玻璃行业节能降耗的现实意义

玻璃行业节能降耗的现实意义
玻璃行业节能降耗的现实意义

玻璃工业热工设备课程

论文题目:

玻璃行业节能降耗的现实意义

院系建筑与材料工程系

专业工程管理

班级

学生姓名

学号

任课教师

2012 年 06 月 08 日

玻璃行业节能降耗的现实意义

专业工程管理学生XXX学号XXXXXXXX

摘要:本文介绍了玻璃工业节能技术的发展现状以及目前主要采取的节能措施,着重讲述了玻璃熔窑保温和全氧燃烧技术,并给与具体事例分析,用数据说明了采取这些节能措施所带来的经济效益。

关键词:玻璃熔窑;窑体保温;全氧燃烧;节能降耗

Abstract:This article describes the current development of the glass industry energy-saving technologies , as well as the main energy-saving measures taken , highlighted the plight of the glass melting furnace insulation and full oxygen combustion technology , and give specific examples of analysis , and data used to take these energy-saving measures brought to economic benefits .

Key words:glass melting furnace ; kiln insulation ; oxy-fuel ; energy saving

目录

1、前言 (3)

2、我国能源所面临的形势 (3)

3、玻璃窑能耗现状 (3)

4、节能措施 (4)

4.1 选用优质的耐火材料 (4)

4.2 强化窑体保温 (4)

4.3 减少流液洞中玻璃液回流 (4)

4.4 全氧燃烧 (4)

5、经济效益 (4)

5.1 窑体保温 (4)

5.1.1 窑体散热的相关热工公式 (4)

5.1.2 实例计算 (5)

5.1.2.1 窑体保温的基本数据 (5)

5.1.2.2 窑体散热量热工计算 (5)

5.2 全氧燃烧 (8)

5.2.1 热量与质量平衡方程的建立 (8)

5.2.2实例计算 (8)

5.2.2.1 浮法玻璃熔窑设计基本数据 (8)

5.2.2.2 熔窑热工计算 (9)

6.结语 (9)

1、前言

节能减排是玻璃行业建设和运营的重要内容,关系到玻璃行业的全面协调和持续发展。而玻璃窑炉是玻璃工业能源消耗的关键热工设备,一般占全厂总能耗的80%左右,玻璃窑炉的节能降耗是整个玻璃工业的节能关键,搞好玻璃池窑的节能降耗是提高玻璃企业经济效益的有效手段。当能源成为企业沉重负担因素时,就会使能耗高、成本高企业处于更加艰难的处境,生存和利润决定了企业对窑炉能耗的关注,也使得各种提高玻璃窑炉节能技术应用的更加普遍,其中窑体表面散热约占整个热能消耗的30%左右,因此强化窑体全保温并长期稳定保持窑炉密封保温效果是最直接最有效的措施之一。玻璃企业的节能是一个长期任务,国内外技术人员积极进行研究,如优化窑炉结构设计、强化窑体保温、余热利用、减压澄清、富氧燃烧、全氧燃烧等。

2、我国能源所面临的形势

①资源总量和人均量不足。

②资源消耗增长速度惊人。

③对外资源依赖度持续升高。

④资源重复利用率低

⑤生态环境急剧恶化。

⑥资源利用率整体偏低。

3、玻璃窑能耗现状

玻璃熔窑在玻璃工厂中是消耗燃料最多的热工设备,一般,占全厂总能耗的70~85%左右,抓住了玻璃熔窑的节能,就抓住了玻璃厂的节能节能的核心。可见玻璃熔窑节能是至关重要的。

从一个较先进的玻璃熔窑的热平衡测试可知,对于火焰窑来讲,玻璃熔窑的能耗主要是由三部分组成,(1)、把配合料熔制成玻璃液,对于钠钙硅玻璃而言,其耗热大约在600~750kcal/kg玻璃液左右;(2)、窑体散热,对于热效率在30%左右的玻璃熔窑来说,其耗热大约也在600~750kcal/kg玻璃液左右;(3)、从烟囱冒出的烟气带走的能耗,对于热效率在30%左右的玻璃熔窑来说,其耗热大约也在600~750kcal/ kg玻璃液左右。从热平衡中得知,第—部分的能耗是必不可少的,第二、三部分能耗是浪费的,所以抓住了后两个部分的节能就抓住了玻璃熔窑的关键,就会取得事半功倍的结果,这就是玻璃熔窑节能的方向。

4、节能措施

4.1 选用优质的耐火材料

在玻璃工业中,耐火材料是窑炉设计的基础,因为在玻璃池窑上实施一系列技术措施,没有可供使用的优质耐火材料是难以实现的。

4.2 强化窑体保温

窑体的强化保温,就是尽量减少熔化玻璃时从窑体散失的热量。窑炉只有采取强保温后,才能将窑体不保温散失的占输入热量30%左右的热量减少到6~9%左右。玻璃窑炉的保温,不仅可使窑壁热阻增加,减少向外散热,并且能在相同的火焰温度下,提高玻璃窑内的玻璃液温度(30~50℃),加速熔化过程,摄高熔化率,降低单位玻璃液的能耗。保温还可增加窑体结构的严密性,减少通过胸墙、碹顶等不严密部位的热气溢散,以及通过小炉、蓄热室墙体缝隙吸入冷空气而造成的能耗损失。只有对窑炉的池壁、胸墙、碹顶、小炉、蓄热室等部位进行全方位复合层次的保温,才是提高玻璃熔窑的热效率、节能三个最大的途径之一。

4.3 减少流液洞中玻璃液回流

流液洞中存在着回流,即会引起池窑能耗显著增加。这是因为从工作池流向熔化池的冷玻璃液必须重新加温,使其达到熔化池澄清区的平均温度,以避免影响玻璃液的澄清。

4.4 全氧燃烧

随着制氧成本的降低,全氧燃烧将是玻璃行业节能减排的最佳选择,也是我国玻璃行业未来实现节能减排的最经济有效的措施。

全氧燃烧玻璃熔窑整个熔化部采用全氧燃烧,其优点是:

(1)改善燃烧效率,节能25~55%。

排放量降低达80%以上,粉尘排放量减少70~80%。

(2)污染减排显著:NO

X

(3)投资成本低,窑炉结构简单占地小,没有蓄热室及脱硝装置等。

(4)筑炉时间短,维修量少,窑炉寿命长。

5、经济效益

5.1 窑体保温

5.1.1 窑体散热的相关热工公式

依据《JC488-92玻璃池窑热平衡测定和计算方法》,对连续操作的玻璃熔窑,

通过窑体向外散失的热量,属于稳定热流,按传热学原理,这种散热可用下列公式进行计算:

)t -(t f ωα∑=q [kcal ∕(m 2·h)] ———⑴

其中q ——每平方米窑壁散热损失[kcal ∕(m 2·h)]

w

T ——窑壁外表面温度(℃) f

T ——周围空气的温度(℃)

α——比例系数,称对流辐射换热系数,[kcal ∕m 2·℃·h] 当周围空气为自由运动时,α值可以用下列公式计算:

f

f f t t T T t t A -10010054.4-4

4

4

ωωωωα?????????

??-??? ??+=∑ ———⑵

其中ωA ——散热面位置系数:碹顶取3.26,小炉、胸墙取2.56

5.1.2 实例计算

5.1.2.1 窑体保温的基本数据

1)1000T/d 平板窑每天散发热量及保温措施

池窑各部位的表面温度

类别 项目 表面积(m 2) 无保温

池窑(0C) 保温材料(mm)

有保温

池窑(0C) 保温砖 硅酸铝板 硅钙板 保温涂料 碹顶 400 350 2330 100 - 50 80 小炉 250 250 - - 100 80 80 胸墙 100 400 - - 100 80 80 蓄热室

500

150

-

-

-

60

50

注:上述温度均为平均温度。 2)每种材料现实价格如下:

保温砖:1000元/m3 ; 硅酸铝板材:950元/m3 ; 硅酸钙板:1400元/m3 ; 保温材料:1800元/m3 ;

按市场价格预估,各种材料安装过程的施工费为300元/m3。煤的价格为1200元/吨。标煤发热量为Q 煤=7000Kcal/kg 。

5.1.2.2 窑体散热量热工计算

采取保温措施前,周围环境温度500C : 1)根据公式(2)计算得:

碹顶:

50-3501002735010027335054.450-35026.34

441??

?

????

?? ??+-??? ??++

?=α=34.71

小炉:

50-2501002735010027325054.450-25056.24

4

4

2??

?

????

?? ??+-??? ??++

?=α=24.14

胸墙:50-4001002735010027340054.450-40056.24

4

43?

???????? ??+-??? ??++

?=α=36.28

蓄热室:=4

α18 kcal ∕(m 2·℃·h )

2)根据公式(1)计算得: 碹顶:)t -(t f 11ωα=q =34.71×(350-50)=10413 kcal ∕(m 2·h) 小炉:)t -(t f 22ωα=q =24.14×(250-50)=4828 kcal ∕(m 2·h) 胸墙:

)t -(t f 33ωα=q =36.28×(400-50)=12698 kcal ∕(m 2·h) 蓄热室:

)t -(t f 44ωα=q =18×(150-50)=1800 kcal ∕(m 2·h)

每天窑体散热损失:

()2444332211?+++=F q F q F q F q Q =(10413×

400+4828×250+12698×100+1800×500)×24=181008000 kcal

每天消耗标煤M=Q/Q 煤=181008000 /7000=25828.29 kg 采取保温措施后,周围环境温度250C : 1)根据公式(2)计算得:

碹顶:25-80100273251002738054.425-8026.34

441?

??

?????? ??+-??? ??++

?=α=15.18

小炉:25-80100273251002738054.425-8056.24

442?

??

?????? ??+-??? ??++

?=α=13.27

胸墙:25-80100273251002738054.425-8056.24

443?

??

?????? ??+-??? ??++

?=α=13.27

蓄热室:=4α11.5 kcal ∕(m 2·℃·h )

2)根据公式(1)计算得: 碹顶:)t -(t f 11ωα=q =15.18×(80-25)=834.9 kcal ∕(m 2·h) 小炉:)t -(t f 22ωα=q =13.27×(80-25)=729.85 kcal ∕(m 2·h) 胸墙:

)t -(t f 33ωα=q =13.27×(80-25)=729.85 kcal ∕(m 2·h)

蓄热室:

)t -(t f 44ωα=q =11.5×(50-25)=287.5 kcal ∕(m 2·h)

每天窑体散热损失:

()24

44332211?+++='F q F q F q F q Q =(834.9×400+729.85×

250+729.85×100+287.5×500)×24=17595780 kcal

每天消耗标煤M=Q ′/Q 煤= 17595780/7000=2513.68 kg

某玻璃池窑外保温前后的效果对比 保温部位 表面积/㎡ 表面温度/℃ 散热损失/kW 保温前 保温后 保温前 保温后 碹顶 400 350 80 10413 834.9 胸墙 250 250 80 4828 729.85 小炉 100 400 80 12698 729.85 蓄热室 500 150 50 1800 287.5 合计

4850

注:表中所列温度均为平均温度,散热损失为近似计算值。

①保温前后节省能量如下:

Q=(181008000-17595780)=163412220 kcal

②保温后每天节省的标煤M=25828.29-2513.68=23314.61 kg

每年节省的标煤=23314.61×365=8509832.65 kg=8509.83 吨 ③保温后每天减排CO2量M(CO2)=8509.83×2.62=22295.75 吨

④每年在煤上节省的钱为:22295.75×1200=26754900 元=2675.5 万元 ⑤每年保温改造投入费用:

碹顶:0.23×400×1000+0.1×400×950+0.05×400×1800=166000 元 小炉:0.1×250×1400+0.08×250×1800=71000 元 胸墙:0.1×100×1400+0.08×100×1800=28400 元 蓄热室:0.06×500×1800=5400元

施工费用:[400+400+(250+100)+(400+250+100+500)]×300=720000 元

合计:166000+71000+28400+5400+720000=990800元=99.08 万元 经济效益:2675.5-99.08=2576.42 万元

5.2 全氧燃烧

5.2.1 热量与质量平衡方程的建立

设计玻璃熔窑在确定窑制之后,需要进行全面的热量平衡和质量平衡的计算,以生产1kg 玻璃液为计算基准,列出热量收支平衡式如下。

全氧燃烧:7654321321Q Q Q Q Q Q Q Q Q Q '+'+'+'+'+'+'=++ (1)

空气燃烧:

765

4321321q q q q q q q q q q '+'+'+'+'+'+'=++ (2)

在进行热平衡计算时·全氧燃烧与空气燃烧的熔制玻璃的耗热晕(1234Q '

1234q ')、窑体散热(5

Q '和5q ')及冷却水带走的热量(6Q '和7q ')分别相等。

表1 玻璃熔窑热量收支平衡表

收入热量

支出热量

全氧燃烧

空气燃烧

全氧燃烧

空气燃烧

天然气耗热(Q 1) 天然气物理热(Q 2) 助燃氧气物理热(Q 3) 天然气耗热(q 1) 天然气物理热(q 2)

助燃氧气物理热(q 3)

压缩空气物理热(q 4) 玻璃形成耗热(1Q ')

加热去气产物(2Q ')

加热燃烧产物(3Q ')

加热回流玻璃液(4Q ') 窑体散热(5

Q ')

冷却水带走的热量(6

Q ') 废气带走的热量(7Q ')

玻璃形成耗热(1q ') 加热去气产物(2q ') 加热燃烧产物(3q ') 加热回流玻璃液(4q ') 窑体散热(5q ')

(除6q ') 小炉口辐射热损失(6q ') 冷却水带走的热量(7q ') 废气带走的热量(8q ')

5.2.2实例计算

5.2.2.1 浮法玻璃熔窑设计基本数据

1)生产规模:每天熔化配合料量(包括碎玻璃)400吨。

2)窑型:空气助燃为全保温蓄热式燃天然气横火焰池窑,氧气助燃时为全保温燃天然气横火焰池窑。

3)碎玻璃数量:占全部粉料的20%。 4)配合料(不包括碎玻璃)水分:5%。 5)助燃空气预热温度:1050℃; 6)助燃氧气预热温度:25℃(93%O 2)。

7)空气过剩系数:空气燃烧时为1.18;全氧燃烧时为1.05。

8)排烟温度:空气燃烧时为450℃;全氧燃烧时为1200℃。

9)燃料:天然气。

5.2.2.2 熔窑热工计算

根据池窑基本数据,根据公式(1)和公式(2)分别进行空气燃烧与氧气燃烧的热工计算,计算结果分别列在表3及表4。

表3 玻璃熔窑计算结果

空气燃烧全氧燃烧日产量400 400 热耗(kJ/kg玻璃液)7466 6242

天然气单耗(nm3/kg玻璃液)2856 2388 热效率(%)36.3 45.5

黑度(ξ)0.186 0.451 从表3可知,对全氧燃烧熔窑计算得到生产每千克玻璃液热耗为6242kJ,天然气单耗为2388Nm3/kg玻璃液。与空气燃烧相比,每天可节约6.45×106nm3天然气,节能达20%,热效率提高了近10%。可见全氧燃烧节能非常明显,即使空气燃烧时蓄热式窑的空气预热温度达到1200℃,全氧燃烧时的热耗仍然比它小,因为在空气燃烧时,小炉口的辐射热损失在(10~l5)%,而全氧无小炉口辐射损失热量。

6.结语

随着我国经济的不断快速发展,对能源的依赖性越来越大,但能源利用率低的问题更加突出。一方面世界能源日趋紧张,一方面建材工业能源消耗居高不下,能源利用率提高较慢。对于玻璃工业来说,随着产能不断扩大,市场竞争日益加剧,如何减少消耗,降低成本,进一步提高企业的市场竞争力是一项长期艰巨的任务。无论从熔窑热效率还是从单位能耗来说,我国玻璃工业的节能潜力都是很大的。如何把各项节能的潜力挖掘出来,这是当前摆在我国玻璃工业面前的一项紧迫任务和重大课题。以上各项节能的技术措施,在技术上是可行的,经济上是合理的,不仅可以节约大量能源,同时有助于提高玻璃产品的质量和产量,有助于降低成本,以期待得到明显的节能效果。

参考文献

[1] 於云林.全氧燃烧玻璃窑热工过程的计算与分析[J].玻璃与搪瓷,1996,25(2):P32-38.

[2] 陈国平,毕洁.玻璃工业热工设备 [D].化学工业出版社,北京,2006年10月:P11-27.

[3] 梁德涛.玻璃行业的节能降耗与污染减排 [J].中国中轻国际工程有限公司:P1-8.

[4] 陈国平,付夏萍,殷海荣.玻璃生产中节能降耗的新技术 [J].陕西科技大学学报,2004年4月,第2卷第22期:P110.

[5] 陈福,赵恩录,张文玲,李军明.玻璃窑炉节能技术发展与应用 [J].秦皇岛玻璃工业研究设计院,2009年12月18日.

[6] 高增丽等.我国玻璃熔窑的现状及其节能技术的发展.[TQ].山东陶瓷.2005.8(4),24—26

[7] 刘云才.王炎.玻璃工业节能降耗的探讨.湖北武汉.(2009)10—001

[8] 高增丽等.我国玻璃熔窑的现状及其节能技术的发展[TQ].山东陶瓷.2005.8(4).24—26

[9] 夏大全.玻璃工业节能技术[TQ].中国建材工业出版社.1995

[10] 宋庆余.玻璃熔窑的节能[J].中国玻璃.2005.6

[11] 王芸.马立云.浅谈平板玻璃行业节能[J]建材世界.2009(30)

[12] 何成等.论玻璃窑炉的保温[TQ].四川轻化工学院学报.2000.13(2).53—55

玻璃行业节能降耗的现实意义

玻璃工业热工设备课程 论文题目: 玻璃行业节能降耗的现实意义 院系建筑与材料工程系 专业工程管理 班级 学生姓名 学号 任课教师 2012 年 06 月 08 日

玻璃行业节能降耗的现实意义 专业工程管理学生XXX学号XXXXXXXX 摘要:本文介绍了玻璃工业节能技术的发展现状以及目前主要采取的节能措施,着重讲述了玻璃熔窑保温和全氧燃烧技术,并给与具体事例分析,用数据说明了采取这些节能措施所带来的经济效益。 关键词:玻璃熔窑;窑体保温;全氧燃烧;节能降耗 Abstract:This article describes the current development of the glass industry energy-saving technologies , as well as the main energy-saving measures taken , highlighted the plight of the glass melting furnace insulation and full oxygen combustion technology , and give specific examples of analysis , and data used to take these energy-saving measures brought to economic benefits . Key words:glass melting furnace ; kiln insulation ; oxy-fuel ; energy saving

玻璃的种类大全

《玻璃的种类大全》 1、普通平板玻璃 普通平板玻璃亦称窗玻璃。平板玻璃具有透光、隔热、隔声、耐磨、、耐气候变化的性能,有的还有保温、吸热、防辐射等特征,因而广泛应用于镶嵌建筑物的门窗、墙面、室内装饰等。 平板玻璃的规格按厚度通常分为2mm、3mm、4mm、5mm、和6mm,亦有生产8mm和10mm的。一般2mm、3mm厚的适用于民用建筑物,4mm--6mm的用于工业和高层建筑。 影响平板玻璃质量的缺陷主要有气泡、结石和波筋。气泡是玻璃体中潜藏的空洞,是在制造过程中的冷却阶段处理不慎而产生的。结石俗称疙瘩,也称沙粒,是存在于玻璃中的固体夹杂物,这是玻璃体内最危险的缺陷,它不仅破坏了玻璃制品的外观和光学均一性,而 且会大大降低玻璃制品的机械强度和热稳定性,甚至会使制品自行碎裂。 好的平板玻璃制品应具有以下特点:1)是无色透明的或稍带淡绿色2)玻璃的薄厚应均匀,尺寸应规范3)没有或少有气泡、结石和波筋、划痕等疵点。 用户在选购玻璃时,可以先把两块玻璃平放在一起,使相互吻合,揭开来时,若使很大的力气,则说明玻璃很平整 另外要仔细观察玻璃中有无气泡、结石和波筋、划痕等,质量好的玻璃距60厘米远,背光线肉眼观察,不允许有大的或集中的气泡,不允许有缺角或裂子,玻璃表面允许看出波筋、线道的最大角度不应超过45度;划痕沙粒应以少为佳。 玻璃在潮湿的地方长期存放,表面会形成一层白翳,使玻璃的透明度会大大降低,挑选时要加以注意。 2、热熔玻璃 热熔玻璃又称水晶立体艺术玻璃,是目前开始在装饰行业中出现的新家族。热熔玻璃源于西方国家,近几年进入我国市场。以前,我国市场上均为国外产品,现在国内已有玻璃厂家引进国外热熔炉生产的产品。热熔玻璃以其独特的装饰效果成为设计单位、玻璃加工业主、装饰装潢业主关注的焦点。热熔玻璃跨越现有的玻璃形态,充分发挥了设计者和加工者的艺术构思,把现代或古典的艺术形态融入玻璃之中,使平板玻璃加工出各种凹凸有致、彩色各异的艺术效果。热熔玻璃产品种类较多,目前已经有热熔玻璃砖、门窗用热熔玻璃、大型墙体嵌入玻璃、隔断玻璃、一体式卫浴玻璃洗脸盆、成品镜边框、玻璃艺术品等,应用范围因其独特的玻璃材质和艺术效果而十分广泛。热熔玻璃是采用特制热熔炉,以平板玻璃和无机

未来节能玻璃的发展趋势

未来节能玻璃的发展趋势 一、Low-E玻璃研发进展快速,性能近乎完美 【门窗幕墙】在全球节能减排政策的推动下,从上世纪70年代开始,Low-E 镀膜技术飞速发展。目前,在线Low-E镀膜已可大批量生产,辐射率约为0.15的在线Low-E玻璃,性能稳定、不易受潮变质。离线Low-E镀膜已可生产辐射率为0.03的可钢化Low-E玻璃,过去这样的Low-E玻璃稳定性很差,不可钢化或钢化后要尽快合成中空,否则就会氧化变质,如今,据说在一定条件下已可存放数月,这是技术的巨大进步。现在,PPG、Guardian、金晶等公司的Low-E镀膜技术都已达到同等水平,而且都研发出了高透型和遮阳型等系列产品。更重要的是,Low-E玻璃的成本也在不断降低,这样一来Low-E玻璃的技术进步就为中空玻璃和真空玻璃的质量提升创造了条件。 二、节能减排要求中空玻璃进一步降低U值,却受到重量和厚度的瓶颈制约 欧盟地区在玻璃门窗节能方面一直处于全球领先位置,早在1995年,德国就已立法推广Low-E中空玻璃。目前,在推广U值约为1.1W/m2·K的单Low-E 中空的基础上,又开始推广U值约为0.7W/m2·K的双Low-E双中空玻璃。在此届国际玻璃展上各大玻璃厂商都展出了这类产品,而且笔者在德国和奥地利参观多家工厂时都看到正在生产这种双Low-E双中空玻璃,说明市场对其需求还是相当可观的。 据几位德国专家介绍,希望进一步降低U值的愿望和玻璃太厚太重的矛盾成为困扰许多专家和房地产商的难题,很多人在思考下一步该如何改变。 三、真空玻璃研发再次呈升温趋势 与中空玻璃相比,真空玻璃U值低、厚度薄的优势是比较明显的。比如用前述辐射率0.03的Low-E玻璃,不难制造出U值约0.31W/m2·K的单Low-E真空玻璃和U值0.25W/m2·K的双Low-E真空玻璃,不仅厚度比中空玻璃薄很多,而且Low-E膜处于真空环境中,可以得到充分的保护,避免其氧化失效,这是吸引科学家研究真空玻璃的一个重要原因。 在上世纪70年代第一次能源危机后,西方国家掀起研发节能玻璃的热潮。除Low-E玻璃和相关联的中空玻璃外,美国科罗拉多太阳能研究所和悉尼大学相继研发真空玻璃,后者于1997年使其专利在日本板硝子公司(NSG)实现产业化,先后建立了年产量10万平方米和50万平方米的生产线。但总体上看,过去10余年来国外在真空玻璃技术上和商业上都无显著建树,国际上有关研发也一度走向低潮,但中国在真空玻璃的研发上却后来居上。 世界各国再次重视真空玻璃的研发,美国Guardian公司近年又恢复了过去曾进行多年的真空玻璃研发,希望用它与Low-E镀膜技术结合的优势及其市场优势开启真空玻璃市场;欧洲多个国家都在加紧研发,如此届国际玻璃展上,德国

LOW-E玻璃的节能特性及其参数(ai)

低辐射LOW-E镀膜玻璃的节能特性及其参数现代建筑,不论是商厦还是住宅,都趋向于大面积采光。但是,普通透明玻璃对太阳能辐射和远红外热辐射没有控制,其面积越大,夏季进入室内的热量越多,冬季室内散失的热量越多。为此,必须对玻璃表面进行处理,于是产生了有节能功能的镀膜玻璃。 早期的镀膜玻璃主要是热反射镀膜玻璃(或称阳光控制膜玻璃),其作用是限制太阳能辐射直接进入室内。用于建筑幕墙玻璃时,除具有亮丽的外观装饰效果外,还可降低冷气设备的运行费用。但这种玻璃与普通玻璃一样,会吸收远红外热辐射而使其自身的温度升高,最终仍有相当部分的热能透过了玻璃,其隔热性能也受到了极大的限制。 选用什么材料、采用何种工艺镀膜才能有效地阻挡远红外热辐射呢?研究的结果诞生了低辐射镀膜玻璃(简称Low-E玻璃)。这种玻璃的最大特点是将远红外热辐射反射出去,使其不能透过玻璃从而起到节能隔热的作用。因此,目前世界上公认Low-E玻璃是最理想的窗玻璃材料。 Low-E玻璃在国外已有近二十年的使用历史,我国因受到设备和生产工艺技术方面限制,同时也因节能观念的落后而起步较晚。可喜的是,自南玻集团于1997年推出Low-E玻璃并在全国范围内大力推介后,目前已为众多设计师和用户所认同并采用。规模化采用Low-E 玻璃时代已到来,这必将对我国的建筑节能材料应用产生影响并作出贡献。 关于镀膜玻璃,包括Low-E玻璃的节能特性,已有许多文章或

专著论述过,在大多数文章或企业的产品介绍中都列出了完整的参数,但理解这些参数须具备一定的专业知识。对用户来说更关心的是:哪些参数与节能性直接相关?怎样才能区别不同玻璃之间节能性的优劣?如何根据这些参数选择适用的玻璃?本文拟深入浅出地回答这些问题。 二、热能的形式及幕墙玻璃组件的传热 1、自然环境中的热能 自然环境中的热能主要是太阳辐射能,其能量的98%分布0.3至3μm波长之间。除了太阳直接辐射的能量外,还存在着大量的远红外线热辐射能,其能量分布在3至103μm波长之间。在室外,这部分热能是由太阳照射到物体上被物体吸收后再辐射出来的,夏季成为来自室外的主要热源之一。在室内,这部分热能是由暖气、家用电器、被阳光照射后的家具及人体所产生的,冬季成为来自室内的主要热源。 需要说明的是,在通常情况下来自室内、室外的热辐射可同时存在,只不过夏季来自室外的热辐射远大于室内的热辐射,而冬季来自室内的热辐射又远大于室外的热辐射。因此,选择玻璃时必须考虑建筑物所处的地理环境,以便所选择的玻璃能有效地阻挡来自主要热源的热能。 2、热量的传递过程 照射到玻璃上的太阳辐射能,一部分被玻璃所吸收或反射,另一部分透过玻璃成为直接透过的能量(图1)。 当玻璃吸收太阳能后温度升高,吸收的能量通过与空气对流及向外辐

中空玻璃的k值

中空玻璃的k值 点击数:606加拿大联合太平洋有限公司王铁华 引言 2000年2月18日国家建设部俞正声部长签署了 《关于民用建筑节能管理规定》中华人民共和国建 设部令。该规定对包括建筑门窗的节能标准,政策 及实施的时间作了政策性的规定。 在实践中,如何具体测试影响中空玻璃节能性能的 指标即热传导值K值(或U值),人们的认识是比较 混乱的。有的认为中空玻璃的K值(或U值)应该是中央玻璃的K值,有的认为中空玻璃K值应该是中空玻璃上几处不同点的平均值。结果,对同一中空玻璃,采用不同方法测试所得到的K值却是不同的。 可见,实践迫切需要理论给予指导。我们认为,测试中空玻璃K值的方法必须同时满足准确和科学两个基本条件。准确,要求K值必须而且能够反应出某一中空玻璃的确切的热传导值。比如,使用温暖边缘隔条制成的中空玻璃与传统的铝隔条中空玻璃的热传导值是不同的。科学,要求测试中空玻璃的方法必须有实践和理论方面的依据,反应实际情况。实际情况是,玻璃边缘的热传导系数与玻璃中央的热传导系数是不同的。 本文拟对北美中空玻璃协会对中空玻璃的K值(即热传导值)的规定及其测试方法作以下介绍,抛砖引玉。 一、基本概念 首先应明确几个彼此相关但又不同概念,它们是中空玻璃的综合K值(或U值),中空玻璃中央的K值,中空玻璃边缘的K值,及中空玻璃间隔条的K值。中空玻璃综合K值是中空玻璃中央、边缘和间隔条K 值的加权平均数。 1.中空玻璃边缘K值 中空玻璃边缘定义为距离间隔条内侧63.5mm(21/2英寸)间隔的条形面积。中空玻璃边缘K值是在此面积上所测试得到的。 2.中空玻璃间隔条K值 中空玻璃间隔条K值是间隔条本身的K值。不同的隔条的K值不同。铝隔条K值>不锈钢隔条>舒适胶条>超级间条。 3.中空玻璃的面积 中空玻璃面积是可视面积和镶嵌在窗框内的面积之合。 4.中空玻璃中央的K值 中空玻璃中央定义为整个中空玻璃的面积减去中空玻璃边缘的条形面积。(如图1)

中空玻璃节能特性的影响因素分析(精)

中空玻璃节能特性的影响因素分析 一、建筑节能对玻璃性能的要求随着社会经济发达程度的提高,建筑能耗在社会总能耗中的所占比例越来越大,目前西方发达国家约为30%~45%,尽管我国经济发展水平和生活水平都还不高,但这一比例已达到20%~25%,正逐步上升到30%。在一些大城市,夏季空调已成为电力高峰负荷的主要组成部分。不论西方发达国家,还是我国,建筑能耗状况都是牵动社会经济发展全局的大问题。按照1986年制定的我国建筑节能分三步走的计划,当前政府各级节能管理部门正在积极启动实现第三步节能65%目标的标准编制工作。而在影响建筑能耗的门窗、墙体、屋面、地面四大围护部件中,门窗的绝热性能最差,是影响室内热环境质量和建筑节能的主要因素之一。就我国目前典型的围护部件而言,门窗的能耗约占建筑围护部件总能耗的40%~50%。据统计,在采暖或空调的条件下,冬季单玻窗所损失的热量约占供热负荷的 30%~50%,夏季因太阳辐射热透过单玻窗射入室内而消耗的冷量约占空调负荷的20%~30%。因此,增强门窗的保温隔热性能,减少门窗的能耗,是改善室内热环境质量和提高建筑节能水平的重要环节。中空玻璃具有突出的保温隔热性能,是提高门窗节能水平的重要材料,近些年已经在建筑上得到了极其广泛的使用。但随着节能标准的不断提高,普通的中空玻璃已不能完全满足节能设计的技术要求。例如在夏热冬冷地区的节能设计标准中,对大窗墙比的外窗传热系数限制指标到了2.5 W/m2K,夏热冬暖地区这一指标在部分条件下到了2.0 W/m2K。所以我们应该一方面大力推广Low-E中空玻璃这种具有优良节能特性的新产品,另一方面要深入分析和掌握中空玻璃节能性能的各个影响因素,从玻璃原片、间隔组成和使用环境等方面保证中空玻璃能够发挥它最佳的节能性能。二、中空玻璃节能特性的基本指标在建筑用中空玻璃诸多的性能指标中,能够用来判别其节能特性的主要有传热系数K和太阳得热系数SHGC。中空玻璃的传热系数K是指在稳定传热条件下,玻璃两侧空气温度差为1℃时,单位时间内通过1平方米中空玻璃的传热量,以W/m2K 表示。K值越低,说明中空玻璃的保温隔热性能越好,在使用时的节能效果越显著。太阳得热系数SHGC是指在太阳辐射相同的条件下,太阳辐射能量透过窗玻璃进入室内的量与通过相同尺寸但无玻璃的开口进入室内的太阳热量的比率。玻璃的SHGC值增大时,意味着可以有更多的太阳直射热量进入室内,减小时则将更多的太阳直射热量阻挡在室外。SHGC值对节能效果的影响是与建筑物所处的不同气候条件相联系的,在炎热气候条件下,应该减少太阳辐射热量对室内温度的影响,此时需要玻璃具有相对低的SHGC值;在寒冷气候条件下,应充分利用太阳辐射热量来提高室内的温度,此时需要高SHGC值的玻璃。在K值与SHGC值之间,前者主要衡量的是由于温度差而产生的传热过程,后者主要衡量的是由太阳辐射产生的热量传递,实际生活环境中两种影响同时存在,所以在各建筑节能设计标准中,是通过限定K和SHGC的组合条件来使窗户达到规定的节能效果。目前,中空玻璃的K值是通过实验室实际测量得出的,SHGC值是对光谱数据计算得出的。因为K值的实际测量受成本限制难以收集各种类型的大量数据,所以本文的分析过程将采用美国劳伦斯伯克利实验室开发的Window5.2软件进行模拟计算。该软件能够计算出各种类型玻璃的K值和SHGC值等相关参数,其计算结果可以近似代替实际测量值。为了保证计算结果的一致性,除特殊说明以外,本文在计算分析中采用NFRC系列标准的环境条

节能中空玻璃应用前景广阔

中国建设报/2008年/12月/24日/第008版 金属结构 节能中空玻璃应用前景广阔 边辑 近年来,气候变暖不仅给生态、农业等方面带来了直接影响,同时也给中国建筑幕墙行业敲响了警钟。发达国家纷纷制定出相应的政策,环保节能的建筑已经成为现今建筑的主流。例如,到2010年,联邦建筑每个机构必须有一幢节能示范建筑,一年内新建5幢以上建筑的要有一幢节能示范建筑使用节能Low-e中空玻璃;日本对那些在房屋门窗上使用节能Low-e中空玻璃的业主给予优惠利率房屋贷款政策,对北海道等寒冷地区的建筑一律强制使用Low-e中空玻璃。业内专家在关注节能的同时,也对Low-e中空玻璃的色彩、透光率等对建筑及行人的直接影响进行了分析。 Low-e玻璃未来应用空间潜力巨大 在我国,按照国家节能目标和十一五十大重点节能工程实施意见的要求,新增建筑将实施50%的节能目标,这将极大地推动Low-e中空玻璃的应用。中高档次的建筑门窗及幕墙玻璃正向单银Low-e中空玻璃以及更高层次的双银Low-e镀膜中空玻璃方向发展。事实上,节能Low-e 玻璃建筑幕墙行业的广泛应用已经渐成趋势,在建筑玻璃领域,低辐射镀膜玻璃的辐射率可达到0.08以下,该种产品可加工成钢化Low-e玻璃并大面积应用在玻璃幕墙上。 一位专家介绍,现代建筑越来越多是以玻璃幕墙为主作为建筑外墙的围护材料,所以玻璃幕墙的颜色选择是非常重要的,如同穿在人身上的衣服颜色,在别人不一定看清楚衣服的款式时,先看见的是衣服颜色。以前建筑幕墙上曾经流行采用银白、金黄、茶色、红色等颜色鲜艳为主导的高反射镀膜玻璃,当从室内朝室外看时,外界景观颜色与实际颜色变得有所差异,心理也存在一种浮燥感。目前,大多数公共建筑的颜色以冷色调为主,最多使用的是灰色、浅绿或浅蓝色,但在实际应用中,各种颜色都会有细微的差别,灰色可以偏黄偏蓝,可以灰暗也可以明亮,同时透光率高低也会使人对颜色的识别产生一定影响,因此实际颜色的种类是非常多的。同时也会有业主需要蓝色、绿色或其他比较特殊的颜色。所以各种各样的颜色怎样获得,是不是需要特殊条件、会不会带来成本的增加等问题,这些都是设计师所要考虑的。 专家说,色彩给我们不同的情景感受,即使是同样的配色和不同的搭配比例也会有不同的感受。在居室中,人们对家居色彩的选择,往往只注意营造室内的和谐情调,而很少把家居色彩与身心健康联系起来,其实色彩对身心健康的影响是很大的。颜色的实质基于不同波段的光线对人眼的刺激依次为紫、蓝、青、绿、黄、橙、红。玻璃的颜色分为玻璃反射颜色和玻璃透过的颜色,镀膜玻璃的颜色实质是薄膜对不同颜色光线的吸收、透过、反射形成的。 根据人类的色彩感官,Low-e膜的颜色具有可调控性,它不受浮法玻璃颜色调控技术的限制,利用高真空磁控镀膜技术可将颜色和透过率同时改变。色彩的功能是指色彩对眼睛及心理的作用,包括眼睛对它们的明度、色相、纯度、对比刺激的作用、心理留下的影响、象征意义及感情影响。日常在写字楼中工作的人们,长时间处于办公桌前工作难免感到非常疲惫,所以大多数人在办公室中选择了透过玻璃希望外界的景观来减缓大脑的压力。在设计玻璃幕墙时,在选择色彩时应考虑人的视觉和心理情感,这会为上班族提供一个丰富的视觉空间。 专家认为,在选择Low-e玻璃色调时,最好的明度范围应介于4~6.5之间,所以幕墙玻璃的选择一般可以根据建筑物所处的地区、环境协调性、采光需要、建筑物用途等来决定。色彩的直接心理效应来自物理光刺激人的生理发生的直接影响。 建筑幕墙玻璃的色彩同样是一门艺术,所以幕墙样板在挂板选择时设计师需要慎重考虑的是

关于玻璃节能

LOW-E玻璃 玻璃是重要的建筑材料,随着对建筑物装饰性要求的不断提高,玻璃在建筑行业中的使用量也不断增大。然而,当今人们在选择建筑物的玻璃门窗时,除了考虑其美学和外观特征外,更注重其热量控制、制冷成本和内部阳光投射舒适平衡等问题。这就使得镀膜玻璃家族中的新贵——Low-E玻璃脱颖而出,成为人们关注的焦点。 Low-E玻璃又称低辐射玻璃,是在玻璃表面镀上多层金属或其他化合物组成的膜系产品。其镀膜层具有对可见光高透过及对中远红外线高反射的特性,使其与普通玻璃及传统的建筑用镀膜玻璃相比,具有以下明显优势: 优异的热性能 外门窗玻璃的热损失是建筑物能耗的主要部分,占建筑物能耗的50%以上。有关研究资料表明,玻璃内表面的传热以辐射为主,占58%,这意味着要从改变玻璃的性能来减少热能的损失,最有效的方法是抑制其内表面的辐射。普通浮法玻璃的辐射率高达0.84,当镀上一层以银为基础的低辐射薄膜后,其辐射率可降至0.1以下。因此,用Low-E玻璃制造建筑物门窗,可大大降低因辐射而造成的室内热能向室外的传递,达到理想的节能效果。 室内热量损失的降低所带来的另一个显著效益是环保。寒冷季节,因建筑物采暖所造成的CO2、SO2等有害气体的排放是重要的污染源。如果使用Low-E玻璃,由于热损失的降低,可大幅减少因采暖所消耗的燃料,从而减少有害气体的排放。 良好的光学性能 Low-E玻璃对太阳光中可见光有高的透射比,可达80%以上,而反射比则很低,这使其与传统的镀膜玻璃相比,光学性能大为改观。从室外观看,外观更透明、清晰,即保证了建筑物良好的采光,又避免了以往大面积玻璃幕墙、中空玻璃门窗光反射所造成的光污染现象,营造出更为柔和、舒适的光环境。 镀膜玻璃按产品的不同特性,可分为以下几类:热反射玻璃、低辐射玻璃(Low-E)、导电膜玻璃等。热反射玻璃一般是在玻璃表面镀一层或多层诸如铬、钛或不锈钢等金属或其化合物组成的薄膜,使产品呈丰富的色彩,对于可见光有适当的透射率,对红外线有较高的反射率,对紫外线有较高吸收率,因此,也称为阳光控制玻璃,主要用于建筑和玻璃幕墙;低辐射玻璃是在玻璃表面镀由多层银、铜或锡等金属或其化合物组成的薄膜系,产品对可见光有较高的透射率,对红外线有很高的反射率,具有良好的隔热性能,主要用于建筑和汽车、船舶等交通工具,由于膜层强度较差,一般都制成中空玻璃使用;导电膜玻璃是在玻璃表面涂敷氧化铟锡等导电薄膜,可用于玻璃的加热、除霜、除雾以及用作液晶显示屏等; 如何正确选择中空玻璃惰性气体分析仪 中空玻璃充入惰性气体,有助于改善中空玻璃的传热系数,提高中空玻璃的节能效果。但是,由于充入的惰性气体,尤其是氩气,无色、无味、无毒,因此,必须借助仪 器对充气中空玻璃的浓度进行检测分析,检测内容一般包括充气中空玻璃的初始浓度和 充气中空玻璃的密封寿命,即惰性气体的保持能力。 因此,用于此目的的仪器必须同时具备非常好的精度、实用性、重复性和自我判断 校准能力。在选择中空玻璃惰性气体分析仪时,首先应注意把握仪器的精度。

玻璃种类

1 普通平板玻璃 普通平板玻璃亦称窗玻璃。平板玻璃具有透光、隔热、隔声、耐磨、、耐气候变化的性能,有的还有保温、吸热、防辐射等特征,因而广泛应用于镶嵌建筑物的门窗、墙面、室内装饰等。 平板玻璃的规格按厚度通常分为2mm、3mm、4mm、5mm、和6mm,亦有生产8mm和10mm 的。一般2mm、3mm厚的适用于民用建筑物,4mm--6mm的用于工业和高层建筑。 影响平板玻璃质量的缺陷主要有气泡、结石和波筋。气泡是玻璃体中潜藏的空洞,是在制造过程中的冷却阶段处理不慎而产生的。结石俗称疙瘩,也称沙粒,是存在于玻璃中的固体夹杂物,这是玻璃体内最危险的缺陷,它不仅破坏了玻璃制品的外观和光学均一性,而且会大大降低玻璃制品的机械强度和热稳定性,甚至会使制品自行碎裂。 好的平板玻璃制品应具有以下特点: 1)是无色透明的或稍带淡绿色 2)玻璃的薄厚应均匀,尺寸应规范 3)没有或少有气泡、结石和波筋、划痕等疵点。 用户在选购玻璃时,可以先把两块玻璃平放在一起,使相互吻合,揭开来时,若使很大的力气,则说明玻璃很平整 另外要仔细观察玻璃中有无气泡、结石和波筋、划痕等,质量好的玻璃距60厘米远,背光线肉眼观察,不允许有大的或集中的气泡,不允许有缺角或裂子,玻璃表面允许看出波筋、线道的最大角度不应超过45度;划痕沙粒应以少为佳。 玻璃在潮湿的地方长期存放,表面会形成一层白翳,使玻璃的透明度会大大降低,挑选时要加以注意。 2、热熔玻璃 热熔玻璃又称水晶立体艺术玻璃,是目前开始在装饰行业中出现的新家族。热熔玻璃源于西方国家,近几年进入我国市场。以前,我国市场上均为国外产品,现在国内已有玻璃厂家引进国外热熔炉生产的产品。热熔玻璃以其独特的装饰效果成为设计单位、玻璃加工业主、装饰装潢业主关注的焦点。热熔玻璃跨越现有的玻璃形态,充分发挥了设计者和加工者的艺术构思,把现代或古典的艺术形态融入玻璃之中,使平板玻璃加工出各种凹凸有致、彩色各异的艺术效果。热熔玻璃产品种类较多,目前已经有热熔玻璃砖、门窗用热熔玻璃、大型墙体嵌入玻璃、隔断玻璃、一体式卫浴玻璃洗脸盆、成品镜边框、玻璃艺术品等,应用范围因其独特的玻璃材质和艺术效果而十分广泛。热熔玻璃是采用特制热熔炉,以平板玻璃和无机色料等作为主要原料,设定特定的加热程序和退火曲线,在加热到玻璃软化点以上,经特制成型模模压成型后退火而成,必要的话,再进行雕刻、钻孔、修裁等后道工序加工。 3、夹层玻璃 夹层玻璃又称夹胶玻璃,就是在两块玻璃之间夹进一层以聚乙烯醇缩丁醛为主要成分的pvb 中间膜。玻璃即使碎裂,碎片也会被粘在薄膜上,破碎的玻璃表面仍保持整洁光滑。这就有效防止了碎片扎伤和穿透坠落事件的发生,确保了人身安全。 在欧美,大部分建筑玻璃都采用夹层玻璃,这不仅为了避免伤害事故,还因为夹层玻璃有极好的抗震入侵能力。中间膜能抵御锤子、劈柴刀等凶器的连续攻击,还能在相当长时间内抵御子弹穿透,其安全防范程度可谓极高。 现代居室,隔声效果是否良好,已成为人们衡量住房质量的重要因素之一。使用了saflex

中空玻璃可行性分析报告

中空玻璃可行性分析报告 目录 一、建筑节能与中空玻璃市场情况 二、中空玻璃加工企业的明显特点 三、中空玻璃产品利润分析

一、建筑节能与中空玻璃市场情况 中空玻璃的概念出现在国内市场已经有很长时间了,Low-E玻璃的出现也已经有10年左右的时间。尽管这些产品具有很好的节能、保温和隔音等显著改善居住条件的优良性能,但是这些好产品更多地是使用在公共建筑和高档建筑上,绝大部分民用建筑至今依然较少看到中空玻璃,更谈不上Low-E玻璃,许多消费者至今还以为中空玻璃就是两片玻璃的简单组合。造成中空玻璃和Low-E 玻璃贵族化问题的主要原因有两方面:一是国内房地产市场发展速度过快,许多地产商根本无心关注门窗和玻璃性能等细节;二是门窗企业和加工玻璃企业更多地关注高档楼盘而忽视了民用建筑市场的推广。 可喜的是,从贵族化转向平民化的过程正在开始。伴随着国内房地产业逐步进入常规发展轨道,开发商和购房者开始共同关注楼盘品质和部品细节,加之经过10余年的市场推广,中空玻璃和Low-E玻璃的优良性能已被市场所认识和接受。中空玻璃进入寻常百姓家,不仅是节能的需要,更是提高人们生活品质的需要。 1建筑节能形势与政策 1.1减少门窗能耗,提高建筑节能水平 随着社会经济发达程度的提高,建筑能耗在社会总能耗中的所占比例越来越大,目前西方发达国家为30%~45%,尽管我国经济发展水平和生活水平都还不高,但这一比例已达到20%~25%,正逐步上升到30%。在一些大城市,夏季空调已成为电力高峰负荷的主要组成部分。不论西方发达国家还是我国,建筑能耗状况是牵动社会经济发展全局的大问题。按照1986年制定的我国建筑节能分三步走的计划,当前政府各级节能管理部门为了启动第三步节能65%的目标,正在积极地进行标准编制工作。而在影响建筑能耗的门窗、墙体、屋面、地面四大围护部件中,门窗的绝热性能最差,是影响室内热环境质量和建筑节能的主要因素之一。就我国目前典型的围护部件而言,门窗的能耗占建筑围护部件总能耗的40%~50%,其能耗是墙体的4倍、屋顶的5倍、地面的20多倍。我国既有建筑面积约400亿m2,95%以上是高能耗建筑,而透过门窗的能耗则占到了整个建筑的一半,堪称耗能大户。能耗比同等气候条件下的发达国家高2倍。如果按照我国现有发展的趋势,2020年以后,建筑耗能将超过我国终端能耗的1/3,

节能玻璃项目可行性研究报告

节能玻璃项目 可行性研究报告 xxx实业发展公司

节能玻璃项目可行性研究报告目录 第一章项目概述 第二章建设背景及必要性分析第三章市场分析、调研 第四章产品及建设方案 第五章项目选址说明 第六章土建工程 第七章项目工艺分析 第八章环境影响分析 第九章职业安全 第十章项目风险应对说明 第十一章项目节能说明 第十二章项目实施进度 第十三章投资可行性分析 第十四章项目经济效益分析 第十五章招标方案 第十六章综合评价说明

第一章项目概述 一、项目承办单位基本情况 (一)公司名称 xxx实业发展公司 (二)公司简介 公司在发展中始终坚持以创新为源动力,不断投入巨资引入先进研发设备,更新思想观念,依托优秀的人才、完善的信息、现代科技技术等优势,不断加大新产品的研发力度,以实现公司的永续经营和品牌发展。 公司在管理模式、组织结构、激励制度、科技创新等方面严格按照科技型现代企业要求执行,并根据公司所具优势定位于高技术附加值产品的研制、生产和营销,以新产品开拓市场,以优质服务参与竞争。强调产品开发和市场营销的科技型企业的组织框架已经建立,主要岗位已配备专业学科人员,包括科技奖励政策在内的企业各方面管理制度运作效果良好。管理制度的先进性和创新性,极大地激发和调动了广大员工的工作热情,吸引了较多适用人才,并通过科研开发、生产经营得以释放,因此,项目承办单位较好的经济效益和社会效益。 公司自设立以来,组建了一批经验丰富、能力优秀的管理团队。管理团队人员对行业有着深刻的认识,能够敏锐地把握行业内的发展趋势,抓

住业务拓展机会,对公司未来发展有着科学的规划。相关管理人员利用自己在行业内深耕积累的经验优势,为公司未来业绩发展提供了有力保障。 (三)公司经济效益分析 上一年度,xxx投资公司实现营业收入30256.45万元,同比增长 28.25%(6664.36万元)。其中,主营业业务节能玻璃生产及销售收入为28547.93万元,占营业总收入的94.35%。 根据初步统计测算,公司实现利润总额6859.53万元,较去年同期相比增长819.24万元,增长率13.56%;实现净利润5144.65万元,较去年同期相比增长997.66万元,增长率24.06%。 上年度主要经济指标

节能服务种类及介绍

1节能服务简介 节能服务是指由专业的第三方机构(能源管理机构)帮助组织机构解决节能运营改造的技术和执行问题的服务。其服务对象是一般是企业机构。 企业接受节能服务的目的:减少能源消耗、提高能源使用效率、降低污染排放等问题。 节能服务公司(ESCO)服务方式:第三方节能服务机构一般采用合同能源管理(EPC)的方式提供相关服务。 服务内容:节能诊断;节能改造方案设计;施工设计;节能项目融资;原材料和设备采购;施工、安装和调试;运行、保养和维护;节能量监测、收回投资和利润等。 2节能服务商业模式 表格1节能服务商业模式 模式英文全称中文全称简介 E Engineering 工程设计由节能服务公司提供技术方案和电站设计,业主自己安排设备采购、建设和管理。一些节能服务公司不愿意再提供这种模式的服务,这种经营模式的比例逐 年下降。 EP Engineering-P rocurement 设计-采购 工程设备成套。由节能服务公司提供技术方案和电站设计、并安排设备采购。 目前在行业内广泛使用。 EPC Engineering-P rocurement-C onstruction 设计-采购- 施工 节能环保工程建设行业总承包业务的普遍模式,即服务商承担系统的规划设 计、土建施工、设备采购、设备安装、系统调试、试运行,并对建设工程的质 量、安全、工期、造价全面负责,最后将系统整体移交业主运行。公司获得 EPC合同后,也可将合同拆分为设计服务、建造合同、设备安装、技术服务 等多个细分合同。主流经营模式,市场占有率大约60%左右。 EPCC EPC-Commiss ion 总承包+托 管运营 在系统建设阶段采用EPC总承包的服务模式,在运营阶段采用系统托管运营 模式 EMC Energy Managemen t Contract 合同能源管 理 节能服务公司通过和客户签订节能服务合同,为客户提供包括:能源审计、项 目设计、项目融资、设备采购、工程施工、设备安装调试、人员培训、节能量 确认和保证等一整套的节能服务,并从客户进行节能改造后获得的节能效益中 收回投资和取得利润的一种商业运作模式 EPC* Energy Performance Contract 合同能源管 理 和EMC含义相同 BOT Build-Operate建设-运营-政府特许服务商承担工程投资、建设、经营和维护,在协议期规定的期限内,

玻璃钢制品的特性及分类

玻璃钢制品 生活中随处可见的多以金属制品、木材制品、塑料制品、石材制品为主。玻璃钢制品相对于以上几种制品还是比较少见的,但是在许多领域玻璃钢制品已经逐步涉及并渐渐取代这些传统的制品。玻璃钢是一种新型的复合材料,具备着传统的金属、塑料、石材、木材、玻璃等所不具备的性能,并且综合了这些传统制品的优点。 玻璃钢制品的简介: 玻璃钢制品也被叫做玻璃钢复合材料制品,之所以被称谓是复合材料,是因为玻璃钢不是由一种单一的材料制作而成的,而是由两种或者两种以上不同的材料互相组合制作而成的。单一的材料满足不了条件,就可以选择合适的材料加以辅助从而制作出一种新型的产品。这也是玻璃钢制品性能很全面的主要原因。 玻璃钢制品的性能: 1、耐酸碱、耐腐蚀:具有很强的耐腐蚀性能是所有玻璃钢制品所共有的特点,也是最突出的性能之一。 2、耐磨、耐老化:能够在恶劣的腐蚀性环境或是其它一些磨损很大的场合中长期使用。 3、耐高温、阻燃:相对于极易燃烧的木材和导热性很差的金属,玻璃钢这个优点是一个新的突破。 4、不导电、安全性高:玻璃钢制品本身都是绝缘体,不导电、不导热,安全性能极高。 5、使用寿命长:玻璃钢制品的受用寿命一般都在50年以上。 玻璃钢制品的分类: 1、生活类 在日常生活中,玻璃钢制品的用途也十分广泛,如家居生活中的玻璃钢桌子、玻璃钢柜子、玻璃钢椅子、玻璃钢门窗等一些玻璃钢家具。社区花园中的玻璃钢护栏、玻璃钢走道、玻璃钢楼梯踏板,玻璃钢雕塑等等。 2、工业类 在工业中,玻璃钢制品以玻璃钢格栅、玻璃钢化粪池、玻璃钢管道为主,其中格栅板的应用范围最为广泛,如电镀厂、造船厂、化工厂、污水处理厂、电镀设备厂等都使用玻璃钢板材来代替传统的金属板材。再如海上的石油操作平台,玻璃钢操作平台同样以其自身优越的性能取代了金属操作平台。除了以上的三种制品,还有玻璃钢电缆沟盖板、玻璃钢冷却塔、玻璃钢罐、玻璃钢风机、玻璃钢汽车配件等等。 3、环保类 如果将玻璃钢制品进行归类,肯定是属于环保一类的,因为大部分的玻璃钢制品

中空玻璃在节能方面的应用意义论文

中空玻璃在节能方面的应用意义 摘要:我们国家把节能降耗工作看作是贯彻落实科学发展观、构建社会主义和谐社会的重要内容,是建设资源节约型、环境友好型社会的必然选择,对于调整经济结构、转变增长方式、提高人民生活质量、维护中华民族长远利益,具有极其重要而深远的意义。文章介绍的是中空玻璃在建筑节能方面的应用 关键词:建筑节能;建筑幕墙;中空玻璃 abstract: our country is seen as the energy conservation and consumption reduction to implement the scientific development concept and the construction of socialist harmonious society’s important content, is building a resource-conserving, environment-friendly society’s inevitably choice, for the adjustment of economic structure, transforming growth mode, improving people’s life quality, and maintaining long-term interests of the chinese nation, has the extremely important and profound significance. this paper is hollow glass in the application of building energy efficiency keywords: building energy efficiency; the construction curtain wall; hollow glass 中图分类号:tu201.5 文献标识码:a 文章编号:

常规镀膜玻璃的节能特性和参数(精)

常规镀膜玻璃的节能特性和参数 一、概述 现代建筑,不论是商厦还是住宅,都趋向于大面积采光。但是,普通透明玻璃对太阳能辐射和远红外热辐射没有控制,其面积越大,夏季进入室内的热量越多,冬季室内散失的热量越多。为此,必须对玻璃表面进行处理,于是产生了有节能功能的镀膜玻璃。 早期的镀膜玻璃主要是热反射镀膜玻璃(或称阳光控制膜玻璃,其作用是限制太阳能辐射直接进入室内。用于建筑幕墙玻璃时,除具有亮丽的外观装饰效果外,还可降低冷气设备的运行费用。但这种玻璃与普通玻璃一样,会吸收远红外热辐射而使其自身的温度升高,最终仍有相当部分的热能透过了玻璃,其隔热性能也受到了极大的限制。 选用什么材料?采用何种工艺镀膜才能有效地阻挡远红外热辐射?研究的结果诞生了低辐射镀膜玻璃(简称Low-E玻璃。这种玻璃的最大特点是将远红外热辐射反射出去,使其不能透过玻璃从而起到节能隔热的作用。因此,目前世界上公认Low-E 玻璃是最理想的窗玻璃材料。 Low-E玻璃在国外已有近二十年的使用历史,我国因受到设备和生产工艺技术方面限制,同时也因节能观念的落后而起步较晚。可喜的是,自南玻集团于1997年推出Low-E玻璃并在全国范围内大力推介后,目前已为众多设计师和用户所认同并采用。规模化采用Low-E玻璃时代已经到来,这必将对我国的建筑节能材料应用产生影响并作出贡献。 关于镀膜玻璃,包括LOW-E玻璃的节能特性,已有许多文章或专著论述过,在大多数文章或企业的产品介绍中都列出了完整的参数,但理解这些参数须具备一定的专业知识。对用户来说更关心的是:哪些参数与节能性直接相关?怎样才能区别不同玻璃之间节能性的优劣?如何根据这些参数选择适用的玻璃?本文拟深入浅出地回答这些问题。

实验八玻璃材料的制备与性能测试

玻璃材料的制备与性 能测试 学校:吉林化工学院 班级:材化1001 姓名:+++++ 学号:+++++++ 指导教师:陈+++

题目:建筑装饰用微晶玻璃的研制 文献综述 摘要:微晶玻璃是一种由基础玻璃严格控制晶化行为而制成的微晶体和玻璃相均匀分布的材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。本文来主要介绍微晶玻璃的制备方法及其应用。 关键词:微晶玻璃;制备;应用 前言 微晶玻璃是将加有晶核剂的特定组合的玻璃,在有控条件(一定温度)下进行晶化热处理,成为具有微晶体和玻璃相均匀分布的复合材料。微晶玻璃由玻璃相与结晶相组成。两者的分布状况随其比例而变化:当玻璃相占的比例大时,玻璃相为连续的基体,晶相孤立地均匀地分布在其中;当玻璃相较少时,玻璃相分散在晶体网架之间,呈连续网状;当玻璃相数量很低,则玻璃相以薄膜状态分布在晶体之间。这种结构也决定了其机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高的良好性能。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途

的21世纪的新型材料。微晶玻璃是由特定组成的基础玻璃在一定温度下控制结晶而制得的晶粒细小并均匀分布于玻璃体中的多晶复合材料。与玻璃、陶瓷相比较,其结构和性质均不相同, 微晶玻璃的性质由其中的结晶相矿物组成与玻璃的化学组成及其数量决定的[ 1 ]。因此,它集中了玻璃、陶瓷两者的特点,故又称之为玻璃陶瓷或结晶化玻璃。 一、微晶玻璃在国内外应用和市场情况 建筑微晶玻璃自1959年试验成功后,在世界各国得到了飞速发展。在欧美,最先作为建筑装饰材料而进行工业化生产的是矿渣微晶玻璃和岩石微晶玻璃[ 2 ]。前苏联于20世纪60年代中期就报导了炉渣微晶玻璃作为建材已实用化; 捷克斯洛伐克于20世纪70年代初,通过熔融铸造玄武岩,制成了耐磨性地板材料;美国于20世纪70年代初生产出了建筑岩石微晶玻璃装饰板。在亚洲,日本是开发建筑用微晶玻璃最早的国家,主要采用熔融烧结法进行建筑用微晶玻璃人造大理石的生产,生产技术和产品质量都代表了微晶玻璃装饰板的世界先进水平。韩国紧跟日本之后生产出了高档微晶玻璃装饰板。我国对微晶玻璃装饰材料的研制开发始于20世纪70 年代中期, 发展较快, 现已初具规模。在研发初期,大多采用浇注法整体晶化的方法来生产微晶玻璃板, 但发现热处理过程中易出现变形和开裂, 产品质量很不稳定, 生产成本高[ 3 ]。20世纪90年代初,在借鉴国外发达国家( 主要是日本)的先进经验的基础上, 采用熔融烧结法研5 1宝钢技术2010年第制开发的微晶玻璃装饰板生产技术取得了突破性进展,成功地解决

内置磁控中空百叶玻璃的节能效果及发展前景

内置磁控中空百叶玻璃的 节能效果及发展前景 Ting Bao was revised on January 6, 20021

重庆捷世达门窗 内置百叶中空玻璃的节能效果及发展前景 一、概述 在现代各种建筑中,一个较明显的发展趋势是使用越来越大面积的各种玻璃用于采光、装饰和提高建筑的透明度,其结果是对这些玻璃在各种不同的气候环境下提出了相应的动态节能要求。如在冬冷夏热地区,就要求在建筑中冬天能让太阳辐射进入室内进行加热,在夏天能将大部分的太阳辐射遮挡。而目前大部分对中空玻璃进行提高玻璃节能性能的各种处理方式均属静态方式,处理完成后玻璃的性能就基本固定,很难同时兼顾不同气候环境下对玻璃的不同节能要求。发展一类具有动态节能性能的内置可调窗帘中空玻璃,可满足现阶段的中空玻璃在不同气候环境下都能具有较好节能性能的基本要求。 二、现有中空玻璃节能的基本方式及特点 中空玻璃是通过在两块玻璃中间密封有一定厚度的气体来达到隔热节能的目的。以一块空气层厚度为10mm的中空玻璃为例,通过空气层的传热比例为:辐射传热占60%,传导传热占38%,对流传热占2%。空气层的辐射传热占第一位,热传导其次,对流仅占极小的比例。因此,要提高空气层的隔热能力最主要的是应努力减少辐射传热和传导传热。

1、控制或降低辐射传热 由于辐射传热是大头,因此减少辐射传热可显着的提高中空玻璃的隔热能力。目前采用的主要以下三种方式:A、用低辐射玻璃即Low-E镀膜玻璃制作中空玻璃。这种玻璃有很低的表面辐射率,镀膜面的辐射率可以达到~,是普通玻璃表面辐射率的1/5-1/10,从而使通过空气层的辐射传热大为减小,同时,低辐射膜层对红外,远红外有较高的反射能力,可将由采暖,照明和居住者所产生的长波能量反射回建筑物中。用低辐射玻璃制做的中空玻璃特别适合于我国北方比较寒冷的地区,以及建筑物的非朝阳面,但对于南方炎热地区和建筑物的朝阳面则不太合适。B、用吸热玻璃制作中空玻璃。吸热玻璃是将太阳光能吸收后转变为热能,能过对流的形式进行扩散,以减少进入室内的太阳光能量,达到节能的目的。C、用热反射镀膜玻璃制作中空玻璃。热反射玻璃利用玻璃上的膜层将太阳光能反射掉,可以减少太阳能透射率,同时又具有良好的隔热保温效果。这种玻璃特别适合气候炎热且日照时间长的地区。但后两种方式的缺点也是明显的,如可见光透过率很低,室内采光不足,在寒冷地区或当地冬季时无法有效的利用太阳能做为辅助加热能源。 2、降低传导和对流传热

相关文档
最新文档