先进的数控系统已经可以同时控制8根以上的轴,实现五轴五联动,甚至六轴五联动,多个CPU,数据块的处理时间不超过0.4ms;同时,均配置功能强大的后置处理软件,运算速度快,仿真能力强且具备程序运行中的“前视”功能,随时干预,随时修改。外接插口,数据传输速度快,甚至可以与以太网直联;加上全闭环的测量系统,配合使用数字伺服驱动技术,机床的线性移动可以实现1~2g的加速和减速运动。 4.机床床身结构进一步优化,现代机床均采用落地式床身,整体铸铁结构,龙门式框架的主轴立柱,尽可能由主轴部件来实现二轴甚至三轴的线性移动,考虑到刀具重量的变化极小,这样,在工件乃至工作台不进行快速线性移动的情况下,机床快速线性移动的部件的重量近乎常量,因此,更容易实现快速加速和减速情况下的运动惯量及实现动态平衡,减少由于动态冲击所带来的

外文翻译---高速切削加工的发展及需求

毕业设计(论文)外文资料翻译 学院(系):机械工程系 专业:机械工程及自动化 姓名: 学号: 外文出处:High-speed machining and demand For the development 附件:1.外文资料翻译译文;2.外文原文

附件1:外文资料翻译 高速切削加工的发展及需求 高速切削加工是当代先进制造技术的重要组成部分,拥有高效率、高精度及高表面质量等特征。本文介绍此技术的定义、发展现状、适用领域以及中国的需求情况。 高速切削加工是面向21世纪的一项高新技术,它以高效率、高精度和高表面质量为基本特征,在汽车工业、航空航天、模具制造和仪器仪表等行业中获得了愈来愈广泛的应用,并已取得了重大的技术经济效益,是当代先进制造技术的重要组成部分。 高速切削是实现高效率制造的核心技术,工序的集约化和设备的通用化使之具有很高的生产效率。可以说,高速切削加工是一种不增加设备数量而大幅度提高加工效率所必不可少的技术。高速切削加工的优点主要在于:提高生产效率、提高加工精度及降低切削阻力。 有关高速切削加工的含义,目前尚无统一的认识,通常有如下几种观点:切削速度很高,通常认为其速度超过普通切削的5-10倍;机床主轴转速很高,一般将主轴转速在10000-20000r/min以上定为高速切削;进给速度很高,通常达15-50m/min,最高可达90m/min;对于不同的切削材料和所釆用的刀具材料,高速切削的含义也不尽相同;切削过程中,刀刃的通过频率(Tooth Passing Frequency)接近于“机床-刀具-工件”系统的主导自然频率(Dominant Natural Frequency)时,可认为是高速切削。可见高速切削加工是一个综合的概念。 1992年,德国Darmstadt工业大学的H. Schulz教授在CIRP上提出了高速切削加工的概念及其涵盖的范围,如图1所示。认为对于不同的切削对象,图中所示的过渡区(Transition)即为通常所谓的高速切削範围,这也是当时金属切削工艺相关的技术人员所期待或者可望实现的切削速度。 高速切削加工对机床、刀具和切削工艺等方面都有一些具体的要求。下面分别从这几个方面阐述高速切削加工技术的发展现状和趋势。 现阶段,为了实现高速切削加工,一般釆用高柔性的高速数控机床、加工中心,也有釆用专用的高速铣、钻床。这些设备的共同之处是:必须同时具有高速主轴系

高速切削加工技术

高速切削加工技术 高速切削加工技术是21世纪的一种先进制造技术,有着强大的生命力和广阔的应用前景。通过高速切削加工技术可以解决在汽车模具常规切削加工中备受困扰的一系列问题。 近年来,在美国、德国、日本等工业发达国家高速切削加工技术在大部分的模具公司都得到了广泛应用,85%左右的模具电火花成形加工工序已被高速加工所替代。高速加工技术集高效、优质、低耗于一身,已成为国际模具制造工艺中的主流。 我国有关汽车模具高速切削加工技术的研究起步较晚。据国际模协秘书长罗百辉介绍,我国众多模具企业相继从美国、德国、法国、日本等国家购买了大量高速加工设备及切削刀具,并在实践中摸索汽车模具高速切削加工的工艺技术,取得了一些成功经验。但是,一方面,引进设备不等于引进技术。高速切削尤其是大型汽车覆盖件模具的高速切削方面,没有成功的经验可供借鉴,怎样使引进的设备尽快发挥出应有的作用是摆在企业管理者和工程技术人员面前的一大课题;另一方面,技术人员在工作中边学习边应用,摸索、积累了一定的高速切削加工实例、工艺参数和工作经验,怎样将这些宝贵的经验和教训总结保存供其他技术人员借鉴、避免多走弯路也是一项难题。 高速切削加工技术在国内外汽车模具制造行业得到了广泛的应用,并且已取得了巨大的效益,但是高速切削加工的机理和相关理论至今仍不完善,针对汽车模具的高速切削数据库尚未建立。国内外企业选择高速切削刀具参数和高速切削加工参数的方式仍以传统的“试

切”法和“经验”法为主,在加工某一新型材料时,往往需要使用多种刀具进行重复切削试验,研究分析刀具的磨损、破损方式及其原因,从中找出一组最佳的刀具材料和加工参数,如此反覆多次,盲目性大,并且浪费大量的人力、财力和资源。而针对特种材料如合金铸铁、高强度合金钢、超级合金(如钛合金)等材料的高速切削加工,如何根据材料特性选择合适的切削刀具,如何设计合理的切削参数,目前仍在研究和发展中。 通过国内外汽车模具制造行业的高速切削加工技术实践应用,高速切削加工技术具有如下优势: 1、高速切削加工提高了加工速度 高速切削加工以高于常规切削10倍左右的切削速度对汽车模具进行高速切削加工。由于高速机床主轴激振频率远远超过“机床—刀具—工件”系统的固有频率范围,汽车模具加工过程平稳且无冲击。 2、高速切削加工生产效率高 用高速加工中心或高速铣床加工模具,可以在工件一次装夹中完成型面的粗、精加工和汽车模具其他部位的机械加工,即所谓“一次过”技术(One Pass Machining)。高速切削加工技术的应用大大提高了汽车模具的开发速度。 3、高速切削加工可获得高质量的加工表面 由于采取了极小的步距和切深,高速切削加工可获得很高的表面质量,甚至可以省去钳工修光的工序。 4、简化加工工序

(高速切削技术及其应用)

长春汽车工业高等专科学校 继续教育学院 毕业论文(设计)中文题目:高速切削加工技术及其应用的研究 英文题目:High speed cutting technology and its application 毕业专业:汽车机械制造技术 学生姓名:高越 准考证号:290414100432 指导教师:穆春燕 二零一五年八月 独创性声明

本人声明所呈交的论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得长春汽车工业高等专科学校或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 论文作者签名:签字日期:年月日 学位论文版权使用授权书 本论文作者完全了解长春汽车工业高等专科学校有关保留、使用论文的规定。特授权长春汽车工业高等专科学校可以将论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。 (保密的论文在解密后适用本授权说明) 论文作者签名:导师签名: 签字日期:年月日签字日期:年月日

目录 前言 (05) 1.高速切削概念、内容及特点 (06) 1.1高速切削概念 (06) 1.2高速切削的研究内容 (06) 1.3高速切削特点 (07) 2.高速切削的技术体系 (08) 3.高速切削的技术关键及目前解决方案 (08) 3.1高速切削的技术关键 (08) 3.2高速切削关键技术解决方案 (09) (1)高速切削机床 (09) (2)高速切削刀具 (11) (3)C A D/C A M (11) (4)高速切削的数控编程 (11) 4.高速切削加工技术的应用 (12) 4.1高速切削在航空航天工业中的应用 (12) 4.2 高速切削在纤维增强塑料中的应用 (12) 4.3高速切削在模具制造业中的应用 (12) 4.4 高速切削在汽车制造业中的应用 (12) 5.高速切削加工技术的发展前景与展望 (12) 6.答谢辞 (14) 7.参考文献 (14)

国内外先进切削加工理论

国内外先进切削加工理论 1 引言 20世纪80年代以来,随着全球化市场竞争日趋激烈,为争取技术优势,各国纷纷开展先进制造技术的研究与开发。伴随着信息技术的不断发展,先进制造技术一方面发展了以数控机床为基础的自动化加工技术,另一方面发展了各种新的加工方法和加工工艺,比较典型的有(超)高速切削、干切削、硬切削、(超)精密切削技术等。微机械(或微型装置)是另一个新型研究领域,其加工技术的开发具有巨大的产业化应用前景。虚拟切削加工技术是在计算机上借助虚拟现实、立体建模和仿真技术,检验产品的设计合理性和可加工性,对产品的加工过程进行模拟与仿真,预测产品的加工质量、制造周期、使用性能等,以便及时修改设计,缩短产品的研制周期,获得最佳产品质量、最低生产成本和最短开发周期。本文主要综述(超)高速切削、干切削、硬切削、(超)精密切削、虚拟切削加工技术的主要研究内容及其关键技术。 2 高速切削加工技术 提高切削速度一直是切削加工领域十分关注并为之不懈努力的重要目标。虽然目前国内外专家尚未对高速切削的切削速度的界定达成共识,但通常认为高速切削的切削速度比常规切削速度高5~10倍以上。 高速切削加工技术是在机床结构及材料、机床设计制造技术、高速主轴系统、快速进给系统、高性能CNC 控制系统、高性能刀夹系统、高性能刀具材料及刀具设计制造技术、高效高精度测量测试技术、高速切削机理、高速切削工艺等诸多相关硬件与软件技术综合应用的基础上发展起来的。因此,高速切削加工是一个复杂的系统工程,高速切削加工技术体系(见图1)是机床、刀具、工件、加工工艺、切削过程监控、切削机理等诸多方面的有机集成。 高速切削加工具有以下特点:①切削力随着切削速度的提高而下降;②切削产生的热量绝大部分被切屑带走;③加工表面质量提高;④在高速切削范围内机床的激振频率远离工艺系统的固有频率范围。以上特点有利于提高生产效率;有利于改善工件的加工精度和表面质量;有利于减少模具加工中的手工抛光;有利于减小工件变形;有利于使用小直径刀具;有利于加工薄壁零件和脆性材料;有利于加工较大零部件;可替代其它加工工艺(如磨削),获得显著的经济效益。但是,随着切削速度的提高,刀具寿命会下降。 目前,航空制造业(尤其是大型整体铝合金薄壁飞机结构件的加工)、模具制造业、汽车制造业等行业均已积极采用高速切削加工技术。在实际生产应用中,应根据具体加工情况合理选用高速机床和加工工艺,不同的生产领域和加工对象对高速机床的性能要求和适用的工艺方法是有区别的。适于高速切削加工的

精密加工高速切削加工刀具

学号:1145522222 整理人:建国 专业:机制 高速切削加工刀具材料术 摘要:论述了高速切削的概念和优越性,介绍了高速切削加工所使用的先进刀具材料和刀具如:瓷刀具、金刚石刀具、立方氮化硼刀具、涂层刀具的性能特点及其应用,探讨了高速切削刀具材料的发展前景和研究方向。 关键词高速切削刀具材料性能特点瓷CBN 金刚石

高速切削(High Speed Machining简称HSM)概念的起源可以追溯到20世纪20年代末,德国切削物理学家Carl.J.Salomon博士1929年进行的超高速切削模拟试验,并于1931年4月发表了著名的超高速切削理论,提出了高速切削的设想。Salomon指出:在常规的切削围,切削温度随着切削速度的增大而提高(图l中的区域A)。但是,当切削速度增大到某一数值后,切削速度再增大,切削温度反而下降,并指出峙之值与工件材料的种类有关,对于每一种工件材料,存在一个速度围由于切削温度太高,高于刀具材料所允许的最高温度,任何刀具都无法承受,切削加工不可能进行,这个围被称之为“死谷”。但是当切削速度进一步提高,超过这个速度围后,切削温度反而降低,同时切削力也会大幅度降低(如区域C)。他认为对于一些工件材料应该有一个临界的切削速度,在该切削速度下切削温度最高。在高速切削区进行切削,有可能用现有的刀具进行,从而成倍地提高机床的生产率。几乎每一种金属材料都有临界切削速度,只是不同材料的速度值不同而已。

高速切削是一个相对的概念。由于不同的加工方式、不同工件有不同的高速切削围,所以很难就高速切削的速度围给出确切的定义。高速切削加工不能简单地用某一具体的切削速度值来定义。切削条件不同,高速切削速度围亦不同。1992年在CIRP会议上发表了不同材料大致可行的和发展的切削速度围。可以说,目前各国的切削速度仅在高速阶段, 尚未达到CIRP(国际生产工程科学院)所界定的超高速切削阶段。 1 高速切削的优越性 与传统的切削加工方法相比,高速切削具有无可比拟的优越性。 第一、切削力低。由于切削速度高,导致剪切变形区狭窄、剪切角增大、变形系数减小和切屑流出速度快,从而使切削变形减小、切削力降低。尤其是法向切削力,比常规切削低30%--一90%。刀具耐用度可提高70%,特别适合细长类、薄壁类以及刚性差的工件加工。 第二热变形小。在高速切削时,90%~95%以上的切削热来不及传给工件就被高速流出的切屑带走,工件累积热量极少,工件基本上保持冷态,因而不会

数控机床中高速切削加工技术的应用

2012年第11卷第15期 产业与科技论坛2012. (11).15Industrial &Science Tribune 数控机床中高速切削加工技术的应用探讨 □吴卫军 【内容摘要】目前高速切削技术以其高效率、低磨损的技术特点,在制造行业内的应用正不断增强,尤其是在精密仪器的制造 上,更是离不开高速切削的技术支持。这一技术对其运行设备要求严格,目前,数控机床是高速切削技术应用的最好平台,该技术也对数控机床设备提出了一定的要求。 【关键词】数控机床;高速切削;电主轴;刀具【作者单位】吴卫军,江苏省东台中等专业学校 当前,社会的发展对制造领域提出了更高的要求,随着生产力的不断提升,高效率、高质量、高节能的机械加工水平已经成为了整个数控加工行业的共同追求。二十世纪三十年代,随着高速切削理念的提出和发展,时至今日,在加工效率和加工质量上兼具优势的高速切削技术已经成为数控机床的首要选择。高速切削是一个相对概念,并且随着时代的进步而不断变化。一般认为高速切削或超高速切削的速度 为普通切削加工的5 10倍[1] 。在汽车制造、航空航天技术、船舶加工以及模具的制造等需要精密加工的领域几乎都能看到高速切削技术的应用,这也反映了高速切削技术在数控机床中占据的位置必将越来越重要的发展趋势。 一、高速切削的效益优势1931年,德国切削物理学家萨洛蒙(Carl.j.Salomon )博士研究成果得出:被加工材料都有一个临界切削速度,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的五至十倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损 随切削速度增大而减小[2] 。高速切削技术这一特性为切削过程带来了必然的高效益,具体表现如下: (一)生产率上的优势。高速切削首先带来了切削速度的提升,速度的改变使相同时间内的切削量至少提高四倍,这就使得加工工序的高度集中变为了可能。常规的切削过程经常要把工件按加工的精细程度进行划分,分工序进行分别加工,这种情况需要占用一定的工件装卸和搬运时间。采用高速切削技术后,可以将繁复的加工工序简单化,以前要分工进行的步骤都可以集中在同一道工序内进行加工,而且基本上不会对工件的精度和质量造成影响。此外,由于高速切削技术的引入,切削刀具的使用寿命大大地延长了,在另一方面也能够减少刀具替换和托盘交换的时间,从而极大地提高工件的生产率。 (二)加工精度上的优势。高速切削技术不仅不会降低工件的加工精度,反而能够做到工件质量的提升,这不得不说是高速切削的魅力所在。 1.工件所受切削力变小。高速切削的技术原理不同于常规的切削技术,在切削时运行速度高,切削力却比较小,切削速度的提高和切削力的减小,使得工件因夹压受力导致形状 异化的可能性大大降低, 故而大大地提升了工件的合格率,这种切削技术尤其适用于一些较细长、较纤薄的精密部件的加工。 2.工件受热降低。在常规切削加工中,由于切削带来的高温也是导致部分工件变形的主要原因之一。采用高温切削技术以后,由于切削热量的降低及切屑的迅速散热效果,工件受热量大大降低,这也基本上避免了由于高温受热所造成的工件变形。 由于高速切削在这两方面的技术优势,制造出来的工件 往往在尺寸要求、 表面平整性、光滑性等方面具有较高的精度,这是常规切削工艺所难以比拟的。 二、高速切削加工技术对数控机床提出的要求 高速切削技术对使用设备在运行速度、设备精度及稳定程度上都有较高的要求。目前,数控机床是最符合高速切削加工技术要求的加工设备。然而, 当前的数控机床还存在提升和进步的空间,在“软件”和“硬件”两方面都有待于进一步 的改善和提升,以便更好地适应先进的高速切削技术的内在要求。具体如下: (一)采用电主轴作为数控机床的主轴。主轴单元的设计,是实现高速加工的最关键的技术领域之一,同时也是高速加工机床最为关键的部件,它不仅要能在很高的转速下旋转, 而且要有很高的同轴度,高的传递力矩和传动功率、良好的散热或冷却装置,要经过严格的动平衡矫正,主轴部件的设计要保证具有良好的动态和热态特性,具有极高的角加减速度来保证在极短的时间内实现升降速和指定位置的准停[3] 。而电主轴能够保证机床主轴和发电机的转子轴合二为一,在运行的平稳性上达到更好的效果。并且电主轴在温度的保持上具有一定的独到之处,对于温差的控制水平更为先进,在轴承支撑和润滑方面采用了最新的技术,保证了主轴的使用寿命和高性能。 (二)改善伺服单元的性能。切削速度的提升需要与之配套的进给,才能更好地体现先进的高速切削技术的工作水平。由于主轴转速的提高,机床进给速度也必须大幅提高(60m /min 以上),以保持刀具每齿或每转进给量基本不变,从而保证加工表面质量和刀具寿命。每故而在数控机床伺服单元的性能上,应尽量采用响应速度较高的配套设施。在 · 57·

高速切削加工技术的现状和发展

高速切削加工技术的现状和发展(1) 中国工程院院士、山东大学艾兴教授 一、概述 机械加工的发展趋势是高效率、高精度、高柔性和绿色化,切削加工的发展方向是高速切削加工,在发达国家,它正成为切削加工的主流。50年来,切削技术的极大进步说明了这一点:今天切削速度高达8000m/min,材料切除率达150~1500cm3/min,超硬刀具材料硬度达3000~8000HV,强度达1000Mpa,加工精度从10um到0.1um。干(准)切削日益广泛应用。随切削速度提高,切削力降低大致为25~30%以上;切削温度增加逐步缓慢;加工表面粗糙度降低1~2级;生产效率提高,生产成本降低。 高速切削技术不只是一项先进技术,它的发展和推广应用将带动整个制造业的进步和效益的提高。在国外,20世纪30年代德国Salomon博士提出高速切削理念以来,经半个世纪的探索和研究,随数控机床和刀具技术的进步,80年代末和90年代初开始应用并快速发展到广泛应用于航空航天、汽车、模具制造业加工铝、镁合金、钢、铸铁及其合金、超级合金及碳纤维增强塑料等复合材料,其中加工铸铁和铝合金最为普遍。 不同材料的高速切削加工速度范围 高速切削技术在国内起步较晚,20世纪80年代中期开始研究陶瓷刀具高速切削淬硬钢并在生产中应用,其后引起对高速切削加工的普遍关注,目前主要还是以高速钢、硬质合金刀具为主,硬质合金刀具切削速度≤100~200m/min,高速钢刀具在40m/min以内。但在汽车、模具、航空和工程机械制造业进口了一大批数控机床和加工中心,国内也生产了一批数控机床,随着高速切削的深入研究,这些行业有的已逐步应用高速切削加工技术,并取得很好的经济效益。 二、高速切削加工理论基础 (1) 切屑形成特征 不同材料在不同状态下的切屑形态: (a) 供货状态,切削速度127.2m/min (b)硬度325HB,切削速度125.5m/min

高速切削的所罗门原理

一、高速切削的原始定义1931年,德国切削物理学家萨洛蒙 (Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利(Machine with high cutting speeds)的所罗门原理: 被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。 切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。 实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。 二、现代高速切削技术的概念所罗门原理出发点是用传统刀具进行高速度切削,从而提高生产率。 到目前为止,其原理仍未被现代科学研究所证实。 但这一原理的成功应该不只局限于此。 高速切削技术是切削技术的重要发展方向之一,从现代科学技术的角度去确切定义高速切削,目前还没有取得一致,因为它是一个相对概念,不同的加工方式,不同的切削材料有着不同的高速切削速度和加工参数。 这里包含了高速软切削、高速硬切削、高速湿切削和高速干切削等等。 事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能CNC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。

高速切削加工技术论文

高速切削加工技术 齐齐哈尔工程学院机械本113 唐钊伟 摘要:介绍高速切削加工的定义,高速切削加工中机床的选择,高速切削加工刀具材料的介绍及高速切削加工工艺的有关知识。 关键词:高速切削加工;高速切削刀具;高速切削工艺; 一、高速切削加工的定义。 高速切削加工是一种比常规切削速度高得多的先进制造工艺。它的巨大吸引力在于不但可以大幅度提高零件的加工效率、降低加工成本。而且可以使零件的表面加工质量和加工精度达到更高的水平。高速加工已在航空、航天、汽车以及超精密微细加工等领域获得了广泛的应用。资料表明,一般模具和工具。有6O%的机加工量可用高速切削加工工艺来完成的。高速切削概念起源于德国切削物理学家Carl Salmon的著名切削试验及其物理引伸。他认为一定的工件材料对应有一个临界切削速度,其切削温度最高。在常规切削范围内。切削温度随着切削速度的增大而提高,但当切削速度提高到一定的程度时。切削温度不但不升高反而会降低。对每一种工件材料都存在一个速度范围。在该速度范围内。由于切削温度过高,刀具材料无法承受。即切削加工不可能进行,称该区为“死谷”。因此。只有越过“死谷”才可用现有的刀具进行高速切削。所以高速切削是一个相对概念。通常把采用比常规切削速度高得多(一般为5一l0倍)的切削加工称为高速切削。如当切削速度对钢材达到380m/min以上、铸铁700 m/rain以上、铜材1000m/min 以上、铝材1100m/min以上时称为高速切削加工。 二、高速切削加工技术优势。 高速切削加工技术是21世纪的一种先进制造技术,有着强大的生命力和广阔的应用前景。通过高速切削加工技术,可以解决在汽车模具常规切削加工中备受困扰的一系列问题。近几年来,在美国、德国、日本等工业发达国家高速切削加工技术在大部分的模具公司都得到了广泛应用,85%左右的模具电火花成形加工工序已被高速加工所替代。高速加工技术集高效、优质、低耗于一身,已成为国际模具制造工艺中的主流。通过国内外汽车模具制造行业的高速切削加工技术实践应用,高速切削加工技术具有如下优势:(一)、高速切削加工提高了加工速度 (二)、高速切削加工生产效率高 (三)、高速切削加工可获得高质量的加工表面

高速切削技术

高速切削的加工技术(2008-08-20 14:07:47) 标签:高速切削min主轴转速刀具兰 生公司数控机床杂谈 高速切削的加工技术 在现代机械切削加工技术中,高速切削正在越来越多地被人提及,其技术已开始被使用,随之而来的,首先是高速机床,那么,高速切削与传统切削技术究竟有什么不同? 其实现的条件是什么? 实现它有哪些益处? 其适用性怎么样呢? 本文将试图回答这些问题,并且尽可能结合目前在世界上居领先水平的瑞士MIKRON公司的机床的结构、特点来分析,用它同目前国内仍在普遍应用的传统的加工方法和切削理论相比较,促进高新技术在国内的应用和普及。 缩短加工时的切削与非切削时间,对于复杂形状和难加工材料及高硬度材料减少加工工序,最大限度地实现产品的高精度和高质量,是我们提高劳动生产率、实现经济性生产的一个重要的目标。 有人认为,一提高速加工,就是主轴转速要几万转;只要主轴转速一达到几万转,就可以实现高速切削,这其实是不全面的。 随着科学技术的发展,现代机床已经具备了下面的条件,也只有具备这些条件,才会使得高速切削成为可能。 1.机电一体化的主轴,即所谓电主轴。现代化的主轴是电机与主轴有机地结合成一体,采用电子传感器来控制温度,自有的水冷或油冷循环系统,使得主轴在高速下成为“恒温”;又由于使用油雾润滑、混合陶瓷轴承等新技术,使得主轴可以免维护、长寿命、高精度。由于采用了机电一体化的主轴,减去了皮带轮、齿轮箱等中间环节,其主轴转速就可以轻而易举地达到0~42000r/min,甚至更高。不仅如此,由于结构简化,造价下降,精度和可靠性提高,甚至机床的成本也下降了。噪声、振动源消除,主轴自身的热源也消除了。MIKRON公司便采用了本集团“STEP-TEC”公司生产的电主轴,这种电主轴采用了其特别的、最先进的矢量式闭环控制、高动平衡的主轴结构、油雾润滑的混合陶瓷轴承,可以随室温调整的温度控制系统,确保主轴在全部工作时间内温度衡定。 何为矢量式闭环控制呢?其实就是借助数/模转换,将交流异步电动机的电量值变换为直流电模型,这样,既可实现用无电刷的交流电机来实现直流电机的优点,即在低转速时,保持全额扭矩,功率全额输出,主轴电机快速起动和制动。以UCP710机床切削45#钢为例,用STEP-TEC的主轴铣削,铣刀直径?63mm, 主轴转速为1770r/min,金切量为540cm3/min;在无底孔钻孔时,钻头直径?50mm, 转速1350r/min,可一次钻出,而无需常用的先打中心孔,而后钻孔再扩孔的方法。 2.机床普遍采用了线性的滚动导轨,代替过去的滑动导轨,其移动速度、摩擦阻力、动态响应,甚至阻尼效果都发生了质的改变。用手一推就可以将几百公斤甚至上千公斤的重工作台推动。其特有的双V型结构,大大提高了机床的抗扭能力;同时,由于磨损近乎为零,导轨

相关文档
最新文档