电气设备局部放电检测技术的思考

电气设备局部放电检测技术的思考
电气设备局部放电检测技术的思考

电气设备局部放电检测技术的思考

发表时间:2018-05-02T11:44:18.290Z 来源:《科技中国》2017年11期作者:安军红[导读] 摘要:在电气设备中,局部放电检测技术是一种公认的绝缘状态评判办法,目前该技术的应用尤为广泛,且成效显著。设备局部放电过程中,会在周边的空间中产生电气、声、光等变化,而伴随着这些变化的产生,可为设备绝缘状态提供相应的检测信号。本文主要对电气设备局部放电检测技术进行了研究和思考。

摘要:在电气设备中,局部放电检测技术是一种公认的绝缘状态评判办法,目前该技术的应用尤为广泛,且成效显著。设备局部放电过程中,会在周边的空间中产生电气、声、光等变化,而伴随着这些变化的产生,可为设备绝缘状态提供相应的检测信号。本文主要对电气设备局部放电检测技术进行了研究和思考。

关键词:电气设备;局部放电;检测技术;绝缘介质;高场强区域前言:局部放电与闪络和击穿不同,其属于绝缘部分区域的微小击穿。而电器设备中的绝缘材料通常都是由有机材料构成,如环氧、绝缘纸等等,由于其在运行过程时常出现杂质和气泡问题,进而使绝缘介质表面产生高场强区域,最终出现了局部放电的现象。 1电气设备局部放电检测技术局部放电测量工作通常都是在设备运行、现场试验以及设备出厂的过程中进行,借助局部放电定位、模式以及强度等因素,对测量结果的精准性进行判断。在此过程中,检测技术处于基础与核心的地位。结合上述几个重要因素,可对介质的绝缘状态进行精准、合理的评估。具体分析如下: 1.1脉冲电流法

目前,该方式是唯一具有国际认证标准的检测方法,其主要是借助设备的接地点和中性点,对局部放电所导致的脉冲电流进行测量,由此可精准获得放电频次、放电相位以及实际放电量等信息。在传统的测量方式中,通常可分为窄带测量和宽带测量2种。前者频带宽度较窄,通常保持在9~30KHz之内,具有强大的抗干扰能力和较高的灵敏度,但缺陷在于信息丰富度低和脉冲的分辨率低等等。后者在应用过程中,检测频率范围在30~100KHz之间,具有信息量丰富、脉冲分辨率高峰优势,但缺陷在于噪音比较低。

基于上述两种检测方式中存在的缺陷和不足,目前,相关学者尝试将更高检测频率应用于实践测量工作中,如测量阻抗,其宽带频率为30KHz,该方式主要借助了特殊的数据处理办法,对噪声加以剔除,并结合脉冲表现特征中局部脉冲和噪声脉冲之间的差别,实现了脉冲在频域和时域的变换,并对各脉冲的等效时间和宽带进行精准计算。该方式目前的应用十分广泛,其在局部放电识别、分离等领域也具有着十分突出的效果[1]。

1.2特高频检测法

设备在局部放电过程中,所产生的电磁波谱特性与放电间隙绝缘强度和电源的几何波形之间存在着十分密切的关系。若实际的放电间隙较小,则高频电磁波的辐射水平也就比较高。

特高频检测方式起初在气体组合电器(GIS)中应用较为广泛,据相关研究实验表明,在GIS中局部放电中,信号通常都是以横磁波、横电波以及横电磁波等形式传播。发生于变压器中的局部放电,由于绝缘结构具有一定的复杂性,进而导致电磁波在传播的过程中出现了衰减和折反射的现象,与此同时,变压器内箱壁同样也会影响电磁波传播,进而大幅度增加了局部放电测量工作的难度。基于上述情况,相关研究人员又开展了一系列的实验研究,如将特制的高频天线应用于变压器油阀中,使油箱内壁和天线保持在同一平面,并借助波导结构将所获取的信号导入到检测装置中,以此降低电磁波传播过程中产生的衰减,从而大幅度提升测量结果的精准性和测量过程的灵敏性。与此同时,研究人员还对变压器进行了深入分析和实验,即在其顶部开设介质窗,特高频天线便可借助该窗口对局部放电信号进行提取,该方式的实践应用效果尤为显著[2]。

1.3超声波检测法 GIS、变压器等设备在产生局部放电现象的过程中,通常都会经历电荷中和的过程,与此同时,也会产生一定的电流脉冲,最终产生类似于“爆炸”的现象,在结束放电之后,发生膨胀的区域才会慢慢恢复至原有体积。局部放电主要是脉冲形成,由此也会产生一系列的声波,另外,超声波检测法在具体应用的过程中,还可实现对机械波的检测,并以此判断颗粒实际的运动状态。

局部放电过程中,声波频率通常在10~107Hz,随着电气设备、环境条件、传播媒介、放电状态的不断变化,声波频率也会随之发生一定改变。在GIS中,局部放电不仅会产生声波,同时还伴有操作、机械振动、颗粒碰撞等产生的声波,但频率通常都比较低,在检测GIS局部放电的过程中,超声波传感器的谐振频率通常保持在25kHz左右,但在变压器中,则通常保持在150kHz左右。

相关研究人员借助超声传感器,实现了模型内部缺陷的检测,并通过超声符号的分量和幅值等因素,对缺陷类型进行精准定性,通过对超声信号进行分析,可对自由颗粒的实际移动方向进行精准推测。而变压器局部放电测量装置的诞生主要是依靠了LABVIEW平台,通过实验室研究,发现该装置在应用的过程中,可精准的获取局部放电量、模式以及放电位置等信息。 2局部放电检测技术存在的不足及未来发展途径电气设备局部放电检测技技术经常长时间的发展和应用,目前已经逐渐形成完善的检测流程和方法,其中,具有代表性的要数超声检测法和特高频检测法,其与常规的检测技术存在较大差别。在实际应用的过程中,可查找出很多绝缘缺陷问题,降低了事故问题的发生概率。但局部放电的故障和缺陷往往是针对于电气设备而言,若设备的电压等级较高,则一般无法从根本上解决顽疾问题。具体缺陷和发展途径分析如下:第一,在线监测和带电检测在具体应用的过程中,最显著的问题在于其自身存在的不可靠性,且缺乏完善的测试标准和准入机制,进而直接对监测低结果造成不良影响。解决该问题的办法,一方面要确保装置本身的灵敏性、精准性和可靠性,为此,需对信号分析技术、数据采集技术以及传感器技术等进行深入分析;另一方面,还应强化装置的检测力度,并对其质量加以控制[3]。

第二,GIS、变压器等设备在局部放电的过程中,最为常见的测量方式为超声波法和特高频法。但在实践应用的过程中,发现上述两种测量方式并不能发现设备内部的所有缺陷,可见,其仍存在较多缺陷问题。基于上述情况,相关研究人员已将检测技术的深入研究作为工作重点,且也开发出很多全新的检测方式,如光检测法、化学检测法等等,虽然这些技术目前均处于应用的初级阶段,存在一定的缺陷和不足之处,但随着科学技术的不断发展以及人员研究力度的不断加大,检测技术在未来发展过程中必定更加完善,其应用效果也会得到显著提升。

《电气设备状态监测与故障诊断技术》复习提纲(附答案)

《电气设备状态监测与故障诊断技术》复习提纲 1 预防性试验的不足之处(P4) 答: 1、需停电进行试验,而不少重要电力设备,轻易不能停止运行。 2、停电后设备状态(如作用电压、温度等)与运行中不符,影响判断准确度。 3、由于是周期性定期检查,而不是连续的随时监测,绝缘仍可能在试验间隔期发生故障。 4、由于是定期检查和维修,设备状态即使良好时,按计划也需进行试验和维修,造成人力 物力浪费,甚至可能因拆卸组装过多而造成损坏,即造成所谓过度维修。 2 状态维修的原理(P4) 答:绝缘的劣化、缺陷的发展虽然具有统计性,发展的速度也有快慢,但大多具有一定的发展期。在这期间,会有各种前期征兆,表现为其电气、物理、化学等特性有少量渐进的变化。随着电子、计算机、光电、信号处理和各种传感技术的发展,可以对电力设备进行在线状态监测,及时取得各种即使是很微弱的信息。对这些信息进行处理和综合分析,根据其数值的大小及变化趋势,可对绝缘的可靠性随似乎做出判断并对绝缘的剩余寿命做出预测,从而能早期发现潜伏的故障,必要时可提供预警或规定的操作。 3 老化的定义(P12) 答:电气设备的绝缘在运行中会受到各种因素(如电场、热、机械应力、环境因素等)的作用,部将发生复杂的化学、物理变化,会导致性能逐渐劣化,这种现象称为老化。 4 电气设备的绝缘在运行常会受到哪些类型的老化作用?(P12) 答:有热老化、电老化、机械老化、环境老化、多应力老化等。 5 热老化的定义(P12) 答:由于在热的长期作用下发生的老化称为热老化。 6 什么是8℃规则?(P13) 答:根据V.M.Montsinger提出的绝缘寿命与温度间的经验关系式可知,lnL和t呈线性关系,并且温度每升高8℃,绝缘寿命大约减少一半,此即所谓8℃规则。 7 可靠性、失效与故障的定义(P21) 答:可靠性:产品在规定条件下和规定的时间区间完成规定功能的能力。 失效:产品终止完成规定功能的能力这样的事件。 故障:产品不能执行规定功能的状态。 8 典型的不可修复元件,其失效率曲线呈什么形状?有哪些组成部分?(P22) 答:典型的不可修复元件,一般为电子器件,其失效率曲线呈浴盆状,可分为三个部分:早期失效期、恒定失效期和耗损失效期。 9 寿命试验的目的和方式(26)

电气设备专项检查表

电气设备专项检查表 检查岗位: 检查时间: 检查人员: 序号检查 项目 检查标准 检 查 方 法 检查 评价 符合 不符合及 主要问题 1 配电 室高低压配电室应备有必要的安全 用具和消防器材,并保持消防器 材的完好,门窗及时关闭。配电 柜前后和配电箱前应铺设绝缘橡 皮垫。 查 现 场 2 警示 标志1、在工作人员或其他人员可能误 攀登的电杆或变压器的台架上应 挂“禁止攀登,有电危险”的标示牌。 查 现 场2、距离线路或变压器较近,有可 能误攀登的建筑物上应挂“禁止 攀登,有电危险”的标示牌。 查 现 场

序号检查 项目 检查标准 查 方 法 评价 符合 不符合及 主要问题 3、变配电室或室外单独配电柜 (箱)应有明显的带电警示标志。 查 现 场 4、在转动设备检修或清理作业 时,应切断电源并悬挂“禁止合 闸,有人工作”警示牌。 查 现 场 3 电气 试验高低压电气设备及电气安全用具 在规定的试验周期内做好各项试验。 查 记 录 4 电气 作业1、电工必须持有电工特种作业证 才能上岗,作业时,应按规定穿 戴好劳动防护用品,并正确使用 符合安全要求的电气工具。 查 记 录 查 现 场2、电气设备作业或检修前必须办 理相关票证,严格执行操作票、 工作票等制度。 查 记 录

序号检查 项目 检查标准 查 方 法 评价 符合 不符合及 主要问题 3、在高压设备、大容量低压总盘 上倒闸操作及在带电设备附近作 业时,必须由两人进行,并由技 术熟练的员工担任监护。 查 记 录 5 电气 设备 检查 1、电扇、移动电气每年使用前必 须经电工检查并贴合格标签。 查 现 场 2、班组《安全设备设施台帐》中 漏电断路器记录(数量、型号等) 与现场情况相符,且保持良好的 在用状态。 查 记 录 3、电机风叶、风罩齐全,外壳有 明显的接地接(零)保护,导线 无破损、老化现象。 查 现 场 4、易燃易爆区域的电气设备采用 防爆型设备。 查 现 场

电气设备局部放电检测技术的思考

电气设备局部放电检测技术的思考 发表时间:2018-05-02T11:44:18.290Z 来源:《科技中国》2017年11期作者:安军红[导读] 摘要:在电气设备中,局部放电检测技术是一种公认的绝缘状态评判办法,目前该技术的应用尤为广泛,且成效显著。设备局部放电过程中,会在周边的空间中产生电气、声、光等变化,而伴随着这些变化的产生,可为设备绝缘状态提供相应的检测信号。本文主要对电气设备局部放电检测技术进行了研究和思考。 摘要:在电气设备中,局部放电检测技术是一种公认的绝缘状态评判办法,目前该技术的应用尤为广泛,且成效显著。设备局部放电过程中,会在周边的空间中产生电气、声、光等变化,而伴随着这些变化的产生,可为设备绝缘状态提供相应的检测信号。本文主要对电气设备局部放电检测技术进行了研究和思考。 关键词:电气设备;局部放电;检测技术;绝缘介质;高场强区域前言:局部放电与闪络和击穿不同,其属于绝缘部分区域的微小击穿。而电器设备中的绝缘材料通常都是由有机材料构成,如环氧、绝缘纸等等,由于其在运行过程时常出现杂质和气泡问题,进而使绝缘介质表面产生高场强区域,最终出现了局部放电的现象。 1电气设备局部放电检测技术局部放电测量工作通常都是在设备运行、现场试验以及设备出厂的过程中进行,借助局部放电定位、模式以及强度等因素,对测量结果的精准性进行判断。在此过程中,检测技术处于基础与核心的地位。结合上述几个重要因素,可对介质的绝缘状态进行精准、合理的评估。具体分析如下: 1.1脉冲电流法 目前,该方式是唯一具有国际认证标准的检测方法,其主要是借助设备的接地点和中性点,对局部放电所导致的脉冲电流进行测量,由此可精准获得放电频次、放电相位以及实际放电量等信息。在传统的测量方式中,通常可分为窄带测量和宽带测量2种。前者频带宽度较窄,通常保持在9~30KHz之内,具有强大的抗干扰能力和较高的灵敏度,但缺陷在于信息丰富度低和脉冲的分辨率低等等。后者在应用过程中,检测频率范围在30~100KHz之间,具有信息量丰富、脉冲分辨率高峰优势,但缺陷在于噪音比较低。 基于上述两种检测方式中存在的缺陷和不足,目前,相关学者尝试将更高检测频率应用于实践测量工作中,如测量阻抗,其宽带频率为30KHz,该方式主要借助了特殊的数据处理办法,对噪声加以剔除,并结合脉冲表现特征中局部脉冲和噪声脉冲之间的差别,实现了脉冲在频域和时域的变换,并对各脉冲的等效时间和宽带进行精准计算。该方式目前的应用十分广泛,其在局部放电识别、分离等领域也具有着十分突出的效果[1]。 1.2特高频检测法 设备在局部放电过程中,所产生的电磁波谱特性与放电间隙绝缘强度和电源的几何波形之间存在着十分密切的关系。若实际的放电间隙较小,则高频电磁波的辐射水平也就比较高。 特高频检测方式起初在气体组合电器(GIS)中应用较为广泛,据相关研究实验表明,在GIS中局部放电中,信号通常都是以横磁波、横电波以及横电磁波等形式传播。发生于变压器中的局部放电,由于绝缘结构具有一定的复杂性,进而导致电磁波在传播的过程中出现了衰减和折反射的现象,与此同时,变压器内箱壁同样也会影响电磁波传播,进而大幅度增加了局部放电测量工作的难度。基于上述情况,相关研究人员又开展了一系列的实验研究,如将特制的高频天线应用于变压器油阀中,使油箱内壁和天线保持在同一平面,并借助波导结构将所获取的信号导入到检测装置中,以此降低电磁波传播过程中产生的衰减,从而大幅度提升测量结果的精准性和测量过程的灵敏性。与此同时,研究人员还对变压器进行了深入分析和实验,即在其顶部开设介质窗,特高频天线便可借助该窗口对局部放电信号进行提取,该方式的实践应用效果尤为显著[2]。 1.3超声波检测法 GIS、变压器等设备在产生局部放电现象的过程中,通常都会经历电荷中和的过程,与此同时,也会产生一定的电流脉冲,最终产生类似于“爆炸”的现象,在结束放电之后,发生膨胀的区域才会慢慢恢复至原有体积。局部放电主要是脉冲形成,由此也会产生一系列的声波,另外,超声波检测法在具体应用的过程中,还可实现对机械波的检测,并以此判断颗粒实际的运动状态。 局部放电过程中,声波频率通常在10~107Hz,随着电气设备、环境条件、传播媒介、放电状态的不断变化,声波频率也会随之发生一定改变。在GIS中,局部放电不仅会产生声波,同时还伴有操作、机械振动、颗粒碰撞等产生的声波,但频率通常都比较低,在检测GIS局部放电的过程中,超声波传感器的谐振频率通常保持在25kHz左右,但在变压器中,则通常保持在150kHz左右。 相关研究人员借助超声传感器,实现了模型内部缺陷的检测,并通过超声符号的分量和幅值等因素,对缺陷类型进行精准定性,通过对超声信号进行分析,可对自由颗粒的实际移动方向进行精准推测。而变压器局部放电测量装置的诞生主要是依靠了LABVIEW平台,通过实验室研究,发现该装置在应用的过程中,可精准的获取局部放电量、模式以及放电位置等信息。 2局部放电检测技术存在的不足及未来发展途径电气设备局部放电检测技技术经常长时间的发展和应用,目前已经逐渐形成完善的检测流程和方法,其中,具有代表性的要数超声检测法和特高频检测法,其与常规的检测技术存在较大差别。在实际应用的过程中,可查找出很多绝缘缺陷问题,降低了事故问题的发生概率。但局部放电的故障和缺陷往往是针对于电气设备而言,若设备的电压等级较高,则一般无法从根本上解决顽疾问题。具体缺陷和发展途径分析如下:第一,在线监测和带电检测在具体应用的过程中,最显著的问题在于其自身存在的不可靠性,且缺乏完善的测试标准和准入机制,进而直接对监测低结果造成不良影响。解决该问题的办法,一方面要确保装置本身的灵敏性、精准性和可靠性,为此,需对信号分析技术、数据采集技术以及传感器技术等进行深入分析;另一方面,还应强化装置的检测力度,并对其质量加以控制[3]。 第二,GIS、变压器等设备在局部放电的过程中,最为常见的测量方式为超声波法和特高频法。但在实践应用的过程中,发现上述两种测量方式并不能发现设备内部的所有缺陷,可见,其仍存在较多缺陷问题。基于上述情况,相关研究人员已将检测技术的深入研究作为工作重点,且也开发出很多全新的检测方式,如光检测法、化学检测法等等,虽然这些技术目前均处于应用的初级阶段,存在一定的缺陷和不足之处,但随着科学技术的不断发展以及人员研究力度的不断加大,检测技术在未来发展过程中必定更加完善,其应用效果也会得到显著提升。

局部放电测试方法

局部放电测试方法

局部放电测试方法 随着电力设备电压等级的提高,人们对电力设备运行可靠性提出了更加苛刻的要求。我国近年来110kV以上的大型变压器事故中50%是属正常运行下发生匝间或段间短路造成突发事故,原因也是局部放电所致。局部放电检测作为一种非破坏性试验,越来越得到人们的重视。 虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导致绝缘劣化甚至击穿。对电力设备进行局部放电试验,不但能够了解设备的绝缘状况,还能及时发现许多有关制造与安装方面的问题,确定绝缘故障的原因及其严重程度。因此,高压绝缘设备都把局部放电的测量列为检查产品质量的重要指标,产品不但在出厂时要做局部放电试验,而且在投入运行之后还要经常进行测量。对电力设备进行局部放电测试是一项重要预防性试验。 根据局部放电产生的各种物理、化学现象,如电荷的交换,发射电磁波、声波、发热、光、产

生分解物等,可以有很多测量局部放电的方法。总的来说可分为电测法和非电测法两大类,电测法包括脉冲电流法、无线电干扰法、介质损耗分析法等,非电测法包括声测法、光测法、化学检测法和红外热测法等。 一、电测法 局部放电最直接的现象即引起电极间的电荷移动。每一次局部放电都伴有一定数量的电荷通过电介质,引起试样外部电极上的电压变化。另外,每次放电过程持续时间很短,在气隙中一次放电过程在10 ns量级;在油隙中一次放电时间也只有1μs。根据Maxwell电磁理论,如此短持续时间的放电脉冲会产生高频的电磁信号向外辐射。局部放电电检测法即是基于这两个原理。常见的检测方法有脉冲电流法、无线电干扰法、介质损耗分析法等。 1.脉冲电流法 脉冲电流法是一种应用最为广泛的局部放电测试方法。脉冲电流法的基本测量回路见图3-5 。图中C x代表试品电容,Z m(Z'm)代表测量阻抗,C k代表耦合电容,它的作用是为C x与

电力设备在线监测

目录 摘要 (2) 前言 (2) 第一章高压断路器 (2) 第一节高压断路器的作用 (2) 第二节高压断路器的绝缘 (3) 第三节影响高压断路器绝缘性能 (3) 第四节断路器就其对地绝缘方式 (3) 第二章电力设备在线监测技术简介 (4) 第三章高压断路器的在线监测 (4) 第一节交流泄漏电流的在线监测 (5) 第二节高频接地电流的在线监测 (5) 第三节开关特性的在线监测 (5) 第四节温度特性的在线监测 (6) 第五节真空断路器真空度的在线监测 (6) 结论 (7)

高压断路器的在线监测方法 摘要:通过对断路器状态监测方法的介绍, 分析了在线监测方法的诸多特点, 指出其监测内容丰富, 信息处理速度快, 对提高断路器故障的识别、分析、诊断和处理有着极大的帮助作用, 提出为加强设备管理, 加强状态检修的需要, 应用在线监测技术已成为一种发展趋势。 关键词:高压断路器在线监测电力系统 前言:高压断路器是电力系统最重要的开关设备。它担负着控制和保护的功能,既根据电网的运行的需要用它来可靠地投入或切除相应线路或电气设备。当线路或电气设备发生故障时,将故障部分从电网中快速的切除,保证电网无故障部分正常的运行。如果断路器不能在电力系统发生故障是开断线路、消除故障,就会使事故扩大造成大面积的停电。因此,高压断路器性能的好坏、工作可靠程度是决定电力系统安全运行的重要因素。在电力系统中工作的高压断路器必须满足灭弧、绝缘、发热和电动力方面的一般要求。 第一章高压断路器 第一节高压断路器的作用 高压断路器(或称高压开关)它不仅以切断或闭合高压电路中的空载电流和负荷电流,而且当系统发生故障时通过继电器保护装置的作用,切断过负荷电流和短路电流,它具有相当完善的灭弧结构和足够的断流能力,可分为:油断路

综述电气设备状态检测重要性及状态维修技术

综述电气设备状态检测重要性及状态维修技术 【摘要】电气设备状态监测与故障诊断系统是整个电力系统状态检修的重要组成,而确保电气设备的安全、稳定运行,避免设备运行损坏是设备状态维修的主要目标,这就需要对设备进行定期检测和维修,只有这样才能保证电气设备的安全、稳定运行。文中作者根据多年的工作实践与经验研究,阐述了电气设备状态检测重要性及设备的缺陷与故障,而状态监测技术、状态评估技术、状态预测技术等是状态维修的主要处理技术。 【关键词】变电站;电气设备;维修技术 引言 对电气设备进行状态监测所指的是检测并获取电气设备的状态信息,分析这些信息以便能找到那些能反映设备状态特征的信息,从而获知设备正在运行中的健康状况,识别设备可能将会出现的缺陷,并预测检修时间,尽量减少设备的损坏。电力系统的重要电气设备,比如变压器、发电机、高压断路器等都是状态监测的主要对象。状态监测的原理就是利用各种传感器获得反映设备状态的参量,以及表征设备的特征参数,并与闭值参数进行比较以判断设备的状态情况。在线监测可以连续监测设备运行状态的变化,但还需要积累大量的经验和数据,才能判断被监测设备是否需停电维修或报警。为了更全面地反映设备的运行状态,还需要不断研究和引入一些反映设备运行状态的新特征量。 1、电气设备状态检测重要性 电气设备的定期检修试验,是整个电力系统长期以来的一条重要原则。状态检修是根据设备当下的实际情况来决定它是否需要及时检修,对需要进行检修的设备及时修理,可以延长其检修周期,下次需要检修时再进行检修。目前在实际系统使用中造成电气设备内部各类安全隐患有很多,较轻的安全隐患在试验中比较难发现,而随着设备使用年限的增加,又长期受到外部强大电磁交融的诱导下,安全隐患会逐渐转换为故障,慢慢就会导致供电系统随时出现停电故障,从而影响到整个系统供电质量。由此,电气预防试验能有效地保障电力系统设备可靠运行。 2、状态监测技术 设备状态监测技术是根据设备诊断的目的、针对设备故障模式、选用适当方法和装置来检查测量设备的状态信息,并对这些信息进行处理、抑制各种干扰信息、提取能反映设备状态特征的信息的一项信息检测处理技术。电气设备状态监测可分为3个基本步骤:1.数据采集;2.数据分析及特征提取;3.状态评估或故障诊断及分类。对于不同的步骤,根据不同的监测对象,我们可采用不同的方法。 2.1状态监测特征量的选取 由于传感器技术的使用和进步,使得电气设备能够被监测的状态量逐渐加大,当前常用的电气设备的主要状态监测要体现在:①变压器:以充油电力变压器最为常用,接着为SF6气体绝缘和环氧树脂浇注绝缘的变压器。其监测特征量包括了:油中溶解气体含量、铁芯接地电流、局部放电、绕组变形、高压套管的介损、电压、电流、温度等。②电容型设备:主要涉及了电容式电压互感器、电容器、电抗器、电流互感器、电缆等。其监测特征量包括了:介质损耗、泄漏电流、电容值等。③氧化锌避雷器:对其阻性电流监测,有时可监测总电流。④高压断路器:涉及到的有SF6断路器、油断路器、真空断路器、真空负荷开关。当前监测的特征量包括了:分合闸线圈电流、操作机构的行程、速度和机械振动等。 2.2状态监测间隔期的确定 状态监测主要是利用状态监测的方式检查设备的故障情况,当确定故障后应当采取相应的措施来处理存在的危险,及时避免和预防功能故障的发生。这就需要对设备采取间隔期状态监测,根据不同情况的监测状态来弄清楚设备的具体情况,如果设备被检查到有存在故障的可能后,就要根据不同的情况而进行相关的检查或维修。 2.2.1按安全性要求确定状态监测的间隔期按安全性要求来确定状态监测的间隔期,可把将已出现的潜在故 李明 梧州市东能电力安装有限公司 543000 障继续发展为功能故障的概率设为P a ,如果要求功能故障发生概率控 制在,则可以确定状态监测的间隔期Tc。 P a =(1-P)n n=logP a /log(1-P)因此,状态维修的间隔期Tc为T C =T/n 检测过于频繁会浪费维修资源,因此需要综合权衡来确定T c ,如果想绝对不发生任何功能故障是不可能的,必须把功能故障发生的概率控制到规定的可接受的可靠性水平之内,以确保安全性。这种规定的可接受的可靠性水平是根据现场设备的实际情况及故障后果所事先确定的。一般来说,设备故障具有安全性影响时,在T内至少应做3次检测,也就是状态维修间隔期不得大于T/3。 2.2.2按经济性要求确定状态监测的间隔期当故障不危及设备安全,而预防性维修工作的费用损失少于故障损失时,则按最少费用损失的要求来确定状态监测的间隔期。 设单位时间状态维修的次数为n,该值越大设备故障被检测出的可能性越大,发生功能故障的可能性就越小。因此故障率λ是维修次数n 的函数, 即式中K为单位时间内进行一次状态维修的故障率。用这种方法确定间隔期,须已知一次事故后维修的平均费用C F ,一次状态维修的平均费用C p 。则总的维修费用C为: 于是有 然后令dC/dt=0就可以求得状态监测的间隔期 以上综述是确定状态监测时间间隔期的方法,在实际应用中还会 遇到很多困难。因为在计算间隔期时做出了很多的假设,而这些假设的成立都要有许多实际数据和支持验证,在工程实践应用中这些数据的支持和验证还是远远不够的。 3、状态预测技术 设备运行状态的预测是从已知运行状态出发、考虑运行、气候、历史等相关因素,对未来的运行状态作出预测。电气设备的定期预防性试验作业程序十分复杂,且随着电力系统的迅速发展,电气设备的数量也会越来越多,如果逐一对每台设备进行离线试验,势必需要更长的试验周期,这样就会增加设备产生故障的危险性。因此通过预测预防试验参数值,在预防性试验进行之前,预知进行设备的状态,就可以更好地将设备事故防患于未然,提高设备的运行可靠性。常用的状态预测中最为普遍的方法主要分别以下几点:时间序列预测法、回归分析预测法、模糊预测法、灰色预测法、人工神经网络法。 ①时间序列预测是最普遍且有效的传统状态预测方法,作为传统状态预测方法可以对不同时刻观测值的相关性进行反映,主要显现出状态变化的“惯性”,主要能够如实反映出观测值的变化趋势。 ②回归分析预测法是根据历史资料建立数学模型,将预测目标作为因变量,将影响预测目标的因素作为自变量,预测事物未来状态。研究各组变量之间的相关性,得到表示它们之间的定量关系的经验回归方程式,进行预测。 ③模糊预测法是将数据和语言形成模糊规则库,这需要应用模糊逻辑和预报人员的专业知识,用线性逼近非线性的动态系统进行预测。但是由于模糊预测不具备学习能力,所以在实际应用中,单纯应用模糊预测的精度往往不甚理想。 (>>下转第249页)

第章高频局部放电检测技术

《电网设备状态检修技术(带电检测分册)》 弟五章咼频局部放电检测技术 目录

第 1 节高频局部放电检测技术概述 发展历程 高频局部放电检测方法是用于电力设备局部放电缺陷检测与定位的常用测量方法之一,其检测频率范围通常在3MHz到30MHz之间。高频局部放电检测技术可广泛应用于电力电缆及其附件、变压器、电抗器、旋转电机等电力设备的局放检测,其高频脉冲电流信号可以由电感式耦合传感器或电容式耦合传感器进行耦合,也可以由特殊设计的探针对信号进行耦合。 高频局部放电检测方法,根据传感器类型主要分为电容型传感器和电感型传感器。电感型传感器中高频电流传感器(High Frequency Current Transformer ,HFCT具有便携性强、安装方便、现场抗干扰能力较好等优点,因此应用最为广泛,其工作方式是对流经电力设备的接地线、中性点接线以及电缆本体中放电脉冲电流信号进行检测,高频电流传感器多采用罗格夫斯基线圈结构。 罗格夫斯基线圈(Rogowski coils ,简称罗氏线圈)用于电流检测领域已有几十年历史。早在1887 年英国布里斯托大学的茶托克教授即进行了研究,把一个长而且形状可变的线圈作为磁位差计,并且通过测量磁路中的磁阻,试图研究更加理想的直流发电机。罗格夫斯基线圈检测技术在20 世纪90 年代被英国的公立电力公司(CEGB用在名为“ El-Cid ”的新技术里,用于测试发电机和电动机的定子[1]。罗氏线圈自公布起就受到了很多学者的重视,对于罗格夫斯基线圈的应用也越来越广泛,1963 年英国伦敦的库伯在理论上对罗格夫斯基线圈的高频响应进行了分析,奠定了罗格夫斯基线圈在大功率脉冲技术中应用的理论基础[2]。20 世纪中后期以来,国外一些专家学者和公司纷纷对罗氏线圈在电力上的应用进行了大量的研究,并取得了显着的成果。如法国ALSTHO公司有一些基于罗氏线圈电流互感器产品问世,其主要研究无源电子式互感器,在20世纪80 年代英国Rocoil 公司实现了罗格夫斯基线圈系列化和产业化。总而言之,在世界范围内对于罗格夫斯基线圈传感器的研究,于20 世纪60 年代兴起,在80 年代取得突破性进展,并有多种样机挂网试运行,90 年代开始进入实用化阶段。尤其进入21 世纪以来,微处理机和数字处理器技术的成熟,为研制新型的高频电流传感器奠定了基础。20 世纪90年代欧洲学者将罗氏线圈应用于局部放电检测,效果良好,并得到了广泛应用。例如意大利的博洛尼亚大学的. Montanari 和 A.

局部放电试验原理

局部放电试验 第一节局部放电特性及原理 一、局部放电测试目的及意义 局部放电:是指设备绝缘系统中部分被击穿的电气放电,这种放电可以发生在导体(电极)附近,也可发生在其它位置。 局部放电的种类: ①绝缘材料内部放电(固体-空穴;液体-气泡); ②表面放电; ③高压电极尖端放电。 局部放电的产生:设备绝缘内部存在弱点或生产过程中造成的缺陷,在高压电场作用下发生重复击穿和熄灭现象-局部放电。 局部放电的特点: ①放电能量很小,短时间内存在不影响电气设备的绝缘强度; ②对绝缘的危害是逐渐加大的,它的发展需要一定时间-累计效应-缺陷扩大-绝缘击穿。 ③对绝缘系统寿命的评估分散性很大。发展时间、局放种类、产生位置、绝缘种类等有关。 ④局部放电试验属非破坏试验。不会造成绝缘损伤。 局部放电测试的目的和意义: 确定试品是否存在放电及放电是否超标,确定局部放电起始和熄灭电压。发现其它绝缘试验不能检查出来的绝缘局部隐形缺陷及故障。 局部放电主要参量: ①局部放电的视在电荷q: 电荷瞬时注入试品两端时,试品两端电压的瞬时变化量与试品局部放电本身所引起的电压瞬变量相等的电荷量,一般用pC(皮库)表示。 ②局部放电试验电压: 按相关规定施加的局部放电试验电压,在此电压下局部放电量不应超过规定的局部放电量值。 ③规定的局部放电量值: 在规定的电压下,对给定的试品,在规程或规范中规定的局部放电参量的数值。 ④局部放电起始电压Ui: 试品两端出现局部放电时,施加在试品两端的电压值。 ⑤局部放电熄灭电压Ui: 试品两端局部放电消失时 的电压值。(理论上比起始电 压低一半,但实际上要低很多 5%-20%甚至更低) 二、局部放电机理: 内部放电:绝缘材料中含有气隙、油隙、杂质等,在电场的作用下会出现介质内部或介质与电极之间的放电。等效原理图:

传感器在电力设备检测中的应用

传感器在电力设备检测中的应用 电力设备在运行中经常受电的、热的、机械的负荷作用,以及自然环境(气温、气压、湿度以及污秽等)的影响,长期工作会引起老化、疲劳、磨损,以致性能逐渐下降,可靠性逐渐降低。为保证电力系统的安全运行,对系统的重要设备的运行状态进行的监视与检测。监测的目的在于及时发现设备的各种劣化过程的发展,以求在可能出现故障或性能下降到影响正常工作之前,及时维修、更换,避免发生危及安全的事故。 电力设备状态监测的传统方法是经常性的人工巡视与定期预防性检修、试验。设备在运行中由值班人员经常巡视,凭外观现象、指示仪表等进行判断,发现可能的异常,避免事故发生。传统方法效率低,成本高,且可能会给工作人员带来一定危险。随着传感技术与计算机技术的发展,电力设备的状态监测方法向着自动化、智能化的方向发展,设备的定期检修制度向着预警式检修制度发展。电力设备状态的监测涉及面广,大量的非电参量(热学、力学、化学参量等)需要各种相应的传感器,传感技术的发展为此提供了可能。 装备各种传感器的具有状态监测功能的新型电力设备是构成自动化的电力系统的基础,是状态监测和故障诊断的第一步,也是很重要的一步。本文以温度传感器为例,对传感器在实际生产生活中的应用做一简单介绍。 一、检测对象 电力系统中大量设备需要检测温度信息,从而确定电力设备的运行情况,以便运行调度人员及时采取措施,消除异常,避免设备的损坏和事故的发生。 电力设备过热的主要原因是过电流,单仅仅监视电流不能准确反映设备是否超温,因为温度是各种因素影响的综合反映。 主要检测的对象有:电力设备导电连接处、插接处,干式变压器的绕组,电力变压器油温,箱式变电站的出线端、低压开关和高压开关进出线端等等。 二、基本结构及工作原理 温度传感器品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。 (1)热电偶:将两种不同材料的导体或半导体A和B焊接起来,构成一

电气一次设备在线检测和状态检修要点讨论

电气一次设备在线检测和状态检修要点讨论 发表时间:2018-08-01T10:59:53.247Z 来源:《电力设备》2018年第11期作者:刘伟 [导读] 摘要:电厂电气一次设备的状态检修工作包括多方面内容,例如在线设备检测与故障诊断、设备维修等,并由多个设备的状态检修组成,工作量较大。 (国网朔州供电公司山西朔州 036002) 摘要:电厂电气一次设备的状态检修工作包括多方面内容,例如在线设备检测与故障诊断、设备维修等,并由多个设备的状态检修组成,工作量较大。然而和传统的定期维修相比,状态检修对于一次设备来讲显得更为实用。 关键词:电气一次设备;检修状态;定期维修 引言:在电力系统中,直接用于生产和使用电能,比控制回路电压高的电气设备称为一次设备。其主要包括发电机、变压器、断路器、输电线路等。由一次设备相互连接,构成生产、输送、分配电能或直接用于生产的电气回路称为一次回路。一次设备的主要功能包括进行电力生产和电能转换、接通和断开电路的开关、保护电气、接地装置等。在变电站一次设备运行过程中,其状态检修是非常重要的。 1电力一次设备在线监测 1.1 在线监测的特点 在线监测是指在设备正常运行的情况下,对于设备的整体情况进行连续或者定期的监测,这种行为一般自动进行。做好在线监测工作能在第一时间发现设备运行时的异常状况,及时进行整修以延长设备的使用寿命。对于一些旧的或者存在不安全因素的问题设备需跟踪监测,尽量延长其使用寿命;对于正常的设备应随时掌握其健康情况,为设备正常工作提供保障。至今为止,利用在线监测能使一次设备安全运行,保证变压器不因工作量大而受到破损,发生停电状况。由于其为自动操作,所以可使检修、监测过程更加安全,减少投入资金,是我国应用最早、最全面的监测技术,效果非常好,应用最为广泛。 1.2 电力一次设备的在线监测在智能电网中的作用 智能电网是在每个输电元件、变电站以及发电站都设有一个具有较强操作系统的单一、独立的处理器,也可用代理器,每个处理器或者代理器彼此间都可以进行双向、迅速的信号传输,进而形成规模庞大的分布式平台。所有处理器都要与其相应部件连接,以了解处理器或代理器的运行情况,再通过高速光纤的通信系统把数据输送至其他的处理器或者代理器,每个处理器的工作既相互独立,又彼此相关,可协调控制工作。 智能电网自愈控制是指当出现事故时,在影响电网的整体安全之前将局部地区的故障处理后,进而能自动恢复的功能。因此,电力一次设备的在线监测装置也就是智能电网能够进行自愈控制的基本结构。电力一次设备在线监测开始是对一次设备的状态进行常规检测,之后发展成一次设备状态的检修,取代了旧时的计划检修。现阶段的在线监测还无法实现真正意义上的在线检修,但是,如果以此为基础的状态监测的准确率得到很大程度的提升,并且使监测的频率加快,就能逐渐取代传统技术,成为自愈智能电网中的智能处理器。如此一来,在全新的传感器和在线监测装置投入使用后成为智能代理器,进而使电网的适应性与重组能力加强。 2 状态检修原则 电气一次设备状态检修要与电厂的实际情况相结合,制定检修计划,及时对设备出现的各种问题进行维修,确保电气一次设备的正常使用。开展电气一次设备状态检修时,必须遵循以下原则: 2.1 设备绝缘良好 电厂对电气一次设备开展状态检修工作时,首先要选择具有良好绝缘性的设备。只有优质的绝缘材料才能符合电力设备的材料要求,其抗腐蚀性也更好。其次,技术人员必须对一次设备材料进行绝缘特性检测,将检测材料设备的绝缘性和相应标准、规范进行比较,确保设备和材料具备良好的绝缘性。 2.2检修操作应严格 电气一次设备状态检修基本是在设备带电的情况下进行,这增加了检修工作的危险性,因此检修前要对检修人员做好相关的安全培训,只有那些具有丰富经验或是具备过硬专业素质的工作人员才能参与检修。当工作人员在开展状态检修时,必须安排安全监理人员进行全程监护,及时提醒和纠正不当、粗心的操作,一旦出现问题,也能及时做好应急工作,促进电气一次设备状态检修的安全开展。 2.3 热故障诊断 对电气一次设备进行温度丈量时,需用到红外线热成像原理技术,该技术能对一次设备运行状况是否正常做出精确判断。运行过程中的一次设备可能存在接头处发热现象,此时通过红外线热成像技术能将设备的发热方位和发热温度进行精确丈量,从而准确地对热故障进行辨识。 3 状态检修的应用 电气一次设备状态检修的内容分别是隔离开关检修、断路器检修、变压器检修。 3.1 隔离开关 隔离开关常见故障主要是接触不良和开关触点过热现象。产生接触不良的主要原因通常由安装调试或制造工艺造成,即未利用铜铝过渡材料对铜铝接触进行处理,安装时未将接触面打磨完全,导致隔离开关无法完全合闸、触头臂与接线座连接螺母松动,其结果是接线座产生过热现象。由此,需从制作工艺方面对隔离开关的隔离面进行设计,规范过渡材料使用,并要在安装过程中将接触面进行完全打磨,降低隔离开关的故障发生率。由于隔离开关是故障频发点,在装置技术不精的情况下,需经常性地对开关进行调试或调整,最好有针对性地进行隔离开关的要点维修[2]。 3.2 断路器 断路器可切断故障电路,避免安全事故的发生,确保电源线路及电动机的安全。温度过高、拒动、误动、反常声响、起火等是断路器较为常见的故障。其中断路器拒动主要是因为蓄电池欠压、二次接线时存在错误操作、线圈层间短路、线圈低电压不合格、互感器衔接过错使得控制回路短路、接触不良、直流系统电压过高以及过低等。 总之,断路器拒动的原因较多,当断路器遇到故障时,通过故障表征逐一排查,此间需要投入备用系统维系电力系统的运转。当出现越级跳闸时,要先检测断路器的动作,如果是保护动作导致越级跳闸,需合上拒跳的隔离开关,使断路器继续运行供电即可。当出现

电气设备运行状态检测及信息化管理窥探

电气设备运行状态检测及信息化管理窥探 近年来在电气工程还有电力系统中,电气设备属于最为基础的运行条件,其运作质量的管理十分重要,如果不能正确进行管控,将会对电气设备的运行质量造成影响。因此,在实际工作中应重视电气设备运行状态检测,开展信息化管理工作,有效开展相关的电气设备管理活动,全面提升设备的运作水平和稳定性,为其后续的发展夯实基础。 标签:电气设备;运行状态检测;信息化管理 电气设备的运行状态检测,需要检测的对象就是变压器设备、发电器设备、高压断路器设备等等,利用传感器搜集相关电气设备的运作状态参数信息、设备的特征数据等等,全面分析相关的电气设备运作状况,明确是否有故障问题,为相关管理工作的实施提供准确依据。 一、电气设备运作状态检测的问题分析 近年来在电气设备相关技术快速发展的进程中,我国的电气企业的规模有所拓宽,数量也开始增加,很多企业都开始进行信息化的建设,能够全面提升相关电力系统的运作效果。然而,在电气设备的状态检测工作中,还在使用传统的管理方式,不能正确的进行处理,难以合理的开展各方面管控活动。这就导致在实际管理的工作中,电气设备经常会出现运作安全隐患问题,严重影响整体系统的安全性和稳定性。具体问题表现为: (一)技术参数缺乏准确性 目前很多企业在电气设备的检测工作中,未能正确针对技术参数进行设计,难以规范化的进行参数管理,相关的参数缺失问题十分严重。这就导致在电气设备状态检测工作中,不能保证数据的准确性,难以结合实际运行缺陷问题和隐患问题进行设备的检修,严重影响其长远发展。 (二)未能制定完善责任制度 在电气企业的日常工作中,每个部门都没有明确相关的工作职责,没有编制出较为完善的责任制度,这就导致在状态检测的工作中,未能明确各個部门的工作责任,经常会出现交叉管理的问题,导致相关的状态检测工作责任不清,难以明确每位人员的工作职责,一旦出现状态检测问题,将会诱发职责不清的现象。 (三)数据统计方式落后 在电气企业的设备管理工作中,还在使用手工统计的方法收集相关数据信息,分析判断的方式十分落后,难以准确的搜集发电数据信息和用电数据信息,数据的搜集速度较低,工作效率较差,难以及时有效的发现电气设备的运作问题。

专业(电气设备)检查记录表

专业(电气设备)检查记录表 检查人员时间年月日 序号检查项目检查标准检查方法是否符合不符合项存在的主要问题 1 变配电系统配电室屋顶承重构件的耐火等级不应低于二级,其它部分不应低 于三级。位于地下室和楼层内的配电室,应设设备运输的通道, 并应设良好的通风和可靠的照明系统。配电室长度超过7m时, 应设两个出口,并宜布置在配电室的两端。配电室的门应向外开 启。配电室的门、窗关闭应密合;与室外相通的洞、通风孔应设 防止鼠、蛇类等小动物进入的网罩,网格不应大于10mm×10mm。 配电室内的电缆沟应采取防水和排水措施。直接与室外露天相通 的通风孔还应采取防止雨、雪飘入的措施。 高、低压配电柜的母线相序标志正确,应设置接地母排和接地端 查现场和记录

序号检查项目检查标准检查方法是否符合不符合项存在的主要问题子,且与接地系统连接,并有接地标志。电气运行指示仪表显示 正确,控制装置完好,操纵机构和联锁机构可靠。空气开关灭弧 罩应完整。电力电容器外壳无膨胀,无漏油现象。设置有电气运 行工作标志和安全警示标志。电气操作工具完好可靠,有定期检 测记录和标志。 2 电网接地系统 电网接地装置的接地电阻值小于4Ω,应保存定期检测记录。接地 装置应有编号和识别标记。 查现场和记录 3 动力及照明配 电柜(箱) 应按规定设有接地母排和/或接地端子,且与接地系统连接。动力 及照明配电柜(箱)内设置的插座,其线路应配有漏电保护装置。电 器元件的接线端子与导线连接坚固,无过热烧损现象。动力及照 明配电柜(箱)内设置的导线应有相序标志。动力及照明配电柜(箱) 内无粉尘和油污污染。动力及照明配电柜(箱)应设置安全警示标 查现场和记录

局部放电的在线监测

局部放电的在线监测 一、绝缘内部局部放电在线监测的基本方法 局部放电的过程除了伴随着电荷的转移和电能的损耗之外,还会产生电磁辐射、超声、发光、发热以及出现新的生成物等。因此针对这些现象,局部放电监测的基本方法有脉冲电流测量、超声波测量、光测量、化学测量、超高频测量以及特高频测量等方法。其中脉冲电流法放电电流脉冲信息含量丰富,可通过电流脉冲的统计特征和实测波形来判定放电的严重程度,进而运用现代分析手段了解绝缘劣化的状况及其发展趋势,对于突变信号反应也较灵敏,易于准确及时地发现故障,且易于定量,因此,脉冲电流法得到广泛应用。目前,国内不少单位研制的局部放电监测装置普遍采用这种方法来提取放电信号。该方法通过监测阻抗、接地线以及绕组中由于局部放电引起的脉冲电流,获得视在放电量。它是研究最早、应用最广泛的一种监测方法,也是国际上唯一有标准(IEC60270)的局放监测方法,所测得的信息具有可比性。图4-4为比较典型的局部放电在线监测(以变压器为例,图中CT表示电流互感器)原理框图。 图4-4 脉冲电流法监测变压器局部放电原理框图 随着技术的发展,针对不同的监测对象,近年来发展了多种局部放电在线监测方法。如光测量、超高频测量以及特高频测量法等。利用光电监测技术,通过光电探测器接收的来自放电源的光脉冲信号,然后转为电信号,再放大处理。不同类型放电产生的光波波长不同,小电晕光波长≤400nm呈紫色,大部为紫外线;强火花放电光波长自<400nm扩展至>700nm,呈桔红色,大部为可见光,固体、介质表面放电光谱与放电区域的气体组成、固体材料的性质、表面状态及电极材料等有关。这样就可以实现局部放电的在线监测。同样,由于脉冲放电是一种较高频率的重复放电,这种放电将产生辐射电磁波,根据这一原理,可以采用超高频或特高频测量法监测辐射电磁波来实现局部放电在线监测。 日本H.KAwada等人较早实现了对电力变压器PD的声电联合监测(见图4-5)。由于被测信号很弱而变电所现场又具有多种的电磁干扰源,使用同轴电缆传递信号会接受多种干扰,其中之一是电缆的接地屏蔽层会受到复杂的地中电流的干扰,因此传递各路信号用的是光纤。通过电容式高压套管末屏的接地线、变压器中性点接地线和外壳接地线上所套装的带铁氧体(高频磁)磁心的罗戈夫斯基线圈供给PD脉冲电流信号。通过装置在变压器外壳不同位置的超声压力传感器,接受由PD源产生的压力信号,并由此转变成电信号。在自动监测器中设置光信号发生器,并向图中所示的CD及各个MC发出光信号。最常用的是,用PD 所产生的脉冲电流来触发监测器,在监测器被触发之后,才能监测到各超声传感器的超声压力波信号。后由其中的光信号接收器接收各个声、电信号。 综合分析各个传感器信号的幅值和时延,可以初步判断变压器内部PD源的位置。如果

电力设备带电检测技术规范20130530

电力设备带电检测技术规范 国家电网公司 2010年1月

目录 前言 .............................................................................................................................................. I 1范围 . (1) 2规范性引用文件 (1) 3定义 (1) 5变压器检测项目、周期和标准 (4) 6套管检测项目、周期和标准 (5) 7电流互感器检测项目、周期和标准 (6) 8电压互感器、耦合电容器检测项目、周期和标准 (8) 9避雷器检测项目、周期和标准 (9) 10 GIS本体检测项目、周期和标准 (10) 11开关柜检测项目、周期和标准 (12) 12敞开式SF6断路器检测项目、周期和标准 (12) 13高压电缆带电检测项目、周期和标准 (13) 附录A 高频局部放电检测标准 (17) 附录B 高频局部放电检测典型图谱 (18) 附录C GIS超高频局部放电检测典型图谱 (21) 附录D 高压电缆局部放电典型图谱 (29) 附录E 编制说明 (30)

Q/GDW ××××-2009 前言 电力设备带电检测是发现设备潜伏性运行隐患的有效手段,是电力设备安全、稳定运行的重要保障。为规范和有效开展电力设备带电检测工作,参考国内外有关标准,结合实际情况,制订本规范。 本标准附录A为规范性附录,附录B、附录C、附录D为资料性附录。 本标准由国家电网公司生产技术部提出。 本标准由国家电网公司科技部归口。 本标准主要起草单位:北京市电力公司、中国电力科学研究院、国网电力科学研究院 本标准参加起草单位:江苏省电力公司、福建省电力公司、湖北省电力公司 本标准的主要起草人:刘庆时、张国强、丁屹峰、韩晓昆、黄鹤鸣、杨清华、赵颖、闫春雨、毛光辉、彭江、牛进仓、孙白、王承玉 本标准由国家电网公司生产部负责解释。 本标准自发布之日起实施。

电力设备在线监测系统概述

电力设备在线监测系统概述 宁波智电电力科技有限公司邓立林 电力设备在线监测系统由容性设备绝缘在线监测系统、避雷器绝缘在线监测系统、断路器在线监测系统组成,系统涵盖了变电站主要电气设备绝缘状态参数的监测,监测参量多、功能齐全。系统也可以灵活配置,由其中的一套或两套装置组成,必要时也可选配变压器油色谱监测系统。 1、系统集成: 通过工控机及系统集成软件,对各监控装置的动态参数进行 集成,建立变电站设备状态综合数据库,自动生成设备状态参数报表和变化趋势曲线,对设备状态的历史参数进行“横比”缺, 趋势分析和相对比较相结合,实现设备状态的初步诊断,为专家诊断系统提供开放性平台,通过网络,现设备的远程/现场状态 监测、诊断和评估。 2、系统特点 ◆配置灵活,扩展性好,功能齐全,性能优异 ◆测量准确,数据可靠,安装简便,维护简单 3、真空断路器在线监测系统 ZD-1000型断路器综合在线监测装置包括一套或多套断路器 安装单元、一个共同的服务器,通过现场总线与后台连接。断路器单元部分包括若干个传感器,一个或多个监测器,一个通信总

线转换器,支持多种标准通信协议。 系统能实时采集断路器运行数据,及时获得断路器的运行状态。 通过对断路器运行状态的分析,及时发现设备所存在的问题,有效排除故障,保证设备的正常运行,从而提高设备运行的可靠稳定性。 3.1、监测参数 1、分合闸波形、速度、时间、超程、开距、弹跳、同期; 2、线圈电流、电压、铁芯动作时间、功率; 3、电机电流、电压、功率; 4、触头温度; 5、参数的报警、警报功能; 6、监测参数统计、趋势分析。 4、容性设备绝缘在线监测系统 容性设备绝缘在线监测装置适用于110kV~500kV电压等级的 主变套管、电流互感器、电压互感器、耦合电容器的在线监测及故障诊断。 4.1、监测参数 介质损耗、泄漏电流、等值电容、母线电压、环境温度和湿度 4.2、系统功能

相关文档
最新文档