无人机激光雷达扫描系统

无人机激光雷达扫描系统
无人机激光雷达扫描系统

Li-Air无人机激光雷达扫描系统

Li-Air无人机激光雷达扫描系统可以实时、动态、大量采集空间点云信息。根据用户不同应用需求可以选择多旋翼无人机、无人直升机和固定翼无人机平台,可快速获取高密度、高精度的激光雷达点云数据。

硬件设备

Li-Air无人机激光雷达系统可搭载多种类型扫描仪,包括Riegl, Optech, MDL, Velodyne等,同时集成GPS、IMU和自主研发的控制平台。

图1扫描仪、GPS、IMU、控制平台

无人机激光雷达扫描系统设备参数见表格1:

表格 1 Li-Air无人机激光雷达扫描系统

图2 八旋翼无人机激光雷达系统图3 固定翼无人机激光雷达系统

设备检校

公司提供完善的设备检较系统,在设备使用过程中,定期对系统的各个组件进行重新标定,以保证所采集数据的精度。

图1扫描仪检校前(左)扫描仪检校后(中)检校前后叠加图(右)

图4(左)为检校前扫描线:不连续且有异常抖动;图4(中)为检校后扫描线:数据连续且平滑变化;图4(右)为检校前后叠加图,红线标记的部分检校效果对比明显。

图5从左至右依次为校正前(侧视图)、校正后(侧视图)、叠加效果图图5(左)为检校前扫描线:不在同一平面;图4(中)为检校后扫描线:在同一平面;图4(右)为检校前后叠加图。

成熟的飞控团队

公司拥有成熟的软硬件团队以及经验丰富的飞控手,保证数据质量以及设备的安全性,大大节约了外业成本和时间。

图6无人机激光雷达系统以及影像系统

完善的数据预处理软件

公司自主研发的无人机系统配备有成套的激光雷达数据预处理软件Li-Air,该软件可对无人机实时传回的激光雷达数据进行航迹解算、数据生成、可视化等。

图7 Li-Air数据预处理功能

成功案例

2014年7月,本公司利用Li-Air无人机激光雷达扫描系统进行中关村软件园园区扫描项目,采集园区高清点云以及影像数据。飞行高度200m,点云密度约50点/平方米,影像地面分辨率为5cm。通过POS数据解算,完成对点云和影像数据的整合,得到地形信息和DOM等。

图8软件园项目航迹信息:航迹规划图(左);实际航迹(右)。

图9无人机激光雷达点云数据(左);无人机影像(右)

图10无人机激光雷达点云数据

应用领域

无人机激光雷达系统作为新兴的遥感技术,其数据可以应用于;1)森林参数估计;2)道路网络提取;3)高精地形生成;4)房屋模型提取;5)海岸线制图;6)国土资源调查;7)工程建筑测量;8)电力巡线;9)灾害评估等方面。

无人机激光雷达扫描系统

Li-Air无人机激光雷达扫描系统 Li-Air无人机激光雷达扫描系统可以实时、动态、大量采集空间点云信息。根据用户不同应用需求可以选择多旋翼无人机、无人直升机和固定翼无人机平台,可快速获取高密度、高精度的激光雷达点云数据。 硬件设备 Li-Air无人机激光雷达系统可搭载多种类型扫描仪,包括Riegl, Optech, MDL, Velodyne等,同时集成GPS、IMU和自主研发的控制平台。 图1扫描仪、GPS、IMU、控制平台 无人机激光雷达扫描系统设备参数见表格1: 表格 1 Li-Air无人机激光雷达扫描系统 图2 八旋翼无人机激光雷达系统图3 固定翼无人机激光雷达系统 设备检校

公司提供完善的设备检较系统,在设备使用过程中,定期对系统的各个组件进行重新标定,以保证所采集数据的精度。 图1扫描仪检校前(左)扫描仪检校后(中)检校前后叠加图(右) 图4(左)为检校前扫描线:不连续且有异常抖动;图4(中)为检校后扫描线:数据连续且平滑变化;图4(右)为检校前后叠加图,红线标记的部分检校效果对比明显。 图5从左至右依次为校正前(侧视图)、校正后(侧视图)、叠加效果图图5(左)为检校前扫描线:不在同一平面;图4(中)为检校后扫描线:在同一平面;图4(右)为检校前后叠加图。 成熟的飞控团队 公司拥有成熟的软硬件团队以及经验丰富的飞控手,保证数据质量以及设备的安全性,大大节约了外业成本和时间。

图6无人机激光雷达系统以及影像系统 完善的数据预处理软件 公司自主研发的无人机系统配备有成套的激光雷达数据预处理软件Li-Air,该软件可对无人机实时传回的激光雷达数据进行航迹解算、数据生成、可视化等。 图7 Li-Air数据预处理功能 成功案例 2014年7月,本公司利用Li-Air无人机激光雷达扫描系统进行中关村软件园园区扫描项目,采集园区高清点云以及影像数据。飞行高度200m,点云密度约50点/平方米,影像地面分辨率为5cm。通过POS数据解算,完成对点云和影像数据的整合,得到地形信息和DOM等。

自制低成本3D激光扫描测距仪(3D激光雷达)

来自CSK的低成本3D scanner。Very Impressive! 在开始介绍原理前,先给出一些扫描得到的3D模型以及演示视频,给大家一个直观的认识。视频链接 相关的图片: 扫描得到的房间一角(点击查看原始尺寸) 扫描的我(点击查看原始尺寸)

扫描仪实物 本文结构 1. 简单介绍了激光雷达产品的现状 2. 激光三角测距原理 3. 线状激光进行截面测距原理 4. 3D激光扫描仪的制作考虑 5. 参考文献 简介-激光扫描仪/雷达 这里所说的激光扫描测距仪的实质就是3D激光雷达。如上面视频中展现的那样,扫描仪可以获取各转角情况下目标物体扫描截面到扫描仪的距离,由于这类数据在可视化后看起来像是由很多小点组成的云团,因此常被称之为:点云(Point Clould)。 在获得扫描的点云后,可以在计算机中重现扫描物体/场景的三维信息。 这类设备往往用于如下几个方面: 1) 机器人定位导航 目前机器人的SLAM算法中最理想的设备仍旧是激光雷达(虽然目前可以使用kinect,但他无法再室外使用且精度相对较低)。机器人通过激光扫描得到的所处环境的2D/3D点云,从而可以进行诸如SLAM 等定位算法。确定自身在环境当中的位置以及同时创建出所处环境的地图。这也是我制作他的主要目的之一。 2) 零部件和物体的3D模型重建

3) 地图测绘 现状 目前市面上单点的激光测距仪已经比较常见,并且价格也相对低廉。但是它只能测量目标上特定点的距离。当然,如果将这类测距仪安装在一个旋转平台上,旋转扫描一周,就变成了2D激光雷达(LIDAR)。相比激光测距仪,市面上激光雷达产品的价格就要高许多: 图片: Hokuyo 2D激光雷达 上图为Hokuyo这家公司生产的2D激光雷达产品,这类产品的售价都是上万元的水平。其昂贵的原因之一在于他们往往采用了高速的光学振镜进行大角度范围(180-270)的激光扫描,并且测距使用了计算发射/反射激光束相位差的手段进行。当然他们的性能也是很强的,一 般扫描的频率都在10Hz以上,精度也在几个毫米的级别。 2D激光雷达使用单束点状激光进行扫描,因此只能采集一个截面的距离信息。如果要测量3D的数据,就需要使用如下2种方式进行扩充: 1. 采用线状激光器 2. 使用一个2D激光雷达扫描,同时在另一个轴进行旋转。从而扫描出3D信息。 第一种方式是改变激光器的输出模式,由原先的一个点变成一条线型光。扫描仪通过测量这束线型光在待测目标物体上的反射从而一次性获得一个扫描截面的数据。这样做的好处是扫描速度可以很快,精度也比较高。但缺点是由于激光变成了一条线段,其亮度(强度)将随着距离大幅衰减,因此测距范围很有限。对于近距离(<10m)的测距扫描而言,这种方式还是 很有效并且极具性价比的,本文介绍的激光雷达也使用这种方式,

无人机激光雷达无居民海岛地形地貌测测量方案

无人机激光雷达无居民海岛地形地貌测绘 测量方案 *** ***

目录 一、概述 (4) 1.1 工程名称 (4) 1.2 测量时间 (4) 1.3 测量原理 (4) 1.4 测量范围及测量内容 (5) 1.4.1 测量范围 (5) 1.4.2 测量内容 (6) 1.5 管理体系 (6) 1.6 测绘资源配备 (6) 1.6.1 人员配置 (6) 1.6.2 设备配置 (6) 1.6.3软件配置 (7) 1.6.3 交通配置 (7) 1.6.4 主要设备性能参数 (7) 1.6.4.1轴多旋翼参数 (7) 1.6.4.2激光雷达性能参数 (8) 1.6.4.3 IMU性能参数 (9) 二、无人机激光雷达测量依据及设计原则 (10) 2.1 无人机激光雷达测量依据 (10) 2.2 设计原则 (11) 三、无人机激光雷达测量设计 (11) 3.1 测量技术要求 (11) 3.1.1 平面坐标系 (11) 3.1.2 高程系统 (11) 3.1.3 点云密度 (12) 3.1.4 点云数据高程精度要求 (12) 3.1.5 飞行天气、场地、高度、速度要求 (12) 3.1.6 其他要求 (12) 3.2 地面GPS基站架设 (12) 3.3 任务航线设计 (13) 3.3.1 检校场设计 (13) 3.3.1.2 检校场地面控制点布设及测量要求 (14) 3.3.2 航线设计 (14) 3.4 磁罗盘的校准 (15) 3.5 无人机的实验性飞行 (16) 3.6 无人机搭载设备后的检查 (16) 3.7 无人机作业前的“8”字飞行(IMU累计误差的消除) (18) 3.8 无人机的正常飞行(航线飞行) (19) 四、内业处理 (20) 4.1 数据准备 (20) 4.1.1 原始数据下载 (20) 4.1.2 POS数据解算 (20)

无人机机载激光雷达系统航带拼接方法研究 刘向伟

无人机机载激光雷达系统航带拼接方法研究刘向伟 发表时间:2018-03-01T14:00:21.743Z 来源:《基层建设》2017年第33期作者:刘向伟付云龙冯元春 [导读] 摘要:为了减少机载激光雷达(激光雷达)系统的系统误差和随机误差引起的三维(3d)之间的空间地带偏差,提高数据精度,选择基于数据驱动的“六参数”地带的调整方法,实现无人机机载激光雷达系统的拼接。 天津市津典工程勘测有限公司天津 300222 摘要:为了减少机载激光雷达(激光雷达)系统的系统误差和随机误差引起的三维(3d)之间的空间地带偏差,提高数据精度,选择基于数据驱动的“六参数”地带的调整方法,实现无人机机载激光雷达系统的拼接。本文针对大面积更多地带INSAR(干涉合成孔径雷达)图像定位和拼接问题缺乏地面控制点,并提出了一个联合定位条INSAR成像方法。该方法在摄影测量光束调整思想的方法,并使用INSAR干扰图像上每个点高程值的选择。分析了控制点的数量,位置,重叠区域,地形起伏的影响调整精度,并给出控制点布的原则。 关键词:激光光学;激光雷达;航带平差 1前言 机载激光雷达系统集激光测距技术、计算机技术和高精度的惯性导航和高精度动态定位技术,可以直接与高密度,高精度三维(3d)空间点云,更智能和自动数据采集和处理,已在测绘领域的广泛关注。但由于激光雷达系统是由全球定位系统(GPS)和惯性导航系统(INS)和扫描仪,和复杂的多传感器集成系统的其他部分,其精度是影响常见系统内的部分。 2平差模型及平差方法 2.1数学模型 “距离-多普勒”方程组是严密的构像模型,它符合INSAR成像机理。因此,本文研究内容都是基于该模型而展开的。“距离-多普勒”方程组为: 式中,(XS0,YS0,ZS0)是飞机的起始位置;(VX,VY,VZ)是飞机的速度;(ax,aY,az)是飞机的加速度;DS0为近距点斜距;mx为距离向分辨率;fd为多普勒中心频率;Prf是脉冲重复频率。DSO、mx、fd、prf为已知参数。经运动补偿后,飞机的航迹是作匀速直线运动的,因此,式(3)中可以省略二次项,则待求定位参数为XS0,YS0,ZS0,VX,VY,VZ。 1.2平差方法 光束法是精度最高的区域网平差方法。本文借鉴光束法的思想,利用距离多普勒方程建立飞机位置、像点坐标、地面点坐标之间的关系。使用泰勒公式对式(1)、式(2)线性化得到误差方程:

机载激光雷达扫描仪RIEGL VQ-480

Preliminary System Configuration 10/08 Scanner Basic Configuration Part-No. 21R09-00-106-00 Airborne Laser Scanner RIEGL VQ-480 Part-No. 21R09-00-006-00 ? Laser transmitter & receiver front end ? Motorized mirror scanning mechanism, FOV 60° ? Signal processing electronics with echo digitization and online waveform analysis ? Internal power supply electronics, input voltage 18 – 32 V DC Detailed specifications and laser classification according to the latest datasheet RIEGL VQ-480. Electrical Interfaces, integrated ? TCP/IP Ethernet Interface, providing smooth integration of the RIEGL VQ-480 data into a 10/100/1000 MBit/sec, twisted-pair (TP) Local Area Network (LAN). The scanner acts as a server allowing remote configuration and data acquisition via a platform-independent TCP/IP Ethernet Interface. Serial RS232, 19? .2 kBd, for data string with GPS time information for ? TTL input for 1 PPS Sync Pulse synchronization Mechanical Interfaces, integrated ? 2 mounting brackets with 6 x M6 thread inserts for mounting of the laser s 3 x M6 thread inserts in the bottom plate, rigidly couple canner ? d with the internal nting of the IMU sensor 6 thread inserts on top mechanical structure for mou ? 3 x M Cables Part-No. 02Z03-02-003-00 TCP/IP Cable M12-M12, 3 m ?? Part-No. 02Z03-01-001-00 TCP/IP Cable M12-RJ45, 0.3 m ? Part-No. 02Z03-01-002-00 TCP/IP Cable M12-RJ45 cross over, 0.3 m Part-No. 02Z03-02-032-00 Serial Data and PPS Cable to GPS receiver, 5 m ? Part-No. 02Z03-02-033-00 Power Supply Cable, 2 pole, 5 m ?

一种激光雷达复合式扫描方法及试验_马辰昊

第44卷第11期红外与激光工程2015年11月Vol.44No.11Infrared and Laser Engineering Nov.2015一种激光雷达复合式扫描方法及试验 马辰昊,付跃刚,宫平,欧阳名钊,张书瀚 (长春理工大学光电工程学院,吉林长春130022) 摘要:传统激光雷达系统中,固态激光光源的重复频率和扫描系统的扫描带宽、精度均制约着系统成像。为提高激光雷达的成像精度,首先,在激光光源上采用经EDFA放大后的DFB高重频激光光源。其次,提出了一种PZT与振镜相结合的两级复合式激光扫描方法,利用PZT对小视场范围进行精细扫描,利用振镜对PZT的扫描视场和接收视场进行偏转完成粗扫描,在提高激光雷达扫描精度的同时拥有较大的扫描视场。最后,经试验所设计的复合式扫描激光雷达的方位角为±99mrad,俯仰角为±49.5mrad,角分辨率达到0.1mrad,测距精度达到0.159m。 关键词:激光雷达;视场拼接;振镜 中图分类号:TN247文献标志码:A文章编号:1007-2276(2015)11-3270-06 A composite scanning method and experiment of laser radar Ma Chenhao,Fu Yuegang,Gong Ping,Ouyang Mingzhao,Zhang Shuhan (School of Opto-Electronic Engineering,Changchun University of Science and Technology,Changchun130022,China) Abstract:In traditional laser radar system,the imaging is influenced by repetition rate of selected solid-state laser as well as scanning bandwidth and scanning precision in the laser scanning system.In order to improve the scanning bandwidth and precision,DFB high-repetition-rate semiconductor laser which was amplified by EDFA was adopted as the laser source firstly.Secondly,a two-stage composite laser scanning method had been proposed with combination of PZT and galvanometer.PZT got on meticulous scanning in small areas,then galvanometer was used to deflect and finish coarse scanning on the PZT scanning field and receiving the field.The scanning accuracy had been raised and the scanning field of laser radar had been expanded simultaneously.At last,azimuth of composite scanning laser radar is±99mrad,pitch angle is±49.5mrad.Angular resolution can measure up to0.1mrad,and the ranging precision can reach0.159m. Key words:laser radar;field joint;galvanameter 收稿日期:2015-03-21;修订日期:2015-04-23 基金项目:国家自然科学基金(61108044) 作者简介:马辰昊(1988-),女,讲师,博士,主要从事光电检测方面的研究。Email:mch6567@https://www.360docs.net/doc/3d14146559.html, 通讯作者:付跃刚(1972-),男,教授,博士生导师,博士,主要从事光电检测方面的研究。Email:fuyg@https://www.360docs.net/doc/3d14146559.html,

基于激光雷达的多旋翼无人机室内定位与避障研究

34 | 电子制作 2018年8月 超声波模块和距离报警模块,其中光流传感器及激光雷达装置,负责主要的定位和探测障碍物的功能。而超声波模块作为辅助,通过使用超声波代替激光,弥补在某些特定环境下激光失能时作为替代设备。 图1 控制集成电路板图 激光雷达如图2所示,使用360度全平面扫描型雷达, 扫描频率10Hz,采样频率8000次/秒,高达18米的探测 距离,足以应付一般室内定位的要求。 图2 激光雷达探测 激光雷达系统使用经典的三角测距算法来计算环境距离如图3所示,距离d=s·f/x/tan(beta)。 2 组合导航在提升导航系统的冗余度和精度方面,组合导航具有明 显的优势,依托传感器提供的互补信息来完成这一过程。针对任何一种组合导航系统,无论是采用的何种配置(惯性导 航、卫星导航、雷达、摄像机、多普勒测速仪、高度计等传基础。 图3 经典的三角测距算法事实上,在组合导航系统需求的引导下,组合导航的EKF 应运而生。在近几十年的发展中,非线性滤波在该行业取得了众人瞩目的成绩,更加领先的非线性滤波器在组合导航系统的信息融合策略中也逐步渗透其中,成为发展的趋势。依据含噪声的观测量,通过在线估计方法计算出系统的隐含状态,是滤波的最终目的。经过半个世界的快速发展,工程界和统计学界将非线性滤波作为重要的研究课题一直在继续。基于局部线性化(一阶 Taylor 级数展开)的EKF 是当前应用最广的方法。目前,众多的学科和工程领域都已离不开EKF 技术,获得了人们的高度青睐。虽然具有众多的应用优势,但是EKF 的收敛性在目前看来缺少可操作的理论证明。为了更好的克服EKF 的该弱点, Uhlmann 和Julier 共同指出,“对概率分布进行近似要比对非线性函数进行近似容易的多”,并针对该问题提出了更深入的研究结论即 Unscented 卡尔曼滤波器(Unscented Kalman Filter,UKF)。基于随机服从高斯分布的前提下,排除针对系统模型的假设,即EKF 不要求系统的近似线性。UKF 不需要计算 Jacobian 导数矩阵,甚至可以应用于不连续统。 UKF 的变形也可以在一定程度上放松高斯分布的假设。可以证明:UKF 的理论估计精度优于 EKF。本方案使用中值滤波的算法对激光扫描仪数据进行处

激光雷达激光器的扫描方式

激光雷达激光器的扫描方式 目前市场上的脉冲式激光器有四种扫描方式 1. 振荡(或钟摆)式(Oscillating Mirror) 2. 旋转棱镜式(Rotating Polygon) 3. 章动(或Palmer)式(Nutating Mirror,or Palmer Scan) 4. 光纤扫描式(Fiber Switch) 钟摆扫描方式 原理:光直接入射到反射平面镜上,每一个钟摆周期在地面上生成一个周期性的线性图案,Zig-Zag型,或称为之字形。 生产厂家:Optech和徕卡公司 钟摆扫描时,反射镜面需要在一秒内振荡数百次,同时要不断地、循环地从一端开始启动,加速、达到钟摆的最低点后,减少,知道速度为零,至V达钟摆的另一端。因此它的扫描方向是左右两个方向的。 优点: 1. 对于扫描视窗角(FOV),扫描速度有多种选择,使得地面的覆盖宽度和激光点密度的选择有较多的机会; 2. 大的光窗数值孔径; 3. 较高的接受信号比。 弱点: 1. 由于在一个周期内,不断地经历了加速、减速等步骤,因此,所输出的激 光点的密度是不均匀的。这种不均匀性在扫描角度很小(如+-2°)时,因为过程短,并不显著;当扫描角逐渐增大,大到+-4°时,不均匀性会越来越显著; 2. 由于反射镜的加速/减速,造成了激光点的排练一般是在钟摆的两端密,中间疏。而中间的数据是更受关注的。由于在钟摆的两端,镜面的摆动速度较低或停止,并扫描两次,因此所得的数据精度差,需要剔除,约占总数据的10%,如扫描角为+-22.5°,只选取+-20°; 3. 由于不断地变化速度,造成了机械的磨损,使得IMU的配置发生了漂移,依次每一次飞行前都需要进行“ boresigh f检校飞行; 4. 消耗更多的功率。 旋转棱镜式扫描 原理:激光入射到连续旋转的多棱镜的表面上,经反射在地面上形成一条条连续的、平行的扫描线。 激光器生产厂家:Riegl 激光雷达生产厂家:IGI,TopoSys,FliMap,iMAR,Fugro/Cha nee 优点: 1?需要的功率小; 2.棱镜旋转的角速度不变,使得激光点的密度均匀,尤其是沿飞机飞行的方向的线间距完全相同。 缺点: 1. 因为使用了对眼睛安全的长的波长,为了减少色散度,选择了较小的光窗数值孔

机载激光雷达选择参考

机载激光雷达选择参考 目前市场上销售的机载激光雷达来自多个厂家,有多种品牌和种类。那么,如何从中选择技术先进、性价比好、故障少又售后服务完善的设备呢? 一、机载激光雷达系统生产厂家介绍 目前提供机载激光雷达设备的厂家主要有:徕卡、Optech(加拿大)、IGI、天宝、TopEye和Riegl。 这些厂家的特点是什么呢? (a)自己生产机载激光扫描仪,然后购买其他厂家的GPS/IMU及硬件和软件,集成机载激光雷达。这类厂家有徕卡,Optech(加拿大),Topeye(瑞典)和Riegl(奥地利)。 在这些生产激光扫描仪的厂家中,生产规模最大的和研究能力最强的是Riegl公司,他向许多厂家提供了一系列产品,如: LMS-Q系列机载激光扫描仪:LMS-Q240, LMS-Q280, LMS-Q120i,LMS-Q160(超轻型,防摔型,无人机专用)等。 新型的具备数字化全波形数据获取和实时处理能力的VQ系列机载激光扫描仪:VQ180, VQ280, VQ480,LMS-Q560和VQ680i等。 目前,徕卡只生产一种激光扫描仪,而其他厂家也大多只生产两款机载激光扫描仪作为自己的系统集成使用。Optech虽然能够生产具备数字化全波形数据的激光扫描仪,但不是标准配置,用户需要另外付费。但即便如此,也已经落后Riegl公司六年。 这里还要指出的是:徕卡公司在2005年前一直使用的是加拿大Applanix POS系统,由于美国的禁运政策,向中国出口的POS系统都进行了许多修改,性能明显下降,并且伴随不稳定的情况。为了保证激光雷达性能的可靠性,徕卡在2004年后测试了许多不同公司(包括Honeywell)的POS系统。在2005年7月又从加拿大TerraMatics公司(1998年成立)购买了其POS系统的IP(知识产权),避开北美区域,由自己(在瑞士)来研发和委托生产型号为iPAS 的POS系统。目前国内所销售的徕卡的ALS50-ii和60系统基本都是配置iPAS定位系统。

激光雷达避障

基于radar的彩虹无人机避障技术及系统研究 所谓无人机自动避障功能(Obstacle Avoidance),就是无人机飞行器在自动飞行的过程中遇到障碍物的时候,通过自动提前识别、有效规避障碍物,达到安全飞行的效果。 基于航空物探作业(包括航磁及航放测量作业)的航空飞行平台改装,要求飞行器具备良好的低空避障能力,以应对飞行器在超低空飞行时可能遇到的剧烈起伏地形及各种动力线、高压线铁塔、桅杆、天线拉线等小型不可预知障碍物。 目前彩虹系列无人机装备的机载测距仪、传感器均无法做到预先发现危险物并提供障碍物信息。同时,基于视觉的避障策略无法在夜间和恶劣天气条件下为无人机避障提供帮助。为保证彩虹系列无人机飞行平台在物探等超低空作业中的飞行安全,研制装备高效可行的自主避障系统显得尤为迫切。 一、避障设备选型 1.微波雷达 传统意义上应用于雷达系统的电磁波,以工作频率划分为若干的波段,由低到高的顺序是:高频(HF)、甚高频(VHF)、超高频(UHF)、L波段、S波段、C波段、X波段、Ku波段、K波段和Ka波段等。非相控阵单雷达条件下,高频(短波长)的波段一般定位更准确,但作用范围短;低频(长波)的波段作用范围远,发现目标距离大。 表1雷达频段划分 米波的频率范围在300MHz–3GHz,主要用于通讯和电视广播; 厘米波的频率范围在3GHz–30GHz,主要用于雷达、卫星通讯,无线电导航; 毫米波的频率范围在30GHz–300GHz,用于卫星通讯。 雷达波段(radar frequency band)指雷达发射电波的频率范围。其度量单位是赫兹(Hz)或周/秒(C/s)。大多数雷达工作在超短波及微波波段,其频率范围在30~300000兆赫,相应波长为10米至1毫米,包括甚高频(VHF)、特高频(UHF)、超高频(SHF)、极高频(EHF)4个波段。在1GHz频率以下,由于通信和电视等占用频道,频谱拥挤,一般雷达较少采用,只有少数远程雷达和超视距雷达采用这一频段。高于15吉赫频率时,空气水分子吸收严重;高于30吉赫时,大气吸收急剧增大,雷达设备加工困难,接收机内部噪声增大,只有少数毫米波雷达工作在这一频段。 在实际应用中,选用的电磁波频率越高,其穿透性越差,空间损耗(大气中水蒸气和氧造成的损耗)越大,但精度会更高;反之,相对低频的电磁波(例如微波)在空气中损耗较低,发射和接收角度大,且传输距离远,在军事和民用发面得到广泛应用。

无人机激光雷达扫描系统

激光雷达扫描系统 激光雷达扫描系统可以实时、动态、大量采集空间点云信息。根据用户不同应用需求可以选择不同的载体平台(机载、车载),可快速获取高密度、高精度的激光雷达点云数据。 硬件设备 激光雷达系统可搭载多种类型扫描仪,包括RiegI, Op tech, MDL, Velod yne 等,同时集成GPS、IMU和自主研发的控制平台。 激光雷达扫描系统设备参数见表格1: 三维激光雷达扫描仪长距扫描仪 中距扫描仪短距扫描仪 扫描距离920m 500m 70m 扫描精度1cm 15cm 2cm 飞行速度20-60km/h 20-60km/h 20 -60km/h 扫描角度330°360°360° 每秒发射激光点数50万 3.6万70万 扫描仪重量 3.85kg 4.65kg 1kg 配备我公司自主研发的Li-Air数据处理系统 进行重新标 图1扫描仪、GPS、IMU、控制平台 图3固定翼无人机激光雷达系统 设备检校

定,以保证所采集数据的精度。 图1扫描仪检校前(左)扫描仪检校后(中)检校前后叠加图(右) 图4 (左)为检校前扫描线:不连续且有异常抖动;图4 (中)为检校后扫描线: 数据连续且平滑变化;图4 (右)为检校前后叠加图,红线标记的部分检校效果对比明显。 图5从左至右依次为校正前(侧视图)、校正后(侧视图)、叠加效果图 图5 (左)为检校前扫描线:不在同一平面;图4 (中)为检校后扫描线: 在同一平面;图4 (右)为检校前后叠加图。 完善的数据预处理软件 公司自主研发的激光雷达数据预处理软件可对实时传回的激光雷达数据进行航迹解算、数据生成、可视化等。

利用激光雷达来实现三维扫描服务

利用激光雷达来实现三维扫描服务 1.简介 传统的三维建模方法主要由单点测量(全站仪、GPS等)或航空摄影测量的方法来实现的。 但是这两种方式建立几何模型的工作量很大,精度也不高,不能快速获取三维空间数据、精确建立模型,而且后者也不适合小区域的数据采集。三维激光扫描技术通过非接触式测量快速获取物体表面大量的三维点云坐标和纹理颜色信息,是一种快速、精确、高效的三维空间信息获取方式。根据三维点云可以迅速还原三维场景、构建三维模型。 2.激光雷达的特点 激光雷达可实时、主动、快速地获取城市建筑,森林,农田等大型近景目标的三维信息,可以对所获取的数据进行自动处理与模型重建,可广泛应用于城市、大型文物等测绘领域。 用于城市三维空间数据和表面图像数据获取、处理与重建的近景三维测量系统。 车载激光雷达还可以对土地、地物的数字正射影像(DOM)、数字表面模型(DSM)、数字高程模型(DEM)、数字线化图(DLG)和数字三维模型进行数据采集。 机载激光雷达系Li-Mobile统集成了激光雷达(LiDAR)、全球定位系统(GPS)、惯性测量单元(IMU)和航空数码摄影测量等先进技术,是目前航空遥感摄影测量领域的最新技术手段,能够快速获取高精度、高空间分辨率的数字地表模型,进而获取地表物体的垂直结构形态,具有快速高效与精确定位等优点。 3.优势 (1)数据获取速度快,实时性强;(2)获取的数据量大,精度较高;(3)采用主动式测量,可以全天候作业;(4)信息量丰富,包括三维点云和影像信息 4.典型案例 北京数字绿土科技有限公司和北京清华大学合作的国家973项目,红树林三维数据的采集。 目前国内在激光雷达研究应用方面较为成熟的是北京数字绿土科技有限公司和南京维莱达智能科技有限公司,他们公司有较为成熟的激光雷达扫描系统,像车载信息平台 (Li-Mobile) 和无人机平台(Li-Air),并且他们公司自主研发的Lidar360激光雷达点云处理软件可以提供点云数据后处理的一站式解决方案。

相关文档
最新文档