有源电力滤波器中的谐波检测电路设计

有源电力滤波器中的谐波检测电路设计

有源电力滤波器中的谐波检测电路设计

摘要:针对现在有源电力滤波器中谐波检测的缺陷,设计出一种基于DSP、AD756和MAX260等硬件相结合的谐波检测电路。分析了ip-iq谐波电流检测算法,并且在硬件上实现。介绍了硬件结构原理,给出硬件设计框图和谐波检测各部分的程序流程,并研制出谐波检测电路。实验结果验证了谐波检测的快速性和准确性,系统运行稳定可靠,有较好的应用前景。关键词:谐波检测;TMS320F2812;AD7656;PLL;MAX260;C8051F330 对于有源电力滤波器(APF)而言,实时准确地检测出谐波电流是非常关键的,它的快速性、准

确性、灵活性以及可靠性直接决定APF的补偿性能。设计的谐波检测电路检测出的多路模拟信号会有一定的延迟性,这会大大影响APF计算谐波的精确性和准确性。本文中谐波检测装置所用的AD7656具有6路同步采样特性,克服了测量结果之间延迟的缺点,使得测量精度高。以上优点弥补了目前APF中谐波电流检测技术的缺陷,而且抗混叠滤波器、隔离放大器、过零检测电路、锁相倍频电路的设计增强了检测的精确性。1 装置整体运行原理及相关算法1.1 装置运行原理图1为并联型有源电力滤波器的原理结构框图。图中,交流电网对非线性负载电,非线性负载为谐波源,产生谐波并且消耗无功功率。有源电力滤波器由4部分组成:谐波电流检测电路、电流跟踪控制电路、主开关器件驱动电路和主电路。谐波电流检测电路采用基于瞬时无功功率理论的ip-iq算法,根据有源电力滤波器的补偿目的检测出负载电流中的谐波分量,同时还要检测直流侧母线电容电压。然后将这些信号输入电流跟踪控制电路,通过控制算法生成一系列PWM信号,以此作为补偿电流的指令信号。这些信号经过电平转换后输入主开关器件驱动电路,驱动主电路中的主开关器件。此时,APF 产生并向电网注入补偿电流,该电流与非线性负载电流相位相反,幅值为负载

基于DSP的电力系统谐波检测装置的设计毕业设计

基于DSP的电力系统谐波检测装置的设计 摘要 随着现代电力电子设备和非线性负载的大量使用,谐波污染日趋严重,谐波己成为电力部门及其用户日益关注的问题,因此对谐波进行检测与分析具有重要的意义。本文首先介绍了国内外电力系统谐波测量装置的现状,分析了数字信号处理芯片在电力系统中的应用情况,对谐波分析的相关理论与技术进行了研究,设计了以DSP为核心的硬件与软件系统。 硬件设计方面,根据电力系统中数据采集和处理的实际特点,设计了信号的多通道采样保持和时钟转换电路,实现了多路信号的同步采样和快速转换。充分发挥了微控制器的控制功能和DSP芯片的数字信号处理优势。 软件算法方面,系统采用传统的快速付立叶变换(FFT),对采集的电压和电流信号进行频谱分析。论文中还详细分析了信号的采样问题,以及信号的数字滤波问题。初步设计了对采集数据进行计算和处理的相关软件算法,实现了对谐波的测量功能。 本装置可以快速、准确地进行谐波的测量和分析。 关键词:DSP;谐波;同步采样;快速傅里叶变换

Abstract With the wide applications of modern power electronics equipment and nonlinear load,harmonic deterioration has increased rapidly, which has attracted great attentions by powerdepartment and users.By analyzing the situations of the electric harmonic monitoring equipments home and abroad,aiming at the demand of power department and practical application.The application of Digital Signal Processor in the electric power systems is introduced in this paper,it aims at the harmonic theories and technologies analysis and exploits a hardware floor and a software system with DSP core. The hardware design aspect, according to the electrical power system in the data acquisition and the processing actual characteristic, has designed the signal multichannel sampling maintains with the switching circuit, has realized the multi-channel signal synchronized sampling and the split-second-selection.Has displayed the micro controller's control function and the DSP chip digital signal processing superiority fully. The software algorithm aspect, the system uses the tradition to pay fast sets up the leaf to transform (FFT), carries on the spectral analysis to the gathering voltage and the electric current signal. In paper also multianalysis signal sampling question, as well as signal digital filtering question.The preliminary design has carried on the computation and the processing related software algorithm to the gathering data, has realized to the overtone survey function. This equipment may be fast, accurate carries on the overtone the survey and the analysis. Key Words:Digital Signal Processor;Harmonic;Synchronous sampling; Fast Fourier Transfer

电力系统谐波及其检测方法研究

第23卷 第5期 电子测量与仪器学报 Vol. 23 No. 5 2009年5月 JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT · 29 · 本文于2008年1月收到。 *基金项目: 国家自然科学基金(编号: 60775047)资助项目; 国家863计划(编号: 2007AA042244)资助项目。 电力系统谐波及其检测方法研究* 唐 求 王耀南 郭斯羽 (湖南大学电气与信息工程学院, 长沙 410082) 摘 要: 谐波测量在电力系统中占有重要的作用和地位。本文概述了谐波测量的主要方法, 对基于加窗插值FFT 的谐波测量方法进行了分析和研究。在此基础上, 设计并实现了一种多功能虚拟谐波测量系统, 采用加窗插值FFT 算法, 以图形化编程语言LabVIEW 为开发平台, 实现了电力系统电压、电流谐波参数的测量。与传统的谐波测量系统相比, 该系统硬件简单、编程灵活、可自定义、数据分析与处理能力强、使用方便, 测量结果证明了系统的可行性和准确性。 关键词: 谐波测量;加窗插值FFT ;虚拟仪器;LabVIEW 中图分类号: TM714 文献标识码: A 国家标准学科分类代码: 470.4054 Research on harmonics and its measurement method in power system Tang Qiu Wang Yaonan Guo Siyu (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China) Abstract: The harmonic measurement plays an important role in power system. In this paper, some main harmon-ics measurement methods are generally described, and a harmonic measurement method based on interpolating win-dowed FFT is discussed. According to the interpolating windowed FFT method, a multifunctional virtual instrument system for harmonic measurement of voltage and current signals is designed and implemented with LabVIEW envi-ronment. Compared with traditional harmonic measurement system, this system is flexible, self-defined, capable of data processing and analysis, with simple hardware and so on. The measurement results show the feasibility and the validity of the system. Keywords: Harmonic measurement;interpolating windowed FFT;virtual instrument;LabVIEW 1 引 言 近年来, 随着工业和民用用电负荷的迅速增加以及各种电力电子设备的广泛应用, 非线性负载的数量和容量日益增加, 电力系统谐波污染日趋严重。电网谐波使得电压、电流的波形发生畸变, 使电力系统的发、供、用电设备出现许多异常现象和故障, 对电力系统的安全、经济运行造成极大的危害。谐波问题已成为电力部门普遍重视和关心的问题[1] 。谐波测量是处理谐波问题的基础, 是分析和控制电网谐波含量的依据。 传统的电力谐波测量方法多采用电力谐波分析仪或MATLAB 软件包, 但是它们不具有图形化编程 和远程测控能力, 因此具有局限性。 本文在研究谐波测量的主要方法的基础上, 设计了基于加窗插值FFT 的虚拟谐波测量系统。实现了三相电压、三相电流的总谐波畸变率(THD)以及各次(1~13次)谐波畸变率的测量。系统集信息采集、处理和传输于一体, 具有数据采集、谐波分析处理和显示等功能, 试验结果表明了其性能良好, 测量稳定。 2 谐波测量方法 谐波测量是解决谐波问题的基础和主要依据, 通过对谐波的检测, 可以实时监测电网中谐波的含量及其潮流方向, 计量各次谐波含量、 谐波电压电流幅值、相位等参数, 从而提高测量和计量仪表的准确

无源滤波器设计

长沙学院 模电课程设计说明书 题目 系(部) 电子与通信工程系 专业(班级) 姓名 学号 指导教师 起止日期

数字电子技术课程设计任务书(11)系(部):电子与通信工程系专业:电子信息工程

长沙学院课程设计鉴定表

目录 一.无源滤波器的简介 (5) 1.无源滤波器定义 (5) 2.无源滤波器的优点 (5) 3.滤波器的分类 (5) 4.无源滤波器的发展历程 (5) 二.无源滤波器的工作原理与电路与电路分析 (6) 1.工作原理 (6) 2.电路分析 (7) 三.设计思路及电路仿真 (11) 1.无源低通滤波器 (11) 2.无源高通滤波器 (11) 3.无源带通滤波器 (12) 4.无源带阻滤波器 (13) 四.设计心得与体会 (15) 五.参考文献 (15)

一.无源滤波器的简介 1.无源滤波器定义 无源滤波器,又称LC滤波器,是利用电感、电容和电阻的组合设计构成的滤波电路,可滤除某一次或多次谐波,最普通易于采用的无源滤波器结构是将电感与电容串联,可对主要次谐波(3、5、7)构成低阻抗旁路;单调谐滤波器、双调谐滤波器、高通滤波器都属于无源滤波器。 2.无源滤波器的优点 无源滤波器具有结构简单、成本低廉、运行可靠性较高、运行费用较低等优点,至今仍是应用广泛的被动谐波治理方法。 3.滤波器的分类 ⑴按所处理的信号 按所处理的信号分为模拟滤波器和数字滤波器两种。 ⑵按所通过信号的频段 按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。 低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。 高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。 带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。 带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。 ⑶按照阶数来分 通过传递函数的阶数来确定滤波器的分类。 4.无源滤波器的发展历程 (1)1917年美国和德国科学家分别发明了LC滤波器,次年导致了美国第一个多路复用系统的出现。 (2)20世纪50年代无源滤波器日趋成熟。 (3)自60年代起由于计算机技术、集成工艺和材料工业的发展,滤波器发展上了一个新台阶,并且朝着低功耗、高精度、小体积、多功能、稳定可靠和价廉方向努力,其中小体积、多功能、高精度、稳定可靠成为70年代以后的主攻方向。导致RC有源滤波器、数字滤波器、开关电容滤波器和电荷转移器等各种滤波器的飞速发展; (4)到70年代后期,上述几种滤波器的单片集成已被研制出来并得到应用。 (5)80年代,致力于各类新型滤波器的研究,努力提高性能并逐渐扩大应用范围。 (6)90年代至现在主要致力于把各类滤波器应用于各类产品的开发和研制。 当然,对滤波器本身的研究仍在不断进行。

电力有源滤波器的设计

工学院毕业设计(论文) 题目:电力有源滤波器的设计 专业:电气工程及其自动化 班级:电气082 姓名:邓大伟 学号: 1609080203 指导教师:国海 日期: 2011年12月22日

目录 摘要: (1) 1 绪论 (2) 1.1概述 (2) 1.2抑制谐波的方法 (2) 1.3本文研究的内容 (3) 2 APF的工作原理和结构 (4) 2.1APF的基本原理和种类 (4) 2.2APF的谐波检测方法 (5) 2.3APF的补偿电流控制方法 (6) 3 有源电力滤波器谐波检测及控制策略 (8) 3.1瞬时无功功率理论简介及其应用 (8) 3.2SVPWM调制策略 (10) 4 控制系统的总体设计方案 (14) 4.1系统初始化程序的设计 (14) 4.2中断子程序设计 (14) 4.3I P-I Q法补偿谐波和无功电流的原理框图 (15) 5 电力有源滤波器的仿真实现 (17) 5.1源电力滤波器仿真模型的建立 (17) 5.2结果仿真 (21) 总结与展望 (25) 致谢 (26) 参考文献 (27) ABSTRACT: (28)

电力有源滤波器的设计 摘要:随着电力电子装置日益广泛的应用,电力电子装置自身所具有的非线性导致了电网中含有大量谐波,这些谐波给电力系统带来了严重的污染,严重危害了用电设备和通信系统的稳定运行。虽然传统的无源电力滤波器具有结构简单、成本低、技术成熟、运行费用低等优点,但同时也有一些缺点,例如只能抑制固定的几次谐波,并对某次谐波在一定条件下会与电网阻抗产生谐振反而而使谐波放大。 目前,谐波抑制的一个重要趋势是采用有源电力滤波器,有源电力滤波器也是一种电力电子装置,且相关技术的研究也日渐成为研究的热点。本文阐述了几种常见APF的拓扑结构及各自的优缺点,详细分析了基于瞬时无功功率理论的谐波检测方法,比例控制和前馈控制两种电流环控制策略以及SPWM和SVPWM两种调制策略。介绍了电力有源滤波器的基本原理和结构,并设计了并联型有源电力滤波器的控制系统,实验结果表明,其谐波抑制和无功补偿可以达到良好的效果,在技术上是可行的。 关键词:电力有源滤波器;谐波检测 ;APF

基于有源滤波器和FFT的电力系统谐波检测方法研究本科毕业设计论文

毕业设计论文 题目:基于有源滤波器和FFT的电力系统谐波检测方法研究

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

电力系统谐波影响及消除

电力系统谐波影响及消除(网络摘录)2011.12.20 返回日志列表 从补偿电容无法投入,谈谐波危害,分析谐波来源,提出治理谐波的初步建议随着个私经济特别是特钢和化学工业在我市的发展,我公司的供电量也不断的增长,为了使功率因素达到标准,必须投入补偿电容,但是这几个乡镇的变电所的补偿电容器却无法投上,强行投入后,电容器熔丝也会很快熔断。但根据其他变电所运行经验,在此功率因数下,无功电流不应大于熔丝熔断电流。这是为什么呢? 经过对该地区的供电现状分析,这是由于谐波引起的。所谓谐波,即理想的电力系统向用户提供的应该是一个恒定工频的正弦波形电压,但是由于各种原因,使这种理想状态在实际中无法存在。因此通过对周期性电压或电流的傅立叶分解,所得到的频率为基波整数倍分量的含有量,称为谐波。 谐波对于电网的危害非常大,主要表现在以下方面: 1.由于电网主要是按基波设计的。由于LC元件的存在,虽然在基波时不会发生谐振,但在某个特定谐波时却可能引起谐振,可能将谐波电流放大几倍甚至数十倍,电网谐振引起设备过电压,产生谐波过流,对设备造成危害。特别是对电容器和与之串联的电抗器。其中,特别要注意的是,由于电容器是容性负载,能与电网上感性设备(其它设备主要是感性设备)配合,构成共振条件,又由于其大小与谐波频率成反比,因此,电容更容易吸收谐波共振电流,引起电容过载,造成电容损坏,或者熔丝熔断。 2.使电网中的电气设备产生额外的损耗(谐波功率),降低了设备的效率,同时谐波会影响设备的正常工作,例如变压器局部严重过热,电容器、电缆等设备过热,电机产生机械振动等故障,绝缘部分老化、变质,严重时候甚至设备损坏。 3.导致继电保护和自动装置误动或拒动,造成不必要的损失,谐波会使电气测量仪表测量不准确,造成计量误差。 另外,谐波还会产生对设备附近的通信系统产生干扰等其他危害。 既然谐波危害如此之大,那么谐波是如何产生的?又如何能减小它的影响和危害呢? 谐波来源 1、中频炉、电弧炉等设备是该地区谐波的主要来源 对该地区负荷进行分析,发现主要的原因是该地区特钢工业发达,中频炉、电弧炉等作为一类高效的加热源已经非常普及。电弧炉是利用电极物料间产生的电弧熔炼金属,因此,它的电流波形很不规则,含有多种谐波(2次到7次)以及间谐波,这是谐波的一个重要来源。而中频炉是工频电流整流后再变为中频,再利用电磁感应来熔炼金属,因此产生大量的高次谐波,其中以5次、7次、11次等奇次谐波为主。这正是该地区谐波的主要来源。 2、用户变压器群是该地区谐波的重要来源 一般情况下,三相变压器由于铁芯为“日”形状,中相比边相要短一半,因此,三个磁路的不对称引起变压器励磁电流中含有谐波分量。所以当对空载三相变压器加电压激励时,即使受电侧没有零序电流通路(中性点不接地或三角形接线),励磁电流中也会有谐波分量。虽然在实际运行时,这个谐波分量很小,但由于变压器绕组接法以及各绕组和电网各相的连接统一规定时,则各台变压器励磁电流里的同次谐波彼此叠加,形成了电网中谐波的又一重要来源。例如,在绝大多数配变中,都是Y,yn接线,变压器的中间的铁柱对应的线圈即中相接的都是B相,这样的统一接法,就为3、5、7等次谐波提供了一个分别互相叠加的条件。在该地区,现有35kV用户变压器5台,总容量400kVA,10kV用户变压器约800台,总容量330kVA.如此庞大的用户变群又成为了谐波的又一个重要来源。

电力系统谐波检测与治理的研究

电力系统谐波检测与治理的研究 摘要:目前电力系统谐波危害已经引起了各个部门的关注,为了整个供电系统 的供电质量,必须对谐波进行有效的检测和治理。 关键字:电力谐波检测治理 前言随着我国工业化进程的迅猛发展,电网装机容量不断加大,电网中电力电子元件的 使用也越来越多,致使大量的谐波电流注入电网,造成正弦波畸变,电能质量下降,不但对 电力系统的一些重要设备产生重大影响,对广大用户也产生了严重危害。目前,谐波与电磁 干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,研究和清除供 配电系统中的高次谐波,对改于供电质量、确保电力系统安全、经济运行都有着十分重要的 意义。 一、电力系统谐波危害 ①谐波会使公用电网中的电力设备产生附加的损耗,降低了发电、输电及用电设备的效率。大量三次谐波流过中线会使线路过热,严重的甚至可能引发火灾。 ②谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等故障,变压器局部严 重过热,电容器、电缆等设备过热,绝缘部分老化、变质,设备寿命缩减,直至最终损坏。 ③谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。 ④谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。 ⑤谐波会使电气测量仪表计量不准确,产生计量误差,给供电部门或电力用户带来直接 的经济损失。 ⑥谐波会对设备附近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。 ⑦谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或死机。 ⑧谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰 和图像紊乱。 二、谐波检测方法 1.模拟电路 消除谐波的方法很多,即有主动型,又有被动型;既有无源的,也有有源的,还有混合 型的,目前较为先进的是采用有源电力滤波器。但由于其检测环节多采用模拟电路,因而造 价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波幅值误差很难控 制在10%以内,严重影响了有源滤波器的控制性能。近年来,人工神经网络的研究取得了较 大进展,由于神经元有自适应和自学习能力,且结构简单,输入输出关系明了,因此可用神 经元替代自适应滤波器,再用一对与基波频率相同,相位相差90度的正弦向量作为神经元 的输入。由神经元先得到基波电流,然后检测出应补偿的电流,从而完成谐波电流的检测。 但人工神经网络的硬件目前还是一个比较薄弱的环节,限制了其应用范围。 2.傅立叶变换 利用傅立叶变换可在数字域进行谐波检测,电力系统的谐波分析,目前大都是通过该方 法实现的,离散傅立叶变换所需要处理的是经过采样和A/D转换得到的数字信号,设待测信 号为x(t),采样间隔为 t秒,采样频率 =1/ t满足采样定理,即大于信号最高频率分量的2倍,则采样信号为x(n t),并且采样信号总是有限长度的,即n=0,1……N-1。这相当于对无限长 的信号做了截断,因而造成了傅立叶变换的泄露现象,产生误差。此外,对于离散傅立叶变 换来说,如果不是整数周期采样,那么即使信号只含有单一频率,离散傅立叶变换也不可能 求出信号的准确参数,因而出现栅栏效应。通过加窗可以减小泄露现象的影响。 3.小波变换 小波变换已广泛应用于信号分析、语音识别与合成、自动控制、图象处理与分析等领域。电力谐波是由各种频率成分合成的、随机的、出现和消失都非常突然的信号,在应用离散傅 立叶变换进行处理受到局限的情况下,可充分发挥小波变换的优势。即对谐波采样离散后,

有源电力滤波器课程设计

目录 1 设计相关知识介绍 (1) 1.1 谐波基本概念 (1) 1.2 谐波主要危害 (1) 1.3抑制谐波方法 (1) 2 APF的基本工作原理 (3) 3 APF基本组成部分 (5) 3.1 主电路 (5) 3.1.1 PWM控制的基本原理 (5) 3.1.2 主电路结构 (7) 3.2 指令电流运算部分 (8) 3.2.1 瞬时无功理论定义 (8) 3.2.2 基于瞬时无功理论检测法 (9) 3.3 电流跟踪控制部分 (11) 3.3.1电流滞环控制原理 (11) 3.3.2 三相电流滞环控制原理 (12) 3.4 驱动电路 (13) 参考文献 (15)

1 设计相关知识介绍[1] 1.1 谐波基本概念 1882年,法国数学家傅里叶指出,一个任意函数都可以分解为无穷多个不同频率正弦信号的和。基于此,国际电工标准定义谐波为:谐波分量为周期量的傅里叶级数中大于1的H次分量。把谐波次数的H定义为:以谐波频率和基波频率的之比的整数。电气和电子工程协会标准定义谐波为:谐波为一个周期波或量的正弦波分量,其频率为基波的整数倍。总结二者,目前国际普遍定义谐波为:谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍。 1.2 谐波主要危害 谐波研究与治理对于现代工业生产意义重大,这是因为谐波不仅降低电能的生产、传输和利用效率,而且给供、用电设备的正常运行带来严重危险。对于电力系统,谐波会放大系统局部并联谐振或串联谐振现象,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于电气设备,谐波可以使电气设备产生振动和噪声,还可以产生过热现象,促使绝缘老化,缩短设备使用寿命,甚至发生故障或烧毁。 谐波对通信设备和电子设备会产生严重干扰。电力系统产生的谐波与普通电话线路传输的音频信号及人耳的音频敏感信号相比在信号频带上具有一定的重叠性,而且二者功率相差悬殊。对于通信的干扰,也是谐波的主要危害之一。 谐波污染是电力电子技术发展的重大障碍。电力电子技术是未来科学技术发展的重要支柱。有人预言,电力电子连同运动控制将和计算机技术一起成为21世纪最重要的两大技术。然而,电力电子装置所产生的谐波污染已成为阻碍电力电子技术发展的重大障碍,它迫使电力电子领域的研究人员必须对谐波问题进行更为有效研究。 因此,谐波治理已经成为电气工程领域迫切需要解决的问题。 1.3抑制谐波方法 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍的增长,对供电质量及供电可靠性的要求也越来越多,电能质量受到人们的日益重视。于是各国纷纷出台措施,制定相关标准。目前滤波是治理电网污染的有效方法,滤波就是将信号中特定的波段频率滤除的操作,是抑制和防止干扰的一项重要措施。它分为无源滤波和有源滤波。(1) 无源滤波

谐波测量分析系统设计

《虚拟仪器技术》课程设计任务书(三) 题目:谐波测量分析系统设计 一、课程设计任务 随着科学技术的发展,各种电子产品在电力系统中得到大量应用,特别是各种非线性负载包括可控整流传动装置及高压直流输电系统的投入,以及各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,理想电力系统的近似程度变差,直接表现是电网中的电压和电流波形产生周期性畸变。电网中除了与供电电源同频率的正弦量(称为基波分量)以外,还出现了一系列大于基波频率整倍数的正弦波分量(高次谐波分量)。这一系列正弦分量统称为电力谐波。当电网中存在的谐波成分超过一定指标,轻者增加能耗,缩短设备运行寿命,重则造成停电事故,直接影响安全生产。所以,对电网中谐波含量准确的测量,确切掌握电网中谐波的实际状况,对于防止谐波危害、维护电网的安全运行是十分必要的。 LabVIEW具有强大的信号分析与数学运算功能,在它的数学分析库中包含了数以百计的VI 程序,能够进行各种时域与频域信号分析。 本课题通过虚拟仪器LabVIEW图形化软件开发平台,设计一种谐波测量分析系统。本课题中系统的功能实现采用虚拟仪器技术的思想,选择开放式的LabVIEW虚拟仪器软件开发平台,将LabVIEW软件引入到谐波测量分析系统中,能模拟测量低压配电系统的基波电流,基波频率,总畸变率THD、thd,2-31次各次谐波电流含有率等参数。具体指标与要求如下: (一) 要求设计一个通道的正弦信号发生器以模拟实际电流,具体要求为: 1、频率围:0.001Hz~100KHz; 2、幅值:0~200A,可选; 3、直流偏置:0~100V,可选; 4、可调整幅值、相位、频率;调整后无须重新启动(提示:用循环结构); 5、在产生的信号中可以加入高斯噪声。 (二) 谐波测量分析系统能模拟测量低压配电系统的基波电流,基波频率,总畸变率THD、thd,2-31次各次谐波电流含有率、直流含量等参数。 (三) 谐波测量分析系统可以对产生的正弦信号进行频谱分析,得到相关的频谱图。 (四)所有测量分析的参数都要在系统前面板中进行显示,所产生的正弦信号及其频谱图要求分别进行波形显示。

电力系统谐波检测与治理的研究

电力系统谐波检测与治理的研究 1、谐波的定义 供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的力量,这部分电量称为谐波。谐波频率与基波频率的比值(n=fn/f1)称为谐波次数。电网中有时也存在非整数倍谐波,称为非谐波或分数谐波。谐波实际上是一种干扰量,使电网受到“污染”。 2、谐波的危害 电网谐波造成电网污染,正弦电压波形畸变,使电力系统的发供用电设备出现许多异常现象和故障,情况日趋严重。电力系统中谐波的危害是多方面的,概括起来有以下几个方面: 2.1 对供配电线路的危害 2.1.1 影响线路的稳定运行 供配电系统中的电力线路与电力变压器一般采用电磁式继电器、感应式继电器或晶体管继电器予以检测保护,使得在故障情况下保证线路与设备的安全。但由于电磁式继电器与感应式继电器对10%以下含量高达40%时又导致继电保护误动作,因而在谐波影响下,不能全面有效地起到保护作用。晶体管继电器虽然具有许多优点,但由于采用了整流取样电路,容易受谐波影响,产生误动或拒动。这样,谐波将严重威胁供配电系统的稳定与安全运行。 2.1.2影响电网的质量 电力系统中的谐波能使电网的电压与电流波形发生畸变。如民用电配电系统中的中性线,由于荧光灯、调光灯、计算机等负载,会产生大量的奇次谐波,其中3次谐波的含量较低,可达40%;三相配电线路中,相线上的3的整数倍谐波,在中性线上会叠加,使中性线的电流值可能超过相线上的电流。另外,相同频率的谐波电压与谐波电流要产生同次谐波的有功功率与无功功率,从而降低电网电压,浪费电网的容量。 2.2 对电力设备的危害 2.2.1对电力容器的危害 当电网存在谐波时,投入电容器后,其端电压增大,通过电容器的电流增加得更大,使电容器损耗功率增加。对于膜低复合介质电容器,虽然允许有谐波时的损耗功率为无谐波时损耗功率的1.38倍;对于全膜电容器,允许有谐波时的损耗功率为无谐波时的1.43倍,但如果谐波含量较高,超出电容器允许条件,就会使电容器过电流和过负荷,损耗功率超过上述值,使电容器异常发热,在电场和温度的作用下绝缘介质会加速老化。尤其是电容器投入在电压已经畸变的电网中时,还可能使电网的谐波加剧,即产生谐波扩大现象。另外,谐波的存在往往使电压器呈现尖顶波形,尖顶电压波易在介质中诱发局部放电,且由于电压变化率大,局部放电强度大,对绝缘介质更能起到加速老化的作用,从而缩短电容器的使用寿命。一般来说,电压每升高10%,电容器的寿命就要缩短1/2左右。再者,在谐波严重的情况下,还会使电容器鼓肚、击穿或爆炸。 2.2.2 对电力变压器的危害 谐波使变压器的铜耗增大,其中包括电阻损耗、导体中的涡流损耗与导体外部因漏磁通引起的杂散损耗都要增加。谐波还使变压器的铁耗增大,这主要表现在铁心中的磁滞损耗增加,谐波使电压的波形变得越差,则磁滞损耗越大。同时

无源滤波器设计概述

关于无源滤波器设计 随着电网中非线性负载(如电力电子装置、可调速电机)应用的增多,供电质量日趋下降,电网中的谐波含量严重超过国家标准,对电力用户的安全用电构成威胁。并且,国家对电力市场管制的开放,无疑加剧电力市场的竞争,一方面电力用户对供电电源的谐波含量的要求越来越高,另一方面电力公司对电力用户注入电网的谐波水平也提出了限制。因此,对电网的经济安全运行起到十分重要的作用的电力滤波器有大量的市场需求和市场潜力。 概述 电力系统是由电感、电阻、电容组成的网络,在一定的参数配合下可能会对某些频率产生谐振,诱发出过量的电压和电流。因此,应当尽量避免谐振。对于正常设计的电网来说,发生工频谐振的可能性很小。但是,却有可能在某些高次谐波下谐振,使谐波电流和电压剧增,危害设备的运行和安全。 当谐波源产生的谐波大于规定限值时,应装设滤波装置。在谐波源处装设滤波器,就地吸收谐波电流,可以使注入系统的谐波减少到很低的程度,这是当前最主要的抑制谐波的手段。 目前大量应用于在电力系统中的是无源交流滤波装置,由电力电容器、电抗器和电阻组成,可以抑制谐波并兼有一定的无功补偿作用。无源滤波器结构简单、运行可靠、维护方便,成本低、技术成熟。 最理想的滤波器设计是能够将注入的全部谐波都进行衰减的单个宽频带结构,但需要的电容量非常大,比较经济的做法是使用单调谐滤波器将较低次的谐波衰减掉,由高通滤波器衰减较高次数的谐波。 无源谐波滤波器包括一组对应于某几次低次谐波的单调谐滤波器组和一个用于滤除高次谐波的高通滤波器。 运行特点 使用无源滤波器的特点主要有: ①滤波效果受电网阻抗影响大,会因制造误差、设备老化、电网频率变化造成滤波效果下降; 对谐波频率经常变化的负载滤波效果差。 ②容易与电网产生谐振,产生并联或串联谐振,造成谐波放大; ③对谐波进行抑制的同时引入一定量的无功,兼有谐波补偿和无功补偿功能; ④可利用现有无功补偿设备容量; ⑤不具有处理复杂频谱谐波的能力。 ⑥容易过载而产生危险

有源电力滤波器中的谐波检测电路设计

有源电力滤波器中的谐波检测电路设计 摘要:针对现在有源电力滤波器中谐波检测的缺陷,设计出一种基于DSP、AD756和MAX260等硬件相结合的谐波检测电路。分析了ip-iq谐波电流检测算法,并且在硬件上实现。介绍了硬件结构原理,给出硬件设计框图和谐波检测各部分的程序流程,并研制出谐波检测电路。实验结果验证了谐波检测的快速性和准确性,系统运行稳定可靠,有较好的应用前景。关键词:谐波检测;TMS320F2812;AD7656;PLL;MAX260;C8051F330 对于有源电力滤波器(APF)而言,实时准确地检测出谐波电流是非常关键的,它的快速性、准 确性、灵活性以及可靠性直接决定APF的补偿性能。设计的谐波检测电路检测出的多路模拟信号会有一定的延迟性,这会大大影响APF计算谐波的精确性和准确性。本文中谐波检测装置所用的AD7656具有6路同步采样特性,克服了测量结果之间延迟的缺点,使得测量精度高。以上优点弥补了目前APF中谐波电流检测技术的缺陷,而且抗混叠滤波器、隔离放大器、过零检测电路、锁相倍频电路的设计增强了检测的精确性。1 装置整体运行原理及相关算法1.1 装置运行原理图1为并联型有源电力滤波器的原理结构框图。图中,交流电网对非线性负载电,非线性负载为谐波源,产生谐波并且消耗无功功率。有源电力滤波器由4部分组成:谐波电流检测电路、电流跟踪控制电路、主开关器件驱动电路和主电路。谐波电流检测电路采用基于瞬时无功功率理论的ip-iq算法,根据有源电力滤波器的补偿目的检测出负载电流中的谐波分量,同时还要检测直流侧母线电容电压。然后将这些信号输入电流跟踪控制电路,通过控制算法生成一系列PWM信号,以此作为补偿电流的指令信号。这些信号经过电平转换后输入主开关器件驱动电路,驱动主电路中的主开关器件。此时,APF 产生并向电网注入补偿电流,该电流与非线性负载电流相位相反,幅值为负载

电力系统谐波管理暂行规定

电力系统谐波管理暂行规定 SD126~84 第一章总则 第一条电力系统中的谐波主要是治金、化工、电气化铁路等换流设备及其他非线性用电设备产生的。随着硅整流及可控硅换流设备的广泛使用和各种非线性负荷的增加,大量的谐波电流注入电网,造成电压正弦波形畸变,使电能质量下降,给发供电设备及用户用电设备带来严重危害。为保证向国民经济各部门提供质量合格的50赫兹电能,必须对各种非线性用电设备注入电网的谐波电流加以限制,以保证电网和用户用电设备的安全经济运行,特制订本规定。 第二条本规定适于电力系统以及由电网供电的所有电力用户。 第三条电网原有的谐波超过本规定的电压正弦波形畸变率极限值时,应查明谐波源并采取措施,把电压正弦波形畸变率限制在规定的极限值以内。在本规定颁发前已接入电网的非线性用电设备注入电网的谐波电流超过本规定的谐波电流允许值时,应制订改造计划并限期把谐波电流限制在允许范围以内。所需投资和设备由非线性用电设备的所属单位负责。 第四条新建或扩建的非线性用电设备接入电网,必须按本规定执行。如用户的非线性用电设备接入电网,增加或改变了电网的谐波值及其分布,特别是使与电网连接点的谐波电压、电流升高,用户必须采取措施,把谐波电流限制在允许的范围内,方能接入电网运行。 第五条进口设备和技术合作项目亦应执行本规定。但如对方的国家标准或企业标准的全部或部分规定比本规定严格,则应按对方较严格的规定执行。 第六条谐波对通讯等的影响应按国内有关规定执行。 第七条用户用电设备对谐波电压的要求较本规定的电压正弦波畴变率极限更严格时,由用户自行采取限制谐波电压的措施。 第二章电压正弦波形畸变率极限值和谐波电流允许值 第八条电网中任何一点的电压正弦波形畴变率均不得超过表1规定的极限值。 表1 电网电压正弦畸形畸变率极限值(相电压)

谐波测量分析系统设计(1)

《虚拟仪器技术》课程设计任务书(三) 题目:谐波测量分析系统设计 一、课程设计任务 随着科学技术的发展,各种电子产品在电力系统中得到大量应用,特别是各种非线性负载包括可控整流传动装置及高压直流输电系统的投入,以及各种电力电子装置在电力系统、工业、交通及家庭中的应用日益广泛,理想电力系统的近似程度变差,直接表现是电网中的电压和电流波形产生周期性畸变。电网中除了与供电电源同频率的正弦量(称为基波分量)以外,还出现了一系列大于基波频率整倍数的正弦波分量(高次谐波分量)。这一系列正弦分量统称为电力谐波。当电网中存在的谐波成分超过一定指标,轻者增加能耗,缩短设备运行寿命,重则造成停电事故,直接影响安全生产。所以,对电网中谐波含量准确的测量,确切掌握电网中谐波的实际状况,对于防止谐波危害、维护电网的安全运行是十分必要的。 LabVIEW 具有强大的信号分析与数学运算功能,在它的数学分析库中包含了数以百计的VI 程序,能够进行各种时域与频域信号分析。 本课题通过虚拟仪器LabVIEW 图形化软件开发平台,设计一种谐波测量分析系统。本课题中系统的功能实现采用虚拟仪器技术的思想,选择开放式的LabVIEW 虚拟仪器软件开发平台,将LabVIEW 软件引入到谐波测量分析系统中,能模拟测量低压配电系统的基波电流,基波频率,总畸变率THD 、thd ,2-31次各次谐波电流含有率等参数。具体指标与要求如下: (一) 要求设计一个通道的正弦信号发生器以模拟实际电流,具体要求为: 1、频率范围:0.001Hz ~100KHz ; 2、幅值:0~200A ,可选; 3、直流偏置:0~100V ,可选; 4、可调整幅值、相位、频率;调整后无须重新启动(提示:用循环结构); 5、在产生的信号中可以加入高斯噪声。 (二) 谐波测量分析系统能模拟测量低压配电系统的基波电流,基波频率,总畸变率THD 、thd ,2-31次各次谐波电流含有率、直流含量等参数。 (三) 谐波测量分析系统可以对产生的正弦信号进行频谱分析,得到相关的频谱图。 (四)所有测量分析的参数都要在系统前面板中进行显示,所产生的正弦信号及其频谱图要求分别进行波形显示。 谐波分析原理: 对于周期为0/2ωπ=T 的电流谐波信号进行傅立叶级数分解,除了得到与电网基波频率相

电力系统中的谐波检测及谐波抑制-最新年文档

电力系统中的谐波检测及谐波抑制 刖言 随着我国工业化进程的迅猛发展,电网装机容量不断加大。 电网中电力电子原件的使用也越来越多,致使大量的谐波电流注入电网,造成正弦波畸变,电能质量下降,不但对电力系统的一些重要设备产生重大影响,对广大用户也产生了严重危害。目前, 谐波于电磁干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,演技和清除供配电系统中的高次谐波, 对于改善供电质量、确保电力系统安全、经济运行都有着十分重要的意义。 、电力系统谐波危害 ①谐波会使公用电网中的电力设备产生附加的损耗,降低了 发电、输电及用电设备的效率。 ②谐波会影响电气设备的正常工作, 使电机产生机械振动和 噪声等故障,变压器局部严重过热,电容器、电缆等设备过热, 绝缘部分老化、变质,设备寿命缩减,直至最终损坏。 ③谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十 倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。 ④谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。 ⑤谐波会使电气测量仪表不准确,产生计量误差,给供电部门或电力用户带来直接的经济损失。 ⑥谐波会对设备附近的通信系统产生干扰,轻则产生噪音,境地通信质量;重则导致信息丢失,使通信系统无法正常工作。 ⑦谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或

死机。 ⑧谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪音干扰和图像紊乱。 二、谐波检测 1. 模拟电路 消除谐波的方法很多,既有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为现金的是采用有源电力滤波器。但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波复制误差很难控制在10%以内,严重影响了有源滤波器的控制 性能。 2. 傅立叶变换 利用傅立叶变换可在数字域进行谐波检测,电力系统的谐波分析,目前大都是通过该方法实现的,离散傅立叶变换所需要处理的是经过采样和A/D 转换得到的数字信号,设待测信号为x(t), 采样间隔为t 秒,采样频率=1/t 满足采样定理,即大于信号最高频率分量的2 倍,则采样信号为x(n t) ,并且采样信号总是

有源电力滤波器设计

有源电力滤波器设计 摘要:以三相系统中的电网电流为研究对象,介绍了有源电力滤波器的系统结构和工作原理,讨论了主要元件参数的设计和计算。 键词:有源电力滤波器;滤波器设计;谐波检测 O 引言 近年来,公用电网受到了谐波电流和谐波电压的严重污染,而电力电子装置是其主要的谐波污染源。随着电力电子装置的日益广泛应用,电网中的谐波污染也日益严重,并影响到供电质量和用户使用的安全性,因此电网谐波污染的治理越来越受到关注。 有源电力滤波器是一种用于动态抑制谐波、补偿无功功率的新型电力电子装置,能对大小和频率都变化的谐波及无功功率进行补偿。和传统的无源滤波器相比,有突出的优点。 (1)对各次谐波和分数谐波均能有效地抑制,且可提高功率因数; (2)系统阻抗和频率发生波动时,不会影响补偿效果。并能对频率和幅值都变化的谐波进行跟踪补偿,且补偿特性不受电网阻抗的影响; (3)不会产生谐振现象,且能抑制由于外电路的谐振产生的谐波电流的变化; (4)用一台装置就可以实现对各次谐波和基波无功功率的补偿; (5)不存在过载问题,即当系统中谐波较大时,装置仍可运行,无需断开等。 由以上可看出,它克服了传统的无源滤波器的缺点,具有良好的调节性能,因而有很大的发展前途。 本文对适用于电力系统的有源电力滤波器的原理和设计进行介绍。 l 有源电力滤波器系统结构 有源电力滤波器系统结构如图l所示。

有源电力滤波器的基本工作原理是:实时检测补偿对象的电压和电流,经指令电流运算单元计算出补偿电流指令信号,该信号经补偿电流发生电路放大产生补偿电流,补偿电流与负载电流中需用补偿的谐渡及无功等电流抵消,最终得到期望的电源电流。在图1中的体现是,当需要补偿负载所产生的谐波电流时,有源电力滤波器检测出补偿对象负载电流iL中的谐波分量iLb后,将其反极性作为补偿电流的指令信号iC*,再由补偿电流发生电路产生补偿电流ic,其中补偿电流ic与负载电流中谐波分量iLh大小相等,方向相反,因而两者相互抵消,使得电源中电流中只含基波,达到消除电源电流中谐波的目的。 图1为有源滤波器的系统框图。通过霍尔传感器检测非线性负载的电流iLa、iLb、iLc经电流信号调理后送入指令电流产生电路,指令电流产生模块是由TI公司的DSP TMS320LF2407为核心建立的。DSP计算出需要补偿的谐波和无功电流后,通过外部D/A送入电流跟踪控制电路。霍尔传感器检测有源电力滤波器主电路的电流ica、icb、icc,经电流信号调理后也送入电流跟踪控制电路,电流跟踪控制电路对主电路补偿电流与指令电流进行滞环比较后送出栅极开关驱动信号,驱动电路接受来自前级电流跟踪控制电路的PWM信号,并经隔离放大后驱动主电路的开关管,以控制主电流的电路跟随指令电流的变化,最终达到实时补偿谐波与无功功率的目的。电压传感器检测变流器直流侧总电压,经电压信号调理后送入指令电流发生电路,通过合理的控制以凋节直流侧电压的稳定。启动、关断和保护模块按一定的时序控制装置的启动和关断,并提供装置的过流、过压、过热、缺相等故障保护功能。 2 有源电力滤波器主电路设计 设计主电路时,应首先确定主电路的形式,目前,有源电力滤波器主电路的形式绝大多数采用电压型,本文选择主电路为并联电压型、单个变流器的形式。 主电路设计需要解决的问题是:主电路容量的计算;开关器件的选择及其参数的确定;对补偿电流的跟踪特性起决定作用的参数(输出电感L、直流侧电容电压Ud、滞环宽度δ)的设计;按所选器件要求的驱动电路的设计以及整个装置的各种保护电路设计。 2.1 主电路容量的计算 有源电力滤波器的容量SA由式(1)确定 式中:E为电网相电压有效值; Lc为补偿电流有效值。 如果所设计装置的容量为15 kVA,则 Ic=SA/3E=15x103/3x220=22.7 A 2.2 功率开关器件的选取 目前适用于APFP中的全控型开关器件主要有GTR、IGBT、IGCT等,器件的选择,首先应当满足工作频率和器件容量的要求,当单个器件的容量难以满足要求时,可考虑采用器件的串并联或主电路多重化等方式。其次,再考虑它们的价格。 器件的种类确定后,再确定其额定参数。其中,额定电压由直流侧电压决定,并考虑适当的安全裕量。额定电流由补偿电流决定。 2.3 主电路滞环宽度的选取 由于有源电力滤波器的指令电流包含高次谐波和暂态电流,故要求实际输出的电流对指令电流有很高的跟踪能力。在有源电力滤波器的补偿对象已确定的情况下,有源电力滤波器主电路参数的选取,对有源电力滤波器的性能和效率有较大的影响。 下面以A相为例,分析采用滞环控制时逆变器的工作频率f与电网电压ea、变流器直流侧电压Ud及

相关文档
最新文档