2不确定性推理1基本概念2不确定性推理中的基本问题不确定

2不确定性推理1基本概念2不确定性推理中的基本问题不确定
2不确定性推理1基本概念2不确定性推理中的基本问题不确定

小学数学四年级上册《不确定性》资料不确定性原理

小学数学四年级上册 《不确定性》资料 不确定性原理: 不确定性原理(Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡(Werner Heisenberg)于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x 的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。 德国物理学家海森堡1927年提出的不确定性原理是量子力学的产物。这项原则陈述了精确确定一个粒子,例如原子周围的电子的位置和动量是有限制。这个不确定性来自两个因素,首先测量某东西的行为将会不可避免地扰乱那个事物,从而改变它的状态;其次,因为量子世界不是具体的,但基于概率,精确确定一个粒子状态存在更深刻更根本的限制。 海森伯测不准原理是通过一些实验来论证的。设想用一个γ射线显微镜来观察一个电子的坐标,因为γ射线显微镜的分辨本领受到波长λ的限制,所用光的波长λ越短,显微镜的分辨率越高,从而测定电子坐标不确定的程度△q就越小,所以△q∝λ。但另一方面,光照射到电子,可以看成是光量子和电子的碰撞,波长λ越短,光量子的动量就越大,所以有△q∝1/λ。再比如,用将光照到一个粒子上的方式来测量一个粒子的位置和速度,一部分光波被此粒子散射开来,由此指明其位置。但人们不可能将粒子的位置确定到比光的两个波峰之间的距离更小的程度,所以为了精确测定粒子的位置,必须用短波长的光。但普朗克的量子假设,人们不能用任意小量的光:人们至少要用一个光量子。这量子会扰动粒子,并以一种不能预见的方式改变粒子的速度。所以,位置要测得越准确,所需波长就要越短,单个量子的能量就越大,这样粒子的速度就被扰动得更厉害。简单来说,就是如果要想测定一个量子的精确位置的话,那么就需要用波长尽量短的波,这样的话,对这个量子的扰动也会越大,对它的速度测量也会越不精确。如果想要精确测量一个量子的速度,那就要用波长较长的波,那就不能精确测定它的位置[3] 。换而言之,对粒子的位置测得越准确,对粒子的速度的测量就越不准确,反之亦然。[3] 经过一番推理计算,海森伯得出:△q△p≥?/2。海森伯写道:“在位置被测定的一瞬,即当光子正被电子偏转时,电子的动量发生一个不连续的变化,因此,在确知电子位置的瞬间,关于它的动量我们就只能知道相应于其不连续变化的大小的程度。于是,位置测定得越准确,动量的测定就越不准确,反之亦然。”

透过不确定性原理看物理世界

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 题目:透过不确定性原理看物理世界 姓名:任丽行 学号:0103 专业:物理学 年级: 2008级 指导老师:宗福建 山东大学物理学院 二零一零年十二月 1

透过不确定性原理看物理世界 物理学院 2008级任丽行学号:0103 【摘要】不确定性原理由海森堡提出,表述了一个粒子的位置和动量不能被同时确定的最小程度。当粒子的位置非常确定时,其动量将会非常不确定。由此可以推广到许多对共轭物理量之间。不确定性原理是量子力学几率解释和波粒二象性的必然结果。在量子力学的发展史上,不确定性原理起到了极为重要的推动作用,尤其是玻尔与爱因斯坦两位物理学大师关于海森堡关系的争论,更是为相对论量子力学的发展奠定了基础。 【关键词】不确定性;海森堡;波粒二象性;理想实验 1.引言 本文主要研究了海森堡不确定性原理提出的背景、推理过程、后续的讨论与发展,以及它对量子力学与整个物理学的发展所起的推动作用。文中主要涉及三位物理学大师:海森堡、玻尔和爱因斯坦。由海森堡提出并论证的不确定性关系是玻尔互补原理的最好证明。爱因斯坦通过设计一系列的理想实验企图反驳不确定性原理,没想到反过来证明了不确定性原理的正确性。本文就是以不确定性原理为主线,把它与互补原理及波粒二象性联系在一起,简单地讨论了它的涵义以及量子力学的一些基本问题,从而透过不确定性原理来瞻仰近代物理学的发展历程。 2.理论背景 不确定性原理又名“测不准原理”,英文名为“Uncertainty principle”,是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。不确定性原理是指在一个量子力学系统中,一个粒子的位置和它的动量不可被同时确定。位置和动量满足如下关系: 2

不确定性原理的前世今生

不确定性原理的前世今生 · 数学篇(一) 在现代数学中有一个很容易被外行误解的词汇:信号 (signal)。当数学家们说起「一个信号」的时候,他们脑海中想到的并不是交通指示灯所发出的闪烁光芒或者手机屏幕顶部的天线图案,而是一段可以具体数字化的信息,可以是声音,可以是图像,也可是遥感测量数据。简单地说,它是一个函数,定义在通常的一维或者多维空间之上。譬如一段声音就是一个定义在一维空间上的函数,自变量是时间,因变量是声音的强度,一幅图像是定义在二维空间上的函数,自变量是横轴和纵轴坐标,因变量是图像像素的色彩和明暗,如此等等。 在数学上,关于一个信号最基本的问题在于如何将它表示和描述出来。按照上面所说的办法,把一个信号理解成一个定义在时间或空间上的函数是一种自然而然的表示方式,但是它对理解这一信号的内容来说常常不够。例如一段声音,如果单纯按照定义在时间上的函数来表示,它画出来是这个样子的: 这通常被称为波形图。毫无疑问,它包含了关于这段声音的全部信息。但是同样毫无疑问的是,这些信息几乎没法从上面这个「函数」中直接看出来,事实上,它只不过是巴赫的小提琴无伴奏 Partita No.3 的序曲开头几个小节。下面是巴赫的手稿,从某种意义上说来,它也构成了对上面那段声音的一个「描述」: 这两种描述之间的关系是怎样的呢?第一种描述刻划的是具体的信号数值,第二种描述刻划的是声音的高低(即声音震动的频率)。人们直到十九世纪才渐渐意识到,在这两种描述之间,事实上存在着一种对偶的关系,而这一点并不显然。 1807 年,法国数学家傅立叶 (J. Fourier) 在一篇向巴黎科学院递交的革命性的论文 Mémoire sur la propagation de la chaleur dans les corps solides (《固体中的热传播》)中,提出了一个崭新的观念:任何一个函数都可以表达

测不准关系理论推导

学号:20125041015 课程论文 学院:物理电子工程学院 专业:物理学 年级:2012级物理学班 姓名:坤 论文题目:测不准关系的理论推导 成绩:

2016 年 1 月 2 日 目录 摘要 (1) Abstract (1) 1.引言 (1) 2.历史发展 (1) 3.测不准关系实验验证 (3) 4.相关质疑 (3) 5.意义 (4) 5.1理论意义 (4) 5.2现实意义 (4) 6.总结 (4) 参考文献 (4)

测不准关系的理论推导 学生:坤学号: 学院:物理电子工程学院专业:物理学 摘要:在量子力学里,测不准关系表明,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式。一个微观粒子的某些物理量,如位置和动量,或方位角与动量矩,还有时间和能量等,不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。 关键词:波粒二象性,不确定原理 1引言 测不准原理,又称“不确定性原理”、“不确定关系”,是量子力学中的一个重要关系,也是一个相当深奥的问题[1]。表明粒子的位置与动量不可同时被确定,它反映了微观客体的特征。即一个微观粒子的某些成对的物理量不可能同时具有确定的数值。例如位置与动量、力一位角与角动量,其中一个量越确定,另一个量就越不确定。它来源于物质的波粒二象性,测不准关系是从粒子的波动性中引出来的。 2历史发展 1900年普朗克为了解释黑体辐射的实验规律提出能量量子化的概念;1905年爱因斯坦为了解释光电效应引入光子的概念;1913年玻尔提出的氢原子理论中运用光子概念构造了频率条件;1923年,德布罗意提出物质波假设:实物粒子与光相似,也具有波粒二象性。1925年6月,维尔纳·海森堡发表论文《运动与机械关系的量子理论重新诠释》创立了矩阵力学。旧量子论渐渐式微,现代量子力学正式开启[2]。海森堡在论文里提出,只有在实验里能够观察到的物理量才具有物理意义,才可以用理论描述其物理行为。海森堡抓住云室实验中观察电

浅析不确定性原理的哲学内涵

浅析不确定性原理的哲学内涵 摘要:不确定性原理作为量子力学中的基本原理之一,主要描述了对两个力学量算符在任一时刻其几率分布宽度的的关系。本文先介绍了何为不确定性原理,再重点阐释了对不确定性原理的哲学审视,最后在借鉴先哲们精粹思想的同时也对不确定性原理提出了一些浅显的看法。 关键词:不确定性原理变量哲学 1、引言 海森堡提出的不确定性原理以其特殊的性质给科学和哲学解释提出了挑战。不确定性原理,告诉我们微观客体的任何一对互为共轭的不确定变量都不可能同时确定出确定值,使人们放弃了经典的轨道概念。这表明,几率性、随机性、偶然性,并非是由于人类认识能力不足所导致的,而是自然界客观事物的本性。科学的发展要求从哲学层次来认识不确定性原理在科学理论中的作用和地位,分析它的本体论及认识论内涵,总结其基本特征,进而为不确定性原理的科学研究提供富有启示意义的哲学观念和方法论原则。 2、不确定性原理 不确定性原理(Uncertainty principle),是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出,它反映了微观粒子运动的基本规律。 在云室(一种观察微观粒子运动径迹仪器)中观察到的电子径迹的解释上,海森堡的想法是如何用已知的数学形式去描述云室中的电子径迹。云室中的径迹并不是能反映粒子明确位置和速度的一条无限细的线,在云室中看到的电子径迹的宽度要比电子本身的线度大得多,这可能代表了电子的位置具有某种不确定性。通过推算,得到了一种不确定性原理,它表明:同时严格确定两个共轭变量(如位置和速度,时间和能量等)的数值是不可能的,它们的数值准确度有个下限。这是一条自然定律,它说明,在微观粒子层次上,同时得到一个粒子运动的位置和速度的严格准确的测量值在原则上是不可能的。用这个理论去解释试验中所观察到的电子轨迹,经过重新的分析整理,最终确定:云室中电子径迹并不是一条连续的线,实质上它是一系列离散而模糊的斑点,它们近似排列成线,并非真正的电子“径迹”,也就是说电子的位置是不确定的。 海森堡进一步验证此不确定性满足新的量子力学,得到了标准的量子条件:Pq-qP=h/2π (P为动量,q为与动量对应的位置,h为普朗克常量s)。 由上式出发,海森堡导出了位置和与速度相关的p的不确定关系式:ΔpΔq≥h。 3、不确定性原理的哲学思考 不确定性原理告诉人们:经典的轨道概念已不再适用,像经典物理学精确把握宏观物体那样将微观粒子的信息精确测出也是不可能的。更重要的是,波函数的统计诠释与不确定性原理两者可共存于一个理论体系,不确定性原理可以由量子力学基本公设推导,而且推导结果也没有超出量子力学的几率诠释。我们需要将二者结合起来,看看它们究竟告诉了我们什么。 有一些社会科学工作者,由于望文生义或不太理解量子力学理论,认为不确定性原理之不确定,几率诠释之几率。深入的思考者则认为,几率诠释告诉我们微观粒子之状态我们不能百分百把握,而不确定性原理则干脆将“不确定”确定下来,告诉我们不确定不是我们的仪器有什么问题,而是客观世界正是如此,不仅

不确定性推理部分参考答案

第6章不确定性推理部分参考答案 6.8 设有如下一组推理规则: r1: IF E1THEN E2 (0.6) r2: IF E2AND E3THEN E4 (0.7) r3: IF E4THEN H (0.8) r4: IF E5THEN H (0.9) 且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。求CF(H)=? 解:(1) 先由r1求CF(E2) CF(E2)=0.6 × max{0,CF(E1)} =0.6 × max{0,0.5}=0.3 (2) 再由r2求CF(E4) CF(E4)=0.7 × max{0, min{CF(E2 ), CF(E3 )}} =0.7 × max{0, min{0.3, 0.6}}=0.21 (3) 再由r3求CF1(H) CF1(H)= 0.8 × max{0,CF(E4)} =0.8 × max{0, 0.21)}=0.168 (4) 再由r4求CF2(H) CF2(H)= 0.9 ×max{0,CF(E5)} =0.9 ×max{0, 0.7)}=0.63 (5) 最后对CF1(H )和CF2(H)进行合成,求出CF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H) =0.692 6.10 设有如下推理规则 r1: IF E1THEN (2, 0.00001) H1 r2: IF E2THEN (100, 0.0001) H1 r3: IF E3THEN (200, 0.001) H2 r4: IF H1THEN (50, 0.1) H2 且已知P(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, 又由用户告知: P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36 请用主观Bayes方法求P(H2|S1, S2, S3)=? 解:(1) 由r1计算O(H1| S1) 先把H1的先验概率更新为在E1下的后验概率P(H1| E1) P(H1| E1)=(LS1× P(H1)) / ((LS1-1) × P(H1)+1) =(2 × 0.091) / ((2 -1) × 0.091 +1) =0.16682 由于P(E1|S1)=0.84 > P(E1),使用P(H | S)公式的后半部分,得到在当前观察S1下的后验概率P(H1| S1)和后验几率O(H1| S1)

不确定性原理的推导

不确定性原理的推导 一、(普遍的)不确定性原理推导: 对于任意一个可观测量A ,有(见(12)式): 2??()() A A A ΨA A Ψf f σ=--= (1) 式中:?()f A A ψ≡- 同样地,对于另外一个可观测量 B ,有: 2 B g g σ= 式中:?(g B B ψ≡- 由施瓦茨不等式(见(16)式),有: 2 22 A B f f g g f g σσ=≥ (2) 对于一个复数z (见(17)式): 2 22221 [Re()][Im()][Im()][ ()]2z z z z z z i *=+≥=- (3) 令z f g =,(2)式: 2 2 21[]2A B f g g f i σσ?? ≥- ??? (4) 又 ??()()f g A A B B ψψ=-- ?? ()()ΨA A B B ψ=-- ???? ()ΨAB A B B A A B ψ=--+ ???? ΨAB ΨB ΨA ΨA ΨB ΨA B ΨΨ=-++ ?? AB B A A B A B =--+ ??AB A B =- 类似有: ?? f g BA A B =-

所以 ?????? ,f g g f AB BA A B ??-=-=?? (5) 式中对易式:??????,A B AB BA ??≡-? ? 把(5)代入(4),得(普遍的)不确定性原理: 2 22 1??,2A B A B i σσ????≥ ????? (6) 二、位置与动量的不确定性 设测试函数f (x ),有(见(23)式): []d d ,()()()d d x p f x x f xf i x i x ??=-???? d d d d d d f x f x i i x i x i x ? ?= -- ??? ()i f x = (7) 去掉测试函数,则: [],=x p i (8) 令??,A x B p ==,把(8)代入(6): 2 222x p σσ?? ≥ ??? 由于标准差是正值,所以位置与动量的不确定性: 2 x p σσ≥ (9)

人工智能不确定性推理部分参考答案教学提纲

人工智能不确定性推理部分参考答案

不确定性推理部分参考答案 1.设有如下一组推理规则: r1: IF E1 THEN E2 (0.6) r2: IF E2 AND E3 THEN E4 (0.7) r3: IF E4 THEN H (0.8) r4: IF E5 THEN H (0.9) 且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。求CF(H)=? 解:(1) 先由r1求CF(E2) CF(E2)=0.6 × max{0,CF(E1)} =0.6 × max{0,0.5}=0.3 (2) 再由r2求CF(E4) CF(E4)=0.7 × max{0, min{CF(E2 ), CF(E3 )}} =0.7 × max{0, min{0.3, 0.6}}=0.21 (3) 再由r3求CF1(H) CF1(H)= 0.8 × max{0,CF(E4)} =0.8 × max{0, 0.21)}=0.168 (4) 再由r4求CF2(H) CF2(H)= 0.9 ×max{0,CF(E5)} =0.9 ×max{0, 0.7)}=0.63 (5) 最后对CF1(H )和CF2(H)进行合成,求出CF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H) =0.692

2 设有如下推理规则 r1: IF E1 THEN (2, 0.00001) H1 r2: IF E2 THEN (100, 0.0001) H1 r3: IF E3 THEN (200, 0.001) H2 r4: IF H1 THEN (50, 0.1) H2 且已知P(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, 又由用户告知: P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36 请用主观Bayes方法求P(H2|S1, S2, S3)=? 解:(1) 由r1计算O(H1| S1) 先把H1的先验概率更新为在E1下的后验概率P(H1| E1) P(H1| E1)=(LS1× P(H1)) / ((LS1-1) × P(H1)+1) =(2 × 0.091) / ((2 -1) × 0.091 +1) =0.16682 由于P(E1|S1)=0.84 > P(E1),使用P(H | S)公式的后半部分,得到在当前观察S1下的后验概率P(H1| S1)和后验几率O(H1| S1) P(H1| S1) = P(H1) + ((P(H1| E1) – P(H1)) / (1 - P(E1))) × (P(E1| S1) – P(E1)) = 0.091 + (0.16682 –0.091) / (1 – 0.6)) × (0.84 – 0.6) =0.091 + 0.18955 × 0.24 = 0.136492 O(H1| S1) = P(H1| S1) / (1 - P(H1| S1)) = 0.15807 (2) 由r2计算O(H1| S2) 先把H1的先验概率更新为在E2下的后验概率P(H1| E2) P(H1| E2)=(LS2×P(H1)) / ((LS2-1) × P(H1)+1)

不确定性原理(非平稳作业)

学生:李洋学号:2014524019 不确定性原理(Uncertainty principle),又称“测不准原理”、“不确定关系”。傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。海森堡证明,对易关系可以推导出不确定性,或者,使用玻尔的术语,互补性:不能同时观测任意两个不对易的变量;更准确地知道其中一个变量,则必定更不准确地知道另外一个变量。该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。「不确定性原理」也有了新的形式。在连续情形下,我们可以讨论一个信号是否集中在某个区域内。而在离散情形下,重要的问题变成了信号是否集中在某些离散的位置上,而在其余位置上是零。数学家给出了这样有趣的定理: 一个长度为N 的离散信号中有a 个非零数值,而它的傅立叶变换中有 b 个非零数值,那么a+b ≥ 2√N。也就是说一个信号和它的傅立叶变换中的非零元素不能都太少。但是借助不确定性原理,却正可以做到这一点!原因是我们关于原信号有一个「很多位置是零」的假设。那么,假如有两个不同的信号碰巧具有相同的K 个频率值,那么这两个信号的差的傅立叶变换在这K 个频率位置上就是零。另一方面,因为两个不同的信号在原本的时空域都有很多值是零,它们的差必然在时空域也包含很多零。不确定性原理(一个函数不能在频域和时空域都包含很多零)告诉我们,这是不可能的。 在传统的信号理论中,频域空间和原本的时空域相比,信息量是一样多的,所以要还原出全部信号,必须知道全部的频域信息,就象是要解出多少个未知数就需要多少个方程一样。我的理解:测量物必然改变被测物,在微观世界的测量,改变值无法忽略,物质是否具有确定性是不可知的。不确定性原理是世界自身存在的原理,与测量与否没有关系。 王老师,我所研究的领域是微弱信号检测,研究传感器自身噪声,并且通过仿真模拟。 领域相关期刊:电子学报

测不准关系理论推导

课程论文 学院:物理电子工程学院 专业:物理学 年级: 2012级物理学班 姓名:李赵坤 论文题目:测不准关系的理论推导成绩:

2016 年 1 月 2 日 目录 摘要 (1) Abstract (1) 1.引言 (1) 2.历史发展 (1) 3.测不准关系实验验证 (3) 4.相关质疑 (3) 5.意义 (4) 5.1理论意义 (4) 5.2现实意义 (4) 6.总结 (4) 参考文献 (4)

测不准关系的理论推导 学生姓名:李赵坤学号:20125041015 学院:物理电子工程学院专业:物理学 摘要:在量子力学里,测不准关系表明,粒子的位置与动量不可同时被确定,位置的不确定性与动量的不确定性遵守不等式。一个微观粒子的某些物理量,如位置和动量,或方位角与动量矩,还有时间和能量等,不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。 关键词:波粒二象性,不确定原理 1引言 测不准原理,又称“不确定性原理”、“不确定关系”,是量子力学中的一个重要关系,也是一个相当深奥的问题[1]。表明粒子的位置与动量不可同时被确定,它反映了微观客体的特征。即一个微观粒子的某些成对的物理量不可能同时具有确定的数值。例如位置与动量、力一位角与角动量,其中一个量越确定,另一个量就越不确定。它来源于物质的波粒二象性,测不准关系是从粒子的波动性中引出来的。 2历史发展 1900年普朗克为了解释黑体辐射的实验规律提出能量量子化的概念;1905年爱因斯坦为了解释光电效应引入光子的概念;1913年玻尔提出的氢原子理论中运用光子概念构造了频率条件;1923年,德布罗意提出物质波假设:实物粒子与光相似,也具有波粒二象性。1925年6月,维尔纳·海森堡发表论文《运动与机械关系的量子理论重新诠释》创立了矩阵力学。旧量子论渐渐式微,现代量子力学正式开启[2]。海森堡在论文里提出,只有在实验里能够观察到的物理量才具有物理意义,才可以用理论描述其物理行为。海森堡抓住云室实验中观察电子径迹的问题进行思考。他试图用矩阵力学为电子径迹作出数学表述,意识到关键在于电子轨道的本身有问题。人们看到的径迹并不是电子的真正轨道,而是水滴串形成的雾迹,所以人们也许只能观察到一系列电子的不确定的位置,而不是电子的准确轨道。

人工智能不确定性推理部分参考答案

不确定性推理部分参考答案 1.设有如下一组推理规则: r1: IF E1THEN E2 (0.6) r2: IF E2AND E3THEN E4 (0.7) r3: IF E4THEN H (0.8) r4: IF E5THEN H (0.9) 且已知CF(E1)=0.5, CF(E3)=0.6, CF(E5)=0.7。求CF(H)=? 解:(1) 先由r1求CF(E2) CF(E2)=0.6 × max{0,CF(E1)} =0.6 × max{0,0.5}=0.3 (2) 再由r2求CF(E4) CF(E4)=0.7 × max{0, min{CF(E2 ), CF(E3 )}} =0.7 × max{0, min{0.3, 0.6}}=0.21 (3) 再由r3求CF1(H) CF1(H)= 0.8 × max{0,CF(E4)} =0.8 × max{0, 0.21)}=0.168 (4) 再由r4求CF2(H) CF2(H)= 0.9 ×max{0,CF(E5)} =0.9 ×max{0, 0.7)}=0.63 (5) 最后对CF1(H )和CF2(H)进行合成,求出CF(H) CF(H)= CF1(H)+CF2(H)+ CF1(H) × CF2(H) =0.692 2 设有如下推理规则 r1: IF E1THEN (2, 0.00001) H1 r2: IF E2THEN (100, 0.0001) H1 r3: IF E3THEN (200, 0.001) H2 r4: IF H1THEN (50, 0.1) H2 且已知P(E1)= P(E2)= P(H3)=0.6, P(H1)=0.091, P(H2)=0.01, 又由用户告知: P(E1| S1)=0.84, P(E2|S2)=0.68, P(E3|S3)=0.36 请用主观Bayes方法求P(H2|S1, S2, S3)=? 解:(1) 由r1计算O(H1| S1) 先把H1的先验概率更新为在E1下的后验概率P(H1| E1) P(H1| E1)=(LS1× P(H1)) / ((LS1-1) × P(H1)+1) =(2 × 0.091) / ((2 -1) × 0.091 +1) =0.16682 由于P(E1|S1)=0.84 > P(E1),使用P(H | S)公式的后半部分,得到在当前观察S1下的后验概率P(H1| S1)和后验几率O(H1| S1) P(H1| S1) = P(H1) + ((P(H1| E1) – P(H1)) / (1 - P(E1))) × (P(E1| S1) – P(E1))

不确定性原理的前世今生 · 数学篇

在现代数学中有一个很容易被外行误解的词汇:信号(signal)。当数学家们说起「一个信号」的时候,他们脑海中想到的并不是交通指示灯所发出的闪烁光芒或者手机屏幕顶部的天线图案,而是一段可以具体数字化的信息,可以是声音,可以是图像,也可是遥感测量数据。简单地说,它是一个函数,定义在通常的一维或者多维空间之上。譬如一段声音就是一个定义在一维空间上的函数,自变量是时间,因变量是声音的强度,一幅图像是定义在二维空间上的函数,自变量是横轴和纵轴坐标,因变量是图像像素的色彩和明暗,如此等等。 在数学上,关于一个信号最基本的问题在于如何将它表示和描述出来。按照上面所说的办法,把一个信号理解成一个定义在时间或空间上的函数是一种自然而然的表示方式,但是它对理解这一信号的内容来说常常不够。例如一段声音,如果单纯按照定义在时间上的函数来表示,它画出来是这个样子的: 这通常被称为波形图。毫无疑问,它包含了关于这段声音的全部信息。但是同样毫无疑问的是,这些信息几乎没法从上面这个「函数」中直接看出来,事实上,它只不过是巴赫的小提琴无伴奏Partita No.3 的序曲开头几个小节。下面是巴赫的手稿,从某种意义上说来,它也构成了对上面那段声音的一个「描述」: 这两种描述之间的关系是怎样的呢?第一种描述刻划的是具体的信号数值,第二种描述刻划的是声音的高低(即声音震动的频率)。人们直到十九世纪才渐渐意识到,在这两种描述之间,事实上存在着一种对偶的关系,而这一点并不显然。 1807 年,法国数学家傅立叶(J. Fourier) 在一篇向巴黎科学院递交的革命性的论文Mémoire sur la propagation de la chaleur dans les corps solides (《固体中的热传播》)中,提出了一个崭新的观念:任何一个函数都可以表达为一系列不同频率的简谐振动(即简单的三角函数)的叠加。有趣的是,这结论是他研究热传导问题的一个副产品。这篇论文经拉格朗日(J. Lagrange)、拉普拉斯(P-S. Laplace) 和勒让德(A-M. Legendre) 等人审阅后被拒绝了,原因是他的思想过于粗糙且极不严密。1811 年傅立叶递交了修改后的论文,这一次论文获得了科学院的奖金,但是仍然因为缺乏严密性而被拒绝刊载在科学

测不准原理的理解及应用

不确定性原理的理解及应用 姓名: 班级: 学号:

摘要:不确定性原理作为量子力学中的一个重要组成部分,从海森堡提出至今一直受到各方争论和质疑。本文主要介绍不确定性原理的简单理解以及应用,对初学者理解不确定性原理是很有帮助的。 关键词:测量,准确性, 正文: 1.引言: 唯物主义告诉我们:物质是不依赖于人的意识的客观存在;时间的本质是物质而不是意识;先有物质后有意识;意识只不过是物质在人脑中的客观反映而已。这些都是正确的观念。然而随着二十世纪自然科学的发展,尤其是人们在探索微观世界发现了新的规律,被某些唯心主义者引用来向唯物主义的基本观点发难。其中倍受争议的是著名物理学家海森堡的“不确定性原理”。 2. 不确定性原理的介绍: 不确定性原理(Uncertainty principle),又称“测不准原理”、“不确定关系”,是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度;F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。 该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差(标准差)的乘积必然大于常数h/4π(h是普朗克常数)是海森堡在1927年首先提出的,它反映了微观粒子运动的基本规律——以共轭量为自变量的概率幅函数(波函数)构成傅立叶变换对;以及量子力学的基本关系(E=h/2π*ω,p=h/2π*k),是物理学中又一条重要原理。【1】 3:不确定性原理的发现: 1927年,海森堡在经过长期的探索后提出了不确定性原理。他对此原理的解释是:设想一个电子,要观测到它在某个时刻的位置,则须用波长较短、分辨性好的光子照射它,但光子有动量,它与波长成正比,故光子波长越短,光子动量越大,对电子动量的影响也越大;反之若提高对动量的测量精度,则须用波长较长的光子,而这又会引起位置不确定度的增加。因而不可能同时准确地测量一个微观粒子的动量和位置,原因是被测物体与测量仪器之间不可避免的发生了相互作用。 人们习惯于对物体运动轨迹的准确描述,大到天体如何运行,小到微尘如何飞扬。这种认识必须基于对物体能够准确定位。为了预测一个物体的运动状态,必须准确测量它的位置和速度。测定必须施加一个物理作用于作为被测对象的物体之上,这在任何一种测量中都无法幸免。显然,对在微观粒子尺度空间的测量方法用光照最合适。然而,光照是无法把粒子的位置确定到比光的波长更小的程度的。为了测定的准确,必须用更短波长的光,这意味着光子的能量更高,这样测定对粒子速度的扰动将很厉害。因此,不能同时准确的测定粒子的位置和速度。事实上,宏观世界和微观世界都受到不确定性原理的制约,只不过对宏观物体的测量,一定波长的光已经足够精确,且扰动对其速度的影响小到远远无法计较。

不确定性推理方法研究word版

不确定性推理 摘要:对3种最常用的不确定性推理方法进行了分析和评述:概率推理、D-S证据推理和模糊推理。分别针对不同类型的不确定性。概率推理针对的是"事件发生与否不确定"这样的不确定性。D-S证据推理针对的是"分不清"或"不知道"这样的不确定性。模糊推理则是针对概念内涵或外延不清晰这样的不确定性。概率推理的理论体系是严密的,但其推理结果有赖可信的先验概率和条件概率。D-S证据推理是不可信的,但在一定条件下可以转化为概率推理问题来处理。模糊推理是一种很有发展潜力的推理方法,主要问题是推理规则需要具体设计,且设计好坏决定推理结果。 关键词:不确定性推理概率推理 D-S证据论模糊推理 引言 近年来,不确定性推理技术引起了人们的重视。这一方面是由于现实问题中普遍含有种种的不确定性,因此对不确定性推理技术有很大的需求。另一方面也在于不断出现的不确定性推理技术出现了一些问题,引起了人们的热议。 本文对三种应用最为广泛的不确定性推理技术进行了分析和评述。它们是:概率推理、D-S证据推理和模糊推理。它们分别具有处理不同类型的不确定性的能力。概率推理处理的是“事件发生与否不确定”这样的不确定性;D-S证据推理处理的是含有“分不清”或“不知道”信息这样的不确定性;模糊推理则是针对概念内涵或外延不清晰这样的不确定性。这些不确定性在实际的推理问题中是非常普遍的,因此这3种推理技术都有广泛的应用。 然而,这些推理技术在实际中的应用效果相差很大。有的得出的推理结果非常合理,用推理结果去执行任务的效果也非常好。也有的效果很差,推理结果怪异,完全背离人的直觉。应用效果差的原因可能是所用推理技术本身的缺陷,也可能是应用者对所用技术了解掌握不够。 无论如何,都非常有必要对这些不确定性推理技术进行一番对比分

不确定性原理的推导

(1) 不确定性原理的推导 、(普遍的)不确定性原理推导: 对于任意一个可观测量 A ,有(见(12)式): 2 A ((A (A 网(A (A ))q (f |f ) 式中:f (A (A )) 同样地,对于另外一个可观测量 B ,有: (g |g ) 式中:g (E? (B )) 由施瓦茨不等式(见(16)式),有: 2 A 对于一个复数Z (见(17)式): 2 [Re(z)]2 [lm(z)]2 [lm(z)]2 [-(z z)]2 令z 〈f |g ),(2)式: (f |g ) M (A 〉)|(E ? 何(R 〈A )(E ? & (A? A (B ) 何A E ?巧(屮A 巧(A 仕 訓)〈A )(B 〉〈屮屈 俺) ⑻)) 臥 A (A )(B ))) ⑻〈A )〈A )⑻(A )⑻ 类似有: (f

(9) (f |g } (g |f ) (A?)〈B?) ( A,B ) 把(5)代入(4),得(普遍的)不确定性原理: 二、位置与动量的不确定性 去掉测试函数,则: 由于标准差是正值,所以位置与动量的不确定性: 所以 式中对易式: A,B AB BA (6) 设测试函数f (x ),有(见(23) 式) : X, P f(x) X 屿(f) i£(xf) i dX i dX X 迪 i dX 施if i dX i dX (7) X, P =巾 (8) 令A X, B p ,把(8)代入 (6):

三、时间与能量的不确定性 由(见(24) 式): (10) 可得: 所以时间与能量的不确定性: (11)

附: 1、数学符号及常量 x的平均值 矢量(函数)a和B的点积(内积) j的不确定程度,即j的标准差 It:—,其中h=6.6260693(11) W-34J s 为普朗克常量i2 2、有关公式推导 (1)式: (屮Q?(Q} 式: 对于〈I )|2和(I )( (X i,X2,X3,…,X n) ( Q (12) ?,(y1,y2, y3,…,y n) L 2 )(X』畑2X3y3 …\2 X n V n)(13) ()=(X122X22X3 …X n) (14) ()=(Vi y;v2…y n) (15)

不确定性原理共11页

不确定性原理 示意图 又名“测不准原理”、“不确定关系”,英文"Uncertainty principle",是量子力学的一个基本原理,由德国物理学家海森堡于1927年提出。本身为傅立叶变换导出的基本关系:若复函数f(x)与F(k)构成傅立叶变换对,且已由其幅度的平方归一化(即f*(x)f(x)相当于x的概率密度; F*(k)F(k)/2π相当于k的概率密度,*表示复共轭),则无论f(x)的形式如何,x与k标准差的乘积ΔxΔk不会小于某个常数(该常数的具体形式与f(x)的形式有关)。 目录 意义 理论背景 霍金谈不确定性原理 赵宁谈不确定原理 意义 理论背景 霍金谈不确定性原理 赵宁谈不确定原理 展开

编辑本段意义 该原理表明:一个微观粒子的某些物理量(如位置和动量,或方位角与动量矩,还有时间和能量等),不可能同时具有确定的数值,其中一个量越确定,另一个量的不确定程度就越大。测量一对共轭量的误差(标准差)的乘积必然大于常数h/4π (h是普朗克常数)是海森堡在1927年首先提出的,它反映了微观粒子运动的基本规律——以共轭量为自变量的概率幅函数(波函数)构成傅立叶变换对;以及量子力学的基本关系(E=h/2π*ω,p=h/2π*k),是物理学中又一条重要原理。 编辑本段理论背景 海森伯 海森伯在创立矩阵力学时,对形象化的图象采取否定态度。但他在表述中仍然需要使用“坐标”、“速 不确定性支持向量机原理及应用 度”之类的词汇,当然这些词汇已经不再等同于经典理论中的那些词汇。可是,究竟应该怎样理解这些词汇新的物理意义呢?海森伯抓住云室实验中观察电子径迹的问题进行思考。他试图用矩阵力学为电子径迹作出数学表述,可是没有成功。这使海森伯陷入困境。他反复考虑,意识到关键在于电子轨道的提法本身有问题。人们看到的径迹并不是电子的真正轨道,而是水滴串形成的雾迹,水滴远比电子大,所

不确定性原理-人工智能的哲学基础

不确定性原理 ——人工智能的哲学基础 作者:孙二林 电邮:sun2lin@https://www.360docs.net/doc/3c15676025.html, 日期:2008年6月30日 文章编号:NNK2008-6-不确定性原理.doc 讨论组:https://www.360docs.net/doc/3c15676025.html,/group/neural-network-knowledgebase

目录 不确定性原理 (1) 目录 (2) 前言 (3) 〇、概念图 (6) 一、不确定性原理 (10) 二、上帝掷骰子 (11) 三、宇宙坐标系 (20) 四、转化炉 (31) 五、进化网络 (42) 六、生命 (51) 七、人类 (58) 八、顶点 (66) 九、人工智能 (74)

前言 科学大体可以分为三层,从下往上依次是:基础科学、应用科学、前沿科学。 人工智能(及其近亲人工生命、机器人学)属于前沿科学的范畴,相对于已经发展了几百年的成熟的基础科学和应用科学,人工智能仅有几十年历史,尚处于起步阶段,远未形成坚实的基础和完整的架构。 研究人工智能,应该从哪里入手?这是个问题。 它牵扯到另外一个问题:人工智能到底是什么? 人工智能是一台计算机吗? 是,又不仅仅是。 人工智能是一段程序吗? 是,又不仅仅是。 显然,如果只了解计算机和程序,那最多也就能组装一台电脑、编写一段代码,跟人工智能还差得太远。 人工智能,不仅仅是一台机器,不仅仅是一段代码,甚至不仅仅是一个数学模型。 人工智能之父图灵所创建的图灵机,准确地说是计算机的数学模型,它是实现人工智能的工具和基础,而不是人工智能本身;它是实现人工智能的必要条件,而不是充分条件。计算机已经出现半个多世纪了,已经非常普及,但几乎所有人都不会认同:它就是人工智能。 我们对人工智能的理解,还远未达到可以进行数学建模的程度。在不能说清楚人工智能到底是个什么东西之前,就开始建模甚至编程,未免太过草率。 科学,是一座庄严宏伟的大厦。这座大厦建得越高,承载它的地基就需要挖得越深。 当科学大厦搭建到人工智能这一前所未有的高度时,无疑,它的地基也需要挖掘到前所未有的深度。 人工智能的下一层是什么? 计算机科学、生命科学、语言学。 计算机科学、生命科学、语言学的下一层是什么? 数学、物理学、逻辑学。 数学、物理学、逻辑学就是科学大厦的最底层了吗? 是的。 科学大厦再往下是什么? 基石。 科学的基石是什么? 哲学。 是的,哲学。如果我们要在人工智能的方向上走得更远,就必须对哲学有着更深刻的理解。 不懂哲学? 错,我们每个人都懂哲学。“人死不能复生”,“世界是由原子组成的”,这就是哲学。

人工智能原理教案03章不确定性推理方法33主观Bayes方法

3.3 主观Bayes方法 R.O.Duda等人于1976年提出了一种不确定性推理模型。在这个模型中,他们称推理方法为主观Bayes方法,并成功的将这种方法应用于地矿勘探系统PROSPECTOR中。在这种方法中,引入了两个数值(LS,LN),前者体现规则成立的充分性,后者则表现了规则成立的必要性,这种表示既考虑了事件A的出现对其结果B的支持,又考虑了A的不出现对B的影响。 在上一节的CF方法中,CF(A)<0.2就认为规则不可使用,实际上是忽视了A不出现的影响,而主观Bayes方法则考虑了A 不出现的影响。 t3-B方法_swf.htm Bayes定理: 设事件A1,A2 ,A3 ,…,An中任意两个事件都不相容,则对任何事件B有下式成立: 该定理就叫Bayes定理,上式称为Bayes公式。

全概率公式: 可写成: 这是Bayes定理的另一种形式。 Bayes定理给出了一种用先验概率P(B|A),求后验概率P (A|B)的方法。例如用B代表发烧,A代表感冒,显然,求发烧的人中有多少人是感冒了的概率P(A|B)要比求因感冒而发烧的概率P(B|A)困难得多。 3.3.1 规则的不确定性 为了描述规则的不确定性,引入不确定性描述因子LS, LN:对规则A→B的不确定性度量f(B,A)以因子(LS,LN)来描述:

表示A真时对B的影响,即规则成立的充分性 表示A假时对B的影响,即规则成立的必要性 实际应用中概率值不可能求出,所以采用的都是专家给定的LS, LN值。从LS,LN的数学公式不难看出,LS表征的是A的发生对B发生的影响程度,而LN表征的是A的不发生对B发生的影响程度。 几率函数O(X):

不确定原理及其它的数学推导

海森堡的不确定原理及其它的数学推导 今年12日5日是德国著名物理学家沃纳·海森伯(W.Heisenbery1901--1976)诞辰100周年纪念日;1901年12月5日, 海森伯出生于维尔茨堡古希腊语教师的家庭,19岁时成为慕尼里大学著名理论物理学家索末菲(Sommerfeld) 的弟子,1924年取得博士学位.1925年率先从修改经典分析力学的途径为创立量子力学矩阵形式作出了开拓性的工作,1927年提出了著名的“不确定原理”;这便成为20世纪物理学发展的一个重要里程碑。同时,他对原子核、铁磁性、宇宙射线、基本粒子等概念的理解作出了重大的改进,并于1932年获得诺贝尔物理学奖金,他被公认为20世纪最具创新能力的思想家之一;本文重在对海森伯在量子力学的矩阵形式和“不确定原理”这两项重要贡献作简单的历史性回顾,以示对这位伟人最真挚的纪念。 不确定原理 海森伯非常注重量子力学的物理图象和原理,他早就认识到,把经典的电子坐标换成量子的跃迁振幅,相当于要从量子理论来重新解释运动学,亦即要从量子论的图象来重新描述电子的运动.1926年薛定谔(Schrodinger )创立了波动力学,随后又证明了波动力学与量子力学完全等价.实际上,海森伯的量子力学选择了力学量随时间改变而态不随时间改变的物理图象,薛定谔的波动力学则选择了态随时间改变而力学量不随时间改变的物理图象.电子运动的量子特征在海森伯图象中表现得很突出,而电子运动的波动特征在薛定谔图象中表现得十分清楚,电子运动的量子性和波动性已经被纳入了一个自洽和完整的理论体系.紧接着薛定谔的工作,玻恩用薛定谔波动方程研究量子力学的散射过程,提出了波函数的统计诠释,指出薛定谔波函数是一种几率振幅,它的绝对值的平方对应于测量到电子的几率分布.认识到了量子力学规律的统计性质,这就为海森伯提出量子力学的不确定原理在观念上奠定了基础.使海森伯疑惑不解的是:既然在量子力学中不需要电子轨道的概念,那又怎么解释威尔逊 (C.Wilson )云室里观察到的粒子径迹呢?经过几个月的思索,1927年初海森伯忽然想起,年前在一次讨论中,当他向爱因斯坦(Einstein )表示“一个完善的理论必须以直接可观测量作依据”时,爱因斯坦说道:“在原则上,试图单靠可观测量去建立理论那是完全错误的.实际上正好相反,是理论决定我们能够观测到什么东西”[7].在这一回忆的启发下,海森伯仿效爱因斯坦在狭义相对论里对同时性的定义方法,马上领悟到:云室里的径迹不可能精确地表示出经典意义下的电子路径或轨道,它原则上至多给出电子坐标和动量的一种近似的、模糊的描写.在这种想法指导下,他用高斯型波函数来研究量子力学对于经典图象的限制,立即导出了同时测量粒子的坐标和动量所受到的限制:海森伯引用狄拉克—约尔丹变换理论如下.对于位置坐标q 的一个高斯型波函数(或海森堡所称的“几率振幅”)由下式给出:[8] ?? ????-?=22)(2exp )(q q q δψ常数 (11) 其中δq 是高斯凸包的半宽度,根据玻恩的几率诠释,它表示一个距离的范围.粒子几乎肯定处于此范围中,因而表示位置的测不准量(δq =q q ??,2为标准偏差)。按照交换理论,动量分布应为2)(p ?,其中)(p ?通过傅里叶变换得出: dq q h ipq p )(2exp )(ψπ??∞ ∞??? ??-= (12) 或 ()()dq h q p h q ip q q p ???? ??-???????????? ??+-=?∞ ∞-222222ex p 221ex p δπδπδ? (13) 令 y h q ip q q =+δπδ2 积分.海森堡得到

相关文档
最新文档