循环流化床锅炉简介

循环流化床锅炉简介
循环流化床锅炉简介

循环流化床锅炉简介

摘要:本文主要对国内外循环流化床发展现状进行了简略的总结、归纳,并通过与

国外循环流化床技术大型化、高参数的发展趋势对比,对我国循环流化床锅炉技术

发展前景进行展望同时,阐述了主要研究方法,技术路线和关键科学技术问题。

关键词:循环流化床;国内外现状;研究方法;技术路线;科学技术问题;前景

Abstract: This paper briefly summarized the current situation about the development of

circulating fluidized bed at home and abroad,compared with the foreign circulating

fluidized bed technology which has a large development trend,and investigated the

prospects of circulating fluidized bed boiler technology in China.At the same time, this

paper expounds the main research method, the technical route and to solve the key

technological problems.

Key words: CFB;development at home and abroad;research method;technical route ;

key technological problems ;prospect

1 前言

循环流化床锅炉是从鼓泡床沸腾炉发展而来的一种新型燃煤锅炉技术,它的工作原理是将煤破碎成0~10mm 的颗粒后送后炉膛,同时炉膛内存有大量床料(炉渣或石英砂),由炉膛下部配风,使燃料在床料中呈“流态化”燃烧,并在炉膛出口或过热器后部安装气固分离器,将分离下来的固体颗粒通过回送装置再次送入炉膛燃烧[1]。

循环流化床锅炉的运行特点是燃料随床料在炉内多次循环,这为燃烧提供了足够的燃尽时间,使飞灰含碳量下降。对于燃用高热值燃料,运行良好的循环流化床锅炉来说,燃烧效率可达98%~99%相当于煤粉燃烧锅炉的燃烧效率。

循环流化床锅炉具有良好的燃烧适应性,用一般燃烧方式难以正常燃烧的石煤、煤矸石、泥煤、油页岩、低热值无烟煤以及各种工农业垃圾等劣质燃料,都可在循环流化床锅炉中有效燃烧。

由于其物料量是可调节的,所以循环流化床锅炉具有良好的负荷调节性能和低负荷运行性能,以能适应调峰机组的要求与环境污染小的优点[2],因此在电力、供热、化工生产等行业中得到越来越广泛的应用。

2 循环流化床锅炉国内外研究现状

2.1 国外研究现状及分析

国际上,循环流化床锅炉的主要炉型有以下流派:德国Lurgi公司的Lurgi型;原芬兰Ahlstrom公司(现为美国Foster Wheeler公司)的Pyroflow型;德国Babcock公司和VKW公司开发的Circofluid型;美国F. W.公司的FW型;美国巴威(Babcock&Wilcox)公司开发的内循环型;英国Kaverner公司的MYMIC型。

大型化、高参数是目前各种循环流化床锅炉的发展趋势,国际上大型CFB 锅炉技术正在向超临界参数发展。国际上在20世纪末开展了超临界循环流化床的研究。世界上容量为100~300MW的CFB电站锅炉已有百余台投入运行。Alhstrom和FW公司均投入大量人力物力开发大容量超临界参数循环流化床锅炉。由F.W.公司生产出了260MW循环流化床锅炉,并安装在波兰[3]。特别是2003年3月F.W.公司签订了世界上第一台也是最大容量的460MW 超临界循环流化床锅炉合同,将安装在波兰南部Lagisza电厂[4]。由西班牙的Endesa

Generacion电力公司、FW芬兰公司及芬兰、德国、希腊和西班牙共六家公司合作的一项为期三年的CFB800的研究项目也正在进行中,并已提出了800MW超临界CFB锅炉的概念设计。

另外一个趋势就是加强研究增压循环流化床锅炉,发展增压循环流化床锅炉型蒸汽-燃气联合循环与常压循环流化床锅炉和增压鼓泡流化床锅炉比较,其具有以下优点[5]:(1)炉膛截面热强度高;(2)环保性能更好。

2.2国内循环流化床锅炉发展现状

中国与世界几乎同步于20世纪80年代初期开始研究和开发循环流化床锅炉技术。大体上我国的循环流化床燃烧技术发展可以分为4个阶段:

1980—1990年为第一阶段,其间我国借用发展鼓泡床的经验开发了带有飞灰循环、取消了密相区埋管的改进型鼓泡床锅炉,容量在35—75t/h。由于没有认识到循环流化床锅炉与鼓泡床锅炉在流态上的差别,这批锅炉存在严重的负荷不足和磨损问题。

1990—2000年为第二阶段,我国科技工作者开展了全面的循环流化床燃烧技术基础研究,基本上掌握了循环流化床流动、燃烧、传热的基本规律。应用到产品设计上,成功开发了75—220t/h蒸发量的国产循环流化床锅炉,占据了我国热电市场。

2000—2005年为第三阶段,其间为进入电力市场,通过四川高坝100MW等技术的引进和自主开发,一大批135—150MWe超高压再热循环流化床锅炉投运。

2005年之后为第四阶段,期间发改委组织引进了法国阿尔斯通全套300MWe亚临界循环流化床锅炉技术,第一个示范在四川白马(燃用无烟煤)取得了成功,随即,采用同样技术的云南红河电厂、国电开原电厂和巡检司电厂(燃用褐煤)以及秦皇岛电厂(燃用烟煤)均成功运行。由于我国已经形成了坚实的循环流化床锅炉设计理论基础,对引进技术的消化和再创新速度很快,引进技术投运不久,就针对其缺点,开发出性能先进、适合中国煤种特点的国产化300MWe亚临界循环流化床锅炉,而且由于国产技术的价格与性能优势,2008年后新订货的300MWe循环流化床锅炉几乎均为国产技术。

3 所采用的主要研究方法和技术路线

国内发展大型化循环流化床锅炉的主要研究方法和路线主要为应用相似原理。

2008年1月9号,中国研制的330MW的循环流化床锅炉在江西分宜电厂投产发电。此前西安火电研究所(IPRI)与哈尔滨锅炉厂有限责任公司(HBC)合作开发了具有自主知识产权的循环流化床锅炉,包括:100MW、210MW循环流化床锅炉,这些锅炉分别于2003年6月19日和2006年7月7日投产运行,并且各项性能指标满足设计要求。这两种锅炉的运行在中国循环流化床锅炉发展史上具有里程碑的意义,它们为发展大容量循环流化床锅炉做了铺垫。通过相似原理中国设计了具有自主知识产权的最大容量循环流化床锅炉,锅炉容量为330MW[6]。这是迄今为止在中国运行的最大容量的循环流化床锅炉。

4 相关科学技术问题

我们可以从循环流化床锅炉技术特点来阐述科学技术问题。

4.1化床锅炉和其他型式锅炉比较有如下特点。

1)燃料适应性广。循环流化床锅炉既可燃用优质煤,也可燃用各种劣质煤。不同设计的循环流化床锅炉,可以燃烧高灰煤、高硫煤、高水分煤、低挥发分煤、煤矸石、煤泥、石油焦、油页岩甚至炉渣、树皮和垃圾等。

2)燃烧效率高。循环流化床锅炉的燃烧效率通常为95%—99%[7]。燃烧效率高的主要原

因是气固混合好、燃烧速率高、大量的燃料进行内循环和外循环重复燃烧,从而使煤粒燃尽率高。

3)高效脱硫。循环流化床锅炉的低温燃烧特点与石灰石最佳脱硫温度一致, 添加合适品种和粒度的石灰石,Ca/S摩尔比在1.5—2.5时,可以达到90%的脱硫效率[8]。

4)氮氧化物(NOx)排放低。循环流化床锅炉氮氧化物排放低的原因主要有两个,一是低温燃烧抑制空气中的氮转化为氮氧化物;二是分段燃烧抑制燃料中的氮转化为氮氧化物。

5)燃烧强度高,炉膛截面积小,炉膛截面积热负荷为3—5MW/m2,接近或高于煤粉炉。

6)负荷调节范围大,负荷调节快。循环流化床锅炉的负荷调节比可达(3—4):1,由于截面风速高和吸热控制容易,循环流化床锅炉的负荷调节速率快,每分钟可达4%BMCR(锅炉最大连续出力)。

7)燃料预处理和给煤系统简单。给煤粒度一般小于12mm,燃料的制备破碎系统大为简单。炉膛的截面积较小,良好的混合使所需的给煤点数量大大减少。

8)易于实现灰渣的综合利用。炉内优良的燃尽条件使得锅炉的含碳量低,灰渣量较煤粉炉要多,灰渣作为水泥掺和料或建筑材料,容易实现灰渣的综合利用。从上特点可以看出循环流化床锅炉是优于链条炉,抛煤机炉,煤粉炉和鼓泡床锅炉的炉型。

4.2循环流化床锅炉存在的主要问题

循环流化床锅炉具有较强生命力,但其发展历史不过三十余年,正处在发展时期,还存在许多缺点,热爱它的研究者,使用者齐心协力,使之茁壮成长,臻于完善。

根据目前状况,循环床锅炉存在下述缺点[9]。

1)由于设计和施工工艺不良,导致炉内受热面磨损严重仍是当前循环流化床锅炉安全稳定运行最为主要的原因。主要存在于水冷壁密相区防磨方式、炉内受热面安装工艺质量、炉内耐磨耐火浇注料施工工艺和质量带来的磨损问题。

2)锅炉排渣不畅也是影响锅炉安全长期运行的问题。影响锅炉排渣不畅的主要原因是入炉

煤颗粒较大,含石块较多。

3)炉膛、分离器以及回料装置之间的膨胀和密封问题。

4)飞灰含碳量高的问题。循环流化床锅炉的低渣含碳量较低,但是飞灰含含碳量较高。

5)厂用电率较高。由于循环流化床锅炉独有的布风板、分离器结构和炉内料层的存在,要满足锅炉燃烧、循环、排渣的需要,风机电耗相应较高。

上述循环流化床锅炉存在的主要问题即为有待解决的关键科学技术问题。

5 国内循环流化床锅炉前景展望

随着全球煤炭储量的不断减少和对环保要求的不断提高,给循环流化床的发展及推广带来了新的机遇,进行如下分析:

(1)煤炭是重要的化工原料,随着储量的不断减少,大型煤粉锅炉将逐渐被国家所限制。而循环流化床由于适合燃烧各种燃料,而且是城市垃圾处理的好项目,必然能得到政府的大力扶植。

(2)目前全国的火电厂顺应国家环保局的要求,纷纷上马脱硫项目。但作为煤粉锅炉,受结构的限制,很难采用干法脱硫技术,因此大多采用石灰石湿法脱硫。湿法脱硫需要增加烟道、增压风机、吸收塔、石灰石浆液系统、石膏脱水系统、废水系统、石灰石粉制备系统等脱硫设备的大量投资,一般直接投资就在2亿以上,而后期的运行和维修费用更是天文数字。而循环流化床锅炉可以采用炉内喷钙干法脱硫,甚至可以实现脱硝,且增加的投资很少。喷钙脱硫成套技术主要由炉内喷射钙基吸附剂脱硫和尾部水合固硫两部分组成,在炉膛烟温

900~1200℃区域内喷入石灰石粉,可将系统脱硫率提高到80%以上[10]。

(3)随着我国电机技术的发展,风机的功率得到了不断的提升,而循环流化床的结构也在不断的改善,因此循环流化床的出力也可逐步向大型化发展。

6 总结

循环流化床锅炉在清洁煤燃烧方面已经充分显示了其优越性,但在高效方面,仍然存在不足,其容量尚不足以满足电力生产的需要。而这种燃烧技术本身决定了发电效率的提高只能通过提高蒸汽参数循环效率的途径来实现。因此,容量大型化以及高参数化是循环流化床燃烧技术的发展方向。循环流化床技术具有燃料的灵活性、低的排放等优点。超临界循环流化床锅炉便是结合二者的优势,是一种高效、低污染燃煤发电技术。

原则上循环流化床及超临界均是成熟技术,二者的结合相对技术风险和技术难度不大。循环流化床炉膛中的热流要比煤粉炉中低得多且比较均匀,比煤粉炉更适合采用超临界参数。

超临界循环流化床作为下一代循环流化床燃烧技术,已经受到人们的高度重视。目前,我国也在积极策划实施超临界循环流化床锅炉示范工程。预计不久的将来,世界上容量最大、参数最高的循环流化床锅炉将在中国诞生。

参考文献:

[1].岳光溪.循环流化床技术发展与应用.节能和环保,2003(3).

[2].林平.浅议我国循环流化床锅炉的现状和问题.能源与环境,2010.NO.3.

[3].Nowak W,Bis Z,Laskawiec J,et al.Design and Operation Experience of 230 MW CFB

Boilers at Turow Power Plant in Poland.In: Robert.Proceedings of the 15 th International

Conference on Fluidized https://www.360docs.net/doc/3d14559878.html,bustion.Savannah:ASME 1999: No.0122.

[4].吕俊复,张建胜,岳光溪.循环流化床锅炉运行与检修[M].北京:水利水电出版社,2003.

[5].张海平,胡三高,韩香玉.国外循环流化床锅炉的现状和发展趋势[J].中国电力教

育,2005.113-116.

[6].Zhang Man,Bie Rushan,Yu Long,Zhang Yanjun.Design and Operating of the Maximum

Capacity 330MW CFB Boiler in China.IEEE 2009.

[7].于龙,吕俊复,王智微,等.循环流化床燃烧技术的研究展望[J].热能动力工程,2004,

19(4):336-342.

[8].阎维平.洁净煤发电技术.北京:中国电力出版社,2008.11.

[9].杨红红,姜森.循环流化床锅炉的简单介绍和发展前景分析.锅炉制造,2010.05.NO.3.

[10].张正国.循环流化床技术发展及前景展望[J].中国高新技术企业科技论坛,1994,35(1):

77.

循环流化床锅炉的特点

循环流化床锅炉的特点 循环流化床锅炉的特点 循环流化床锅炉是近十几年发展起来的一项高效、低污染清洁燃烧技术。因其具有燃烧效率高、煤种适应性广、烟气中有害气体排放浓度低、负荷调节范围大、灰渣可综合利用等优点,在当今日益严峻的能源紧缺和环境保护要求下,在国内外得到了迅速的发展,并已商品化,正在向大型化发展。 1.1 独特的燃烧机理 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其炉子称为流化床

锅炉。流化理论用于燃烧始于上世纪20年代,40年代以后主要用于石油化工和冶金工业。 流化燃烧是一种介于层状燃烧与悬浮燃烧之间的燃烧方式。煤预先经破碎加工成一定大小的颗粒(一般为<8mm)而置于布风板上,其厚度约在350~500mm左右,空气则通过布风板由下向上吹送。当空气以较低的气流速度通过料层时,煤粒在布风板上静止不动,料层厚度不变,这一阶段称为固定床。这正是煤在层燃炉中的状态,气流的推力小于煤粒重力,气流穿过煤粒间隙,煤粒之间无相对运动。当气流速度增大并达到某一较高值时,气流对煤粒的推力恰好等于煤粒的重力,煤粒开始飘浮移动,料层高度略有增长。如气流速度继续增大,煤粒间的空隙加大,料层膨胀增高,所有的煤粒、灰渣纷乱混杂,上下翻腾不已,颗粒和气流之间的相对运动十分强烈。这种处于沸腾状态的料床,称为流化床。这种燃烧方式即为流化燃烧。当风速继续增大并超过一定限度时,稳定的沸腾工况就被破坏,颗粒将全部随气流飞走。物料的这种运动形式叫做气力输送,这正是煤粉在煤粉炉中随气流悬浮燃烧的情景。

1.2 锅炉热效率较高 由于循环床内气—固间有强烈的炉内循环扰动,强化了炉内传热和传质过程,使刚进入床内的新鲜燃料颗粒在瞬间即被加热到炉膛温度(≈850℃),并且燃烧和传热过程沿炉膛高度基本可在恒温下进行,因而延长了燃烧反应时间。燃料通过分离器多次循环回到炉内,更延长了颗粒的停留和反应时间,减少了固体不完全燃烧损失,从而使循环床锅炉可以达到88~95%的燃烧效率,可与煤粉锅炉相媲美。 1.3 运行稳定,操作简单 循环流化床锅炉的给煤粒度一般小于10mm,因此与煤粉锅炉相比,燃料的制备破碎系统大为简化。循环流化床锅炉燃料系统的转动设备少,主要有给煤机、冷渣器和风机,较煤粉炉省去了复杂的制粉、送粉等系统设备,较链条炉省去了故障频繁的炉排部分,给燃烧系统稳定运行创造了条件。

循环流化床锅炉技术(岳光溪)

循环流化床技术发展与应用 岳光溪清华大学热能工程系 摘要:循环流化床燃烧技术对我国燃煤污染控制具有举足轻重的意义。我国自上世纪八十年代后采取引进和自我开发两条路线,完全掌握了中小型循环流化床锅炉设计制造技术,在大型循环流化床燃烧技术上已经完成了首台135MWe超高压再热循环流化床锅炉的示范工程。引进的300MWe循环流化床锅炉进入示范实施阶段。燃煤循环流化床锅炉已在中国中小热电和发电厂得到大面积推广使用。中国积累的设计运行经验对世界上循环流化床燃烧技术的发展做出了重要贡献。超临界循环流化床锅炉是今后循环流化床燃烧技术发展极为重要的方向,是大型燃煤电站污染控制最具竞争力的技术。我国已经具备开发超临界循环流化床锅炉的能力,在政府支持下可以实现完全自主知识产权的超临界循环流化床锅炉,扭转过去反复引进的被动局面。 前言 能源与环境是当今社会发展的两大问题。我国是缺油,但煤炭资源相对丰富大国。石油天然气对我国是战略资源,要尽量减少直接燃用。目前一次能源消耗中煤炭占65%,在可预见的若干年内还会维持这个趋势。可见发展高效、低污染的清洁燃煤技术是当今亟待解决的问题。 循环流化床是近年来在国际上发展起来的新一代高效、低污染清洁燃烧技术,具有许多其它燃烧方式所没有的优点: 1)由于循环流化床属于低温燃烧,因此氮氧化物排放远低于煤粉炉,仅为120ppm左右。并可实现燃烧中直接脱硫,脱硫效率高且技术设备简单和经济,其脱硫的初投资及运行费用远低于煤粉炉加FGD,是目前我国在经济上可承受的燃煤污染控制技术; 2)燃料适应性广且燃烧效率高,特别适合于低热值劣质煤; 3)排出的灰渣活性好,易于实现综合利用。 4)负荷调节范围大,负荷可降到满负荷的30%左右。 因此,在我国目前环保要求日益严格,煤种变化较大和电厂负荷调节范围较大的情况下,循环流化床成为发电厂和热电厂优选的技术之一。我国的循环流化床燃烧技术的来自于自主开发、国外引进、引进技术的消化吸收三个主要来源。上世纪八十年代以来,我国循环流化床锅炉数量和单台容量逐年增加。据不完全统计,现有近千台35~460t/h 循环流化床蒸汽锅炉和热水锅炉在运行、安 106.78t/h,见图1;参数从中压、次高压、高压发 展到超高压,单台容量已经发展到670t/h,见图2。 截至2003年,投运台数已有700多台。单炉最大 容量为465t/h,发电量150MWE。近三年,我国 循环流化床锅炉发展迅速,100MWe以上循环流 化床锅炉订货量达到近80台,100MWe以下循环 流化床锅炉订货超过200台。今后,随着环保标 准的提高,供热及电力市场对循环流化床锅炉的 需求将会进一步扩大。

循环流化床锅炉简介

循环流化床锅炉简介 摘要:本文主要对国内外循环流化床发展现状进行了简略的总结、归纳,并通过与 国外循环流化床技术大型化、高参数的发展趋势对比,对我国循环流化床锅炉技术 发展前景进行展望同时,阐述了主要研究方法,技术路线和关键科学技术问题。 关键词:循环流化床;国内外现状;研究方法;技术路线;科学技术问题;前景 Abstract: This paper briefly summarized the current situation about the development of circulating fluidized bed at home and abroad,compared with the foreign circulating fluidized bed technology which has a large development trend,and investigated the prospects of circulating fluidized bed boiler technology in China.At the same time, this paper expounds the main research method, the technical route and to solve the key technological problems. Key words: CFB;development at home and abroad;research method;technical route ; key technological problems ;prospect 1 前言 循环流化床锅炉是从鼓泡床沸腾炉发展而来的一种新型燃煤锅炉技术,它的工作原理是将煤破碎成0~10mm 的颗粒后送后炉膛,同时炉膛内存有大量床料(炉渣或石英砂),由炉膛下部配风,使燃料在床料中呈“流态化”燃烧,并在炉膛出口或过热器后部安装气固分离器,将分离下来的固体颗粒通过回送装置再次送入炉膛燃烧[1]。 循环流化床锅炉的运行特点是燃料随床料在炉内多次循环,这为燃烧提供了足够的燃尽时间,使飞灰含碳量下降。对于燃用高热值燃料,运行良好的循环流化床锅炉来说,燃烧效率可达98%~99%相当于煤粉燃烧锅炉的燃烧效率。 循环流化床锅炉具有良好的燃烧适应性,用一般燃烧方式难以正常燃烧的石煤、煤矸石、泥煤、油页岩、低热值无烟煤以及各种工农业垃圾等劣质燃料,都可在循环流化床锅炉中有效燃烧。 由于其物料量是可调节的,所以循环流化床锅炉具有良好的负荷调节性能和低负荷运行性能,以能适应调峰机组的要求与环境污染小的优点[2],因此在电力、供热、化工生产等行业中得到越来越广泛的应用。 2 循环流化床锅炉国内外研究现状 2.1 国外研究现状及分析 国际上,循环流化床锅炉的主要炉型有以下流派:德国Lurgi公司的Lurgi型;原芬兰Ahlstrom公司(现为美国Foster Wheeler公司)的Pyroflow型;德国Babcock公司和VKW公司开发的Circofluid型;美国F. W.公司的FW型;美国巴威(Babcock&Wilcox)公司开发的内循环型;英国Kaverner公司的MYMIC型。 大型化、高参数是目前各种循环流化床锅炉的发展趋势,国际上大型CFB 锅炉技术正在向超临界参数发展。国际上在20世纪末开展了超临界循环流化床的研究。世界上容量为100~300MW的CFB电站锅炉已有百余台投入运行。Alhstrom和FW公司均投入大量人力物力开发大容量超临界参数循环流化床锅炉。由F.W.公司生产出了260MW循环流化床锅炉,并安装在波兰[3]。特别是2003年3月F.W.公司签订了世界上第一台也是最大容量的460MW 超临界循环流化床锅炉合同,将安装在波兰南部Lagisza电厂[4]。由西班牙的Endesa

循环流化床锅炉部分部件原理

基本原理篇 第一章循环流化床锅炉的基本原理 第一节流态化过程循环流化床锅炉燃烧是一个特殊的气固两相流动体系中发生的物理化学过程,是一种新型燃用固体燃料的的锅炉。粒子团不断聚集、沉降、吹散、上升又在聚集物理衍变过程,是循环床中气体与固体粒子间发生剧烈的热量与质量交换,形成炉内的循环;同时气流对固体颗粒有很大的夹带作用,使大量未燃尽的燃料颗粒随烟气一起离开炉膛,被烟气带出的大部分物料颗粒经过旋风分离器的分离又从新回到炉膛,来保持炉内床料不变的连续工作状态,这就是炉外的物料循环系统,也是循环流化床锅炉所特有的物料循环—循环从此而来。 咱们看一下这幅燃烧、循环分离图

1. 流态化:当气体以一定的速度流过固体颗粒层时,只要气体对固体颗粒产生作用力与固体颗粒所受的外力(主要是固体的重力)相平衡时,颗粒便具有了类似流体的性质,这种状态成为流态化, 简称流化。固体颗粒从固体床、起始流态化、鼓泡流态化、‘柱塞’流态化、湍流流态化、气力输送状态的六种流化状态。 2. 临界流化速度:颗粒床层从静止状态转变为流态化时的最低速度, 称为临界流化速度。此时所需的风量称为临界流化速度。 3. 流化床表现在流体方面的特性。 流化床看上去非常象沸腾的液体, 在许多方面表

现出类似液体的特性, 主要表现在以下几个方面: 1) 床内颗粒混合良好。因此,当加热床层时, 整个床层的温度基本均匀。 2) 床内颗粒可以象流体一样从容器侧面的孔喷出, 并能像液体一样从一个容器流向另一个容器。 3) 高于床层表观密度的颗粒会下沉, 小于床层表观密度的颗粒会浮在床面上。 4) 当床体倾斜时, 床层的上表面保持水平。 第二节循环流化床的基本原理 1. 循环流化床的特点: 1) 不再有鼓泡床那样清晰的界面,固体颗粒充面整个上升段空间。 2) 有强烈的热量、质量、和动量的传递过程。 3) 床层压降随流化速度和颗粒质量流量变化。 4) 低温的动力控制燃烧,也就是我们所说的床温在850-950℃之间范围,因为这个范围对灰的不会软化、碱金属不会升华受热面会减轻结渣和空气中不能生成大量的NOx。 5) 通过上升段内的存料量,固体物料在床内的停留时间可在几分钟至数小时范围内调节。 2.循环流化床锅炉的传热 1)颗粒与气流之间,以对流换热为主;

循环流化床锅炉给煤机介绍

循环流化床给煤机介绍 1、产品概述 目前世界上,专业研制开发循环流化床给煤、给料设备的制造商仍然是美国STOCK设备公司,我国最早的流化床电厂:宁波中华纸业自备电厂,镇海炼化自备电厂均采用美国STOCK给煤机。即便现在,在流化床锅炉给煤设备基本国产化的情况下,国内首台300MW 循环流化床电厂-四川白马电厂的给煤机仍然采用美国STOCK给煤机。 循环流化床电厂在我国发展的历史并不是很长,九十年代初在我国沿海城市开始建设,我公司是国内首家提供与循环流化床锅炉配套的计量给煤机、计量石灰石给料机和埋刮板给煤机的设备制造厂家。目前,国内最早的CFB用户-杭州热电厂、重庆爱溪电厂给煤机已运行8、9年,情况较好。这些电厂是我公司第一代产品。2001年,芬兰FW公司总包的上海石化自备电厂,2004年我国投建的300MW循环流化床电厂云南小龙潭电厂、内蒙蒙西电厂,这些电厂系统及设备的复杂程度均高于目前国内流化床电厂的给煤形式,给煤机和给料机在国内唯一选中沈阳STOCK公司。 微机控制称重式计量给煤机是燃煤电厂锅炉系统中的关键辅机设备之一,在CFB锅炉系统中称重式计量给煤机的首要功能是将煤连续均匀的送入锅炉中,同时通过微机控制系统,在运行过程中完成

准确称量并显示给煤情况,同时根据锅炉燃烧情况自动调节控制不同煤种给煤量,使供煤量与燃烧空气量配比科学,保证燃烧始终处于最佳状态,即保证实际给煤量与锅炉负荷相匹配,进而保证电厂获得最佳经济效益。 我公司生产的给煤机是集十几年研制,生产给煤机的经验,并融合目前世界上先进美国STOCK公司称重式给煤机和其他类型给煤机的优点研制开发的结构合理,性能先进,运行安全可靠的理想给煤设备。 2、产品组成系统说明 对于CFB锅炉系统,称重式计量给煤机系统主要由:煤仓出口煤闸门,上部落煤管,可调联接节,称重式计量给煤机等部分组成。其中称重式计量给煤机由给煤机本体,微机控制系统、主驱动电机、主驱动减速机、清扫机构驱动电机、清扫机构驱动减速机、称重系统、报警保护系统等主要部分组成。 在CFB锅炉系统中,由于燃料(煤)是由给煤机直接给到锅炉中的,因此给煤机能否连续,可靠的运行是尤为重要的。如果给煤机不能可靠的运行,实现连续给煤不仅加大设备的维护量,更为严重的是影响锅炉的运行,降负荷甚至停炉。

循环流化床锅炉基础知识

循环流化床锅炉基础知识 第一篇循环流化床锅炉部分 1.循环流化床锅炉部分 1.1.流化态定义, 答:当流体向上流过颗粒床层时,其运动状态是变化的。流速较低时,颗粒静止不动,流体只在颗粒之间的缝隙中通过;当流速增加到某一速度之后,颗粒不再由布风板所支持,而全部由流体的摩擦力所承托,此时,每个颗粒可在床层中自由运动,就整个床层而言,具有了许多类似流体的性质。这种状态就被称之为流态化。 当固体颗粒群与气体或液体接触时,使固体颗粒转变成类似流体的状态。 1.2.什么是起始流化态点, 答:当气体流速刚刚达到临界风速时,床层内只有乳化相,当流化速度增加时在乳化相中固体颗粒和气体的比例一直保持在开始流化那个临界状态,就称之为起始流化态。 1.3.什么是临界流化速度, 答:颗粒床层从静止状态转变为流态化时的最低速度,称之为临界流化速度。 1.4.什么是空隙率, 答:床层内气固两相中气相所占的体积份额。 空隙率:ε= V / ( V+ V) ; aa b 其中:V---气体体积;V---颗粒所占体积。 a b 1.5.循环流化床的主要组成部分, 答:流化容器、布风装置、物料、旋风分离和回料装置。 1.6.流化床锅炉的分类,

答:流化床燃烧锅炉可分为:常压鼓泡流化床锅炉、常压循环流化床锅炉、增压 鼓泡流化床锅炉和增压循环流化床锅炉。 1.7.流化床燃烧过程的特点, 答:(1)流化床本身是一个蓄热容量很大的热源,有利于燃料的迅速着火和燃烧; (2)床内燃料与空气相对运动强烈,混合良好,燃烧速度极快; (3)由于床内煤粒燃烧反应异常强烈,煤粒燃烧的实际化学反应过程的温度按 普通方法所测得的床层平均温度高得多; (4)煤粒在床内有较长的停留时间; (5)流化床燃烧的一个重要特点就是减少大气污染,满足环保要求。 1.8.流化床中碳粒燃烧的机理, 答:碳的燃烧过程是一种具有复杂物理化学过程的多相燃烧,主要是碳在空气 中被氧化生成CO和CO,以及CO又被碳还原的两个反应过程,通常称为一次反应 和二次反应。一22 次反应是在温度较低的情况下,氧从周围空间扩散到碳表面,并生成CO及CO 的反应。 2 C + O=CO+ 408860 J/g?mol 2 2 2C + O=2CO + 246447 J/g?mol 2 二次反应是在温度大于1200,1300?时,碳粒表面产生的CO又被还原为CO,其 反应为: 2 CO+ C = 2CO,162414 J/g?mol 。 2 1.9.流化床内传热的三种基本形式, 答:(1)床层内的有效传热; (2)颗粒与气体的传热; (3)床层与埋管受热面的传热。

循环流化床锅炉的原理及结构

循环流化床锅炉的原理及结构 循环流化床锅炉是在炉膛里把燃料控制在特殊的流化状态下燃烧产生蒸汽的设备。 循环流化床锅炉工作原理及特点: 固体粒子经与气体或液体接触而转变为类似流体状态的过程,称为流化过程。流化过程用于燃料燃烧,即为流化燃烧,其锅炉称为流化床锅炉。 循环流化床锅炉是在鼓泡流化床锅炉技术的基础上发展起来的新炉型,循环流化床锅炉炉内流化风速较高(一般为4~8m/s),在炉膛出口加装了气固物料分离器。被烟气携带排出炉膛的细小固体颗粒,经分离器分离后,再送回炉内循环燃烧。 循环流化床锅炉可分为两个部分:第一部分由炉膛(快速流化床)、气固物料分离器、固体物料再循环设备等组成,上述部件形成了一个固体物料循环回路。第二部分为对流烟道,布置有过热器、省煤器和空气预热器等,与其它常规锅炉相近。 循环流化床锅炉燃烧所需的一次风和二次风分别从炉膛的底部和侧墙送入,燃料的燃烧主要在炉膛中完成,炉膛四周布置有水冷壁用于吸收燃烧所产生的部分热量。炉膛内燃烧所产生的大量烟气携带物料经分离器入口加速段加速进入分离器,将烟气和物料。物料经料斗、料腿、返料阀再返回炉膛;烟气自中心筒进入分离器出口区,流经转向室、进入尾部烟道。 锅炉给水经省煤器加热后进入汽包,汽包内的饱和水经集中下降管、分配管进入水冷壁下集箱,加热蒸发后流入上集箱,然后进入汽包;饱和蒸汽流经顶棚管、后包墙管、进入低温过热器,由低过加热后进入减温器调节汽温,然后经高过将蒸汽加热到额定蒸汽温度,进入汇汽集箱至主气管道。 循环流化床锅炉燃烧的基本特点: (1)低温的动力控制燃烧 循环流化床燃烧是一种在炉内使高速运动的烟气与其所携带的湍流扰动极强的固体颗粒密切接触,并具有大量颗粒返混的流态化燃烧反应过程;同时,在炉外将绝大部分高温的固体颗粒捕集,并将它们送回炉内再次参与燃烧过程,反复循环地组织燃烧。炉膛温度一般控制在850-950℃之间,(850℃左右为最佳脱硫温度)低于一般煤的灰熔点。

循环流化床锅炉原理说明

一、循环流化床锅炉及脱硫 1、循环流化床锅炉工作原理 煤和脱硫剂被送入炉膛后,迅速被炉膛内存在的大量惰性高温物料(床料)包围,着火燃烧所需的的一次风和二次风分别从炉膛的底部和侧墙送入,物料在炉膛内呈流态化沸腾燃烧。在上升气流的作用下向炉膛上部运动,对水冷壁和炉内布置的其他受热面放热。大颗粒物料被上升气流带入悬浮区后,在重力及其他外力作用下不断减速偏离主气流,并最终形成附壁下降粒子流,被气流夹带出炉膛的固体物料在气固分离装置中被收集并通过返料装置送回炉膛循环燃烧直至燃尽。未被分离的极细粒子随烟气进入尾部烟道,进一步对受热面、空气预热器等放热冷却,经除尘器后,由引风机送入烟囱排入大气。 燃料燃烧、气固流体对受热面放热、再循环灰与补充物料及排渣的热量带入与带出,形成热平衡使炉膛温度维持在一定温度水平上。大量的循环灰的存在,较好的维持了炉膛的温度均化性,增大了传热,而燃料成灰、脱硫与补充物料以及粗渣排除维持了炉膛的物料平衡。 煤质变化或加入石灰石均会改变炉内热平衡,故燃用不同煤种的循环流化床锅炉在设计及运行方面都有不同程度的差异。循环流化床锅炉在煤种变化时,会对运行调节带来影响。试验表明,各种煤种的燃尽率差别极大,在更换煤种时,必须重新调节分段送风和床温,使燃烧室适应新的煤种。 加入石灰石的目的,是为了在炉内进行脱硫。石灰石的主要化学成份是CaO .而煤粉燃烧后产生的SO2、SO3等,若直接通过烟囱排入大气层,必然会造成污染。加入石灰石后,石灰石中的的Cao 与烟气中的SO2、SO3等起化学反应,生成固态的CaSO3 、CaSO4 (即石膏),从而减少了空气中的硫酸类的酸性气体的污染。另外,由于流化床锅炉的燃烧温度被控制在800-900 ℃范围内,煤粉燃烧后产生的NOx 气体也会大大减少硝酸类酸性气体。 2、循环流化床锅炉的特点 可燃烧劣质煤 因循环流化床锅炉特有的飞灰再循环结构,飞灰再循环量的大小可改变床内(燃烧室)的吸收份额,即任何劣质煤均可充分燃烧,所以循环流化床锅炉对燃料的适应性特别好。

循环流化床锅炉结构及分类

近年来我国推出的流化床锅炉结构类型已有若干种,从受热面布置来说,有密相床带埋管的,有不带埋管的;流化速度有的低至3-4米/秒,有的高至5-6米/秒;分离器的种类更多,如高温旋风分离器;中温旋风分离器、卧式旋风分离器、平面流百叶窗、槽形钢分离器等型式,都称之为循环流化床锅炉。但从机理看,是否属于CFBB还有待商椎。 众所周知,流化床锅炉分为两大类:鼓泡流化床锅炉(BFBB)和循环流化床锅炉(CF -BB)。到目前为止,二者之间尚无明确而权威的分类法,有人主张以流化速度来分类,但从气固两相动力学来看,风速相对于颗粒粒径、密度才有意义,还有人主张以密相区是鼓泡还是湍动床或快速来区分,但锅炉使用的是宽筛力燃料,以煤灰为床料的锅炉往密相床是鼓床,故此分法仍欠全面。还有人以是否有灰的循环为标准等等,都有些顾此失彼。以作者之见,我们不妨从燃烧的机理上来分。鼓泡床锅炉的燃烧主要发生在炉膛下部的密相区,如我国编制的《工业锅炉技术手册(第二册)》推荐,对于一般的矸石烟煤、贫煤和无烟煤密相区份额高达75%-95%,燃烧需要的空气也主要以一次风送入床层.循环流化锅炉的一次风份额一般为50%-60%。密相床的燃烧份额受流化速度、燃料粒径及性质、床层高度、床温等影响在上述数值的上下波动。其余的燃料则在炉膛上部的稀相区悬浮燃烧,所以在燃烧的机理上,BFBB接近于层燃炉,而CFBB更接近于室燃炉,二者在这一方面存在着极大的差异,所以以此划分似乎更为合理。 鼓泡流化床锅炉密相床的燃烧份额大,需布置埋管受热面以吸收燃烧释放。埋管的传热系数高达220-270KW/MC比CFBB炉膛受热面的100-500kw/m2℃离得多尽管BFBB稀相区内的传热系数比要低,但因在稀相层内的吸热量所占份额较小,总的来说,对于容量较小的锅炉BFBB结构受热面的钢耗量要少小些,BFBB的燃烧主要在相床给煤的平均粒径偏大,煤破碎设备较为简单,电耗也底流化速度低,细煤粒在悬浮断停留时间长,炉膛也做的低。虽埋管有磨损,但如防磨损失处理得好,一般横埋管可用五年,竖埋管可用…….采用尾部飞灰再循环,BFBB的燃烧效率可达97%,如在炉膛出口安装分离器实现热态飞灰再循环,则可高达98-99%,但此时装设分离器的目的主要是为了提高燃烧效率而不是象CFBB主要上为了改变炉内的燃烧传热机理。 CFBB的截面热负荷是BFBB的2-3倍(从上至下加起来的热负荷,而不是一层),利于大型化,炉膛内温度均匀,大气污染物排放低,燃烧效率高(可达99%以上)是在BFBB技术上的进步,具有更优越的性能,但因分离器不能捕集到细小煤粒,就需要较高炉膛,对煤的破碎粒度及操作控制等都要求较高,投资大且技术复杂,所以CFBB炉型对中小容量锅炉并无明显优势,因而国外一些研究者认为,BFBB适用于50t/h以下容量,CFBB适用于220t/h 以上容量,在50-220t/h容量范围内二者共存。 我国在过去许多年中,建造了近3000台沸腾炉(即BFBB)虽然其在燃烧劣质煤方面发挥了极大的作用,但上于一直在低水平上运行,飞灰量大,含炭高,锅炉效率低下,再加上除尘方面投资不足,烟尘治理没得到很好解决,致使沸腾炉有点声名不佳。CFBB出现之后,人们便纷纷打出循环流化床锅炉的牌子,推出了不少炉型,如清华大推出的低携带率循环床锅炉,哈工大与北锅开发的带埋管和槽型分离器的循环床锅炉等,实际上都是BFBB。但它们是改进了的沸腾炉,把沸腾炉技术提高到了较高的水平,这些炉型在工业锅炉和热电联供锅炉范围内有着极强的生命力,所以我们应当为BFBB的新成绩欢呼,正其位,恢复其名誉,并在一定的锅炉容量范围内发展这种BFBB。

国内外循环流化床锅炉发展概况

国内外循环流化床锅炉发展概况 循环流化床锅炉是在常规流化床锅炉的基础上加上飞灰循环燃烧而发展起来的。因此要了解什么是循环流化床锅炉必须先了解什么是流化床锅炉,从固体粒子流态化过程来看,从固定床(煤粒在炉蓖上静止不动,即层燃炉)开始,随着风量的增加,即空筒流速(通常叫表观流速或流化速度)的增加→细粒在煤层表面流化,是为细粒流态化→炉蓖上开始产生气包,是称鼓泡流态化(即常规流化床,又名鼓泡流化床或沸腾床,此时的沸腾床有明显的上界面)→湍流流态化(湍流流化床,此时气泡变细狭窄状,波动振幅增大,上界面已不甚清晰)→快速流态化(高速流化床,此时的流化床内已无气泡,也无上界面,颗粒聚合成絮团状粒子束,粒子束不断形成与解体,形成强烈的固体返混,此时煤粒与气流的相对速度达最大,因此大大强化了燃烧与传热)→气力输送(即煤粉燃烧,此时煤粉与气流间的相对速度近于零,即已无相对速度)。 经典的循环流化床锅炉的炉内流态化工况应为高速流化床工况,故严格而言,循环流化床锅炉不仅是在炉膛出口处加一个分离器收集部分飞灰返回炉膛燃烧而已,而是其炉内流态化工况应属于高速流化床工况,但实际存在的循环流化床其下部浓相区为鼓泡流化床或湍流床,上部稀相区为高速流化床。但国内有相当数量的流化床锅炉仅是在鼓泡流化床炉膛出口加一个分离器收集部分飞灰返回炉膛燃烧(即其上部稀相区未达高速流化床工况),现也称为循环床。 循环流化床锅炉的优缺点 优点: ①燃料适应性广——几乎可燃用各种优、劣质燃料。如优、劣质烟煤(包括高硫煤),无烟煤,泥煤,煤泥,矸石,炉渣,油焦,焦炭,生活垃圾,生物质废料等等。 ②燃烧效率高——对无烟煤可达97%,对其他煤可达98~99.5%,可与煤粉燃烧相竞争。 ③环保性能好 a)炉内可直接加石灰石脱硫,成本低,脱硫效率高,当Ca/S比为1.5~2.5时,脱硫效率可达85%~90%,石灰石循环利用,其利用率比常规流化床提高近一倍。 b)分段送风,低温燃烧,NOx排放量低(~120ppm),即为煤粉炉排放量的1/3~1/4。 ④燃烧强度高,床面积小,给煤点少,利于大型化。 ⑤负荷调节范围大(110~25%),调节速度可快,利于调峰。也可压火。 ⑥燃料仅需破碎到10mm以下,无需磨煤制粉系统。 ⑦灰渣可综合利用,减少环境污染。因其低温燃烧,灰渣可保持活性,可制作水泥,提炼稀有金属(硒、锗)等。 缺点: 高循环倍率流化床锅炉的炉膛高大,初投资大;分离循环系统复杂,自身电耗大;循环灰浓度大,受热面磨损大等。 我国在上世纪80年代初开始研究开发循环流化床燃烧技术,与西方国家不同,原我国发展循环流化床锅炉的主要目的是解决劣质煤的应用问题。近年来,我国环保要求日益严格,再加上煤价上涨,煤质变化大,大量中、小型(130t/h以下)层燃炉与煤粉炉要求进行技术改造等原

循环流化床热水锅炉工作原理

随着工业技术的不断创新,锅炉行业通过创新的研发,生产出了一种高效、低污染的循环流化床热水锅炉设备,因此,很多用户对其工作原理难免会不太了解,所以,下面就给大家介绍一下该锅炉的工作原理,希望对大家的了解有所帮助。 循环流化床热水锅炉其原理主要是基于循环流态化的原理组织煤的燃烧过程,以携带燃料的大量高温固体颗粒物料的循环燃烧为主要特征。固体颗粒充满整个炉膛,处于悬浮并强烈掺混的燃烧方式。但与常规煤粉炉中发生的单纯悬浮燃烧过程相比,颞粒在循环流化床燃烧室内的浓度远大于煤粉炉,并且存在显著的揪粒成闭和床料的颗粒间混,颗粒与气体间的相对速度大,这一点显然与基于气力输送方式的煤粉悬浮燃烧过程完全不同。 预热后的一次风(流化风)经风室由炉膛底部穿过布风板送入,使炉膛内的物料处于快速流化状态,燃料在充满整个炉膛的惰件床料中燃烧。较细小的颗粒被气流夹带飞出炉膛,并由K灰分离装置分离收粜,通过分离器下的回料管与飞

灰回送器(返料器)送W炉膛循坏燃烧;燃料在燃烧系统内完成燃烧和卨温烟气向X质的部分热M 传递过程。烟气和未被分离器捕集的细颗粒排入拥环流化床锅炉炉内燃烧与烟风系统尾部烟逬,继续受热曲进行对流换热,最后排出锅炉。 在这种燃烧方式下,燃烧室密相区的湿度水T受到燃煤过稈中的高温结液、低温结焦和最佳脱硫温度的限制,一般维持在850℃左右,这一温度范围也恰与垃圾脱硫温度吻合。由于循环流化床锅炉较煤粉炉炉膛的温度水平低的特点,带来低污染物排放和避免燃煤过程中结渣等问题的优越性。 以上就是循环流化床热水锅炉有关工作原理的介绍,如有不清楚的可咨询中鼎锅炉股份有限公司,该公司不仅拥有A级锅炉制造许可证和I、II类压力容器设计制造许可证、一级锅炉安装许可证,且设备质优价廉,性价比高,因此,现深受客户的好评。

循环流化床锅炉的优缺点

是在鼓泡床锅炉(沸腾炉)的基础上发展起来的,因此鼓泡床的一些理论和概念可以用于循环流化床锅炉。但是又有很大的差别。早期的循环流化床锅炉流化速度比较高,因此称作快速循环循环床锅炉。快速床的基本理论也可以用于循环流化床锅炉。鼓泡床和快速床的基本理论已经研究了很长时间,形成了一定的理论。要了解循环流化床的原理,必须要了解鼓泡床和快速床的理论以及物料从鼓泡床→湍流床→快速床各种状态下的动力特性、燃烧特性以及传热特性。 一、循环流化床锅炉的优点。 1.燃料适应性广,这是循环流化床锅炉的重要优点。循环流化床 锅炉既可燃烧优质煤,也可燃烧劣质燃料,如高灰煤、高硫煤、高硫高灰煤、高水分煤、煤矸石、煤泥,以及油页岩、泥煤、 炉渣、树皮、垃圾等。他的这一优点,对充分利用劣质燃料具

有总大意义。 2.燃烧效率高。国外循环流化床锅炉的燃烧效率一般髙达99%。 我国自行设计的循环流化床锅炉燃烧效率髙达95%-99%。该锅炉燃烧效率的主要原因是燃烧尽率高。运行锅炉的实例数据表明,该型锅炉的炉渣可燃物图仅有1%-2%,燃烧优质煤时,燃烧效率与煤粉炉相当,燃烧劣质煤是,循环流化床锅炉的燃烧率比煤粉炉约高5%。 3.燃烧污染排放量低。想循环流化床内直接加入石灰石,白云石 等脱硫剂,可以脱去燃料燃烧生成的SO2。根据燃料中所含的硫量大小确定加入脱硫剂量,可达到90%的脱硫效率。循环硫化床锅炉NOχ的生成量仅有煤粉炉的1∕4-1/3。标准状态下NOχ的排量可以控制在300mg/m3以下。因此循环流化床是一种经济、有效、低污染的燃烧技术。与煤粉炉加脱硫装置相比,循环流化床锅炉的投资可降低1∕4-1/3。 4. 燃烧强度高,炉膛截面积小炉膛单位截面积的热负荷高是循 环流化床锅炉的另一主要优点。其截面热负荷约为 3.5~ 4.5MW/m2,接近或高于煤粉炉。同样热负荷下鼓泡流化床锅炉 需要的炉膛截面积要比循环流化床锅炉大2~3倍。 5.负荷调节范围大,负荷调节快 当负荷变化时,只需调节给煤量、空气量和物料循环量,不必 像鼓泡流化床锅炉那样采用分床压火技术。也不象煤粉锅炉 那样,低负荷时要用油助燃,维持稳定燃烧。一般而言,循

循环流化床锅炉的优缺点

就是在鼓泡床锅炉(沸腾炉)的基础上发展起来的,因此鼓泡床的一些理论与概念可以用于循环流化床锅炉。但就是又有很大的差别。早期的循环流化床锅炉流化速度比较高,因此称作快速循环循环床锅炉。快速床的基本理论也可以用于循环流化床锅炉。鼓泡床与快速床的基本理论已经研究了很长时间,形成了一定的理论。要了解循环流化床的原理,必须要了解鼓泡床与快速床的理论以及物料从鼓泡床→湍流床→快速床各种状态下的动力特性、燃烧特性以及传热特性。 一、循环流化床锅炉的优点。 1.燃料适应性广,这就是循环流化床锅炉的重要优点。循环流化 床锅炉既可燃烧优质煤,也可燃烧劣质燃料,如高灰煤、高硫煤、高硫高灰煤、高水分煤、煤矸石、煤泥,以及油页岩、泥煤、炉渣、树皮、垃圾等。她的这一优点,对充分利用劣质燃

料具有总大意义。 2.燃烧效率高。国外循环流化床锅炉的燃烧效率一般髙达99%。 我国自行设计的循环流化床锅炉燃烧效率髙达95%-99%。该锅炉燃烧效率的主要原因就是燃烧尽率高。运行锅炉的实例数据表明,该型锅炉的炉渣可燃物图仅有1%-2%,燃烧优质煤时,燃烧效率与煤粉炉相当,燃烧劣质煤就是,循环流化床锅炉的燃烧率比煤粉炉约高5%。 3.燃烧污染排放量低。想循环流化床内直接加入石灰石,白云石 等脱硫剂,可以脱去燃料燃烧生成的SO2。根据燃料中所含的硫量大小确定加入脱硫剂量,可达到90%的脱硫效率。循环硫化床锅炉NOχ的生成量仅有煤粉炉的1∕4-1/3。标准状态下NOχ的排量可以控制在300mg/m3以下。因此循环流化床就是一种经济、有效、低污染的燃烧技术。与煤粉炉加脱硫装置相比,循环流化床锅炉的投资可降低1∕4-1/3。 4、燃烧强度高,炉膛截面积小炉膛单位截面积的热负荷高就是 循环流化床锅炉的另一主要优点。其截面热负荷约为3、5~4、5MW/m2,接近或高于煤粉炉。同样热负荷下鼓泡流化床锅炉需要的炉膛截面积要比循环流化床锅炉大2~3倍。 5、负荷调节范围大,负荷调节快 当负荷变化时,只需调节给煤量、空气量与物料循环量,不必 像鼓泡流化床锅炉那样采用分床压火技术。也不象煤粉锅炉 那样,低负荷时要用油助燃,维持稳定燃烧。一般而言,循环

循环流化床锅炉系统流程

循环流化床锅炉地系统流程 一、.概述 锅炉采用单锅筒横置式,单炉膛自然循环,全悬吊结构,全钢架“∩”布置.运转层标高8.5m,炉膛采用膜式水冷壁,锅炉中部是汽冷旋风分离器,尾部竖井烟道布置了多组蛇形管受热面和锅炉包覆管受热面及一、二次风空气预热器.b5E2RGbCAP 在燃烧系统中,给煤机将煤送入落煤管进入炉膛,锅炉燃烧所需空气分别由一、二风机提供.一次风机送出地空气经一次风空气预热器预热后由左右两侧风道引入炉下左右水冷风室,通过水冷布风板上地风帽进入燃烧室.二次风机送出地风经二次风空气预热器预热后,通过分布在炉膛前后墙上地二次风咀进入炉膛,补充空气,加强扰动与混合.燃料和空气在炉膛内流化状态下掺混燃烧,并与受热面进行热交换.炉膛内地烟气<携带大量未燃尽碳颗粒)在炉膛上部进一步燃烧放热.离开炉膛并夹带大量物料地烟气经蜗壳式汽冷旋风分离器之后,绝大部分物料被分离出来,经返料器返回炉膛,实现循环燃烧.分离后地烟气经转向室、高温过热器、低温过热器、省煤器、一、二次风空气预热器由尾部烟道排出.p1EanqFDPw 二、锅炉结构 1、炉膛水冷壁系统 炉膛由膜式水冷壁组成,保证了炉膛地严密性.炉膛横截面为4511×9082mm,炉顶水冷标高36152.5mm<水冷中心线标高),膜式水冷壁由Φ60×6锅炉管和6×20.5m m扁钢焊制而成,管节距为

80.5mm;在炉膛地左右中心线处靠近前部水冷壁设置水冷屏,炉膛水冷壁<屏)通过水冷上集箱<包括水冷屏上集箱)由吊杆悬挂于钢架顶部地框架上.DXDiTa9E3d 水冷壁集箱采用Φ273×35锅炉管. 水冷壁下部焊有销钉用以固定高强度耐高温防磨耐火材料.保证该区域水冷壁安全可靠地工作. 水冷壁向下弯制构成水冷风室,水冷布风板. 水冷壁上设置测量孔、检修孔、观察孔等. 水冷壁上地最低点设置放水排污阀.膜式水冷壁外侧设置数层刚性梁,保证了整个炉膛有足够地刚性.在锅炉炉膛外侧布置止晃装置.RTCrpUDGiT 由4根Φ325×25、1根Φ219×20地集中下降管和28根下降支管,及32根汽水引出管组成5个回路地水冷循环系统.5PCzVD7HxA 5个回路分前墙1个,左右侧墙各1个,后墙1个,水冷屏1个.2、锅筒及锅筒内部设备 锅筒内径Φ1600mm,壁厚100mm,材料为欧标容器板,总长约12500mm,重约53.5吨,总重约67.0吨.jLBHrnAILg 锅筒正常水位在锅筒中心线下180mm,最高、低安全水位偏离锅筒正常水位±50mm. 锅筒内部装置由旋风分离器、给水清洗装置、顶部均流孔板、连续排污管等组成.旋风分离器直径Φ290mm,共36只.xHAQX74J0X

循环流化床锅炉炉内喷钙工艺介绍样本

循环流化床锅炉炉内喷CaO尾部增湿脱硫工艺介绍一?工艺概述 循环流化床燃烧技术是一种新型有效的燃烧方式,它具有和煤粉炉相当的燃烧效率,而且其燃烧特点十分适用于炉内喷钙脱硫,原因如下:1燃烧温度低(85CTC—900°C),正处于炉内脱硫的最佳温度段, 因而在不需要增加设备和较低的运行费用下就能较清洁地利用高硫煤。 2.烟气分离再循环技术的应用,相当于提高了脱硫剂在床内的停留时间,也提高了炉内脱硫剂的浓度,同时床料间,床料与床壁间的磨损、撞击使脱硫剂表面产物层变薄或使脱硫剂分裂,有效地增加了脱硫剂的反应比表⑥积,使脱硫剂的利用率得到了相应的土曰吉 JAEfoJo 理论上一般认为,在850°C_900°C的炉膛温度,Ca/S摩尔比为1.5一2.5,石灰石的粒度小于2mm(—般为0.1_0.3mm)时,炉内脱硫效率可达85一90%。可是循环流化床锅炉实际运行中,还存在着—些问题,使得脱硫效率达不到理论脱硫效率,具体原因主要有以下四点: 1 ?国外的循环流化床锅炉循环倍率一般为50 80,而国内一般低于30,低循环倍率下达到高脱硫效率是不现实的。 2.为了降低飞灰的含碳量,提高燃烧效率及热效率,实际运行时往往适当提高锅炉的燃烧温度,燃烧温度提高使得炉内脱离了最佳的脱硫温度范围,使炉内脱硫效率降低。 3.当前国内循环流化床锅炉的脱硫方法,大部分是采用煤直接掺混石灰石的做法,掺混不均匀使石灰石无法完全发挥功效。

4.在炉内硫酸盐化过程中,由于石灰颗粒孔隙的堵塞,阻碍了脱硫剂与二氧化硫接触。 以上原因使得国内循环流化床锅炉炉内喷钙脱硫效率仅为50% 左右。 由于循环流化床锅炉炉内喷钙的高钙硫比和低脱硫效率,使得飞灰中含有大量的未被利用的氧化钙,直接排放造成脱硫剂的巨大浪费,使运行成本增高。 鉴于以上因素,为了进一步提高循环流化床锅炉炉内喷钙的脱硫效率和脱硫剂利用率,能够采取四个措施。 1 ?以生石灰粉(CaO)代替石灰石粉(CaCO3)喷入炉内。 是否有必要?能够产生多大的功效?增加运行成本? 当前,炉内喷钙的脱硫剂大多采用石灰石微粒,石灰石微粒在炉内熾烧的过程中,其中所含的杂质包裹在生成的CaO表直,阻碍CaO与SO2的接触,即使炉内存在着较强的物料碰撞磨损,也无法有效地清除杂质,对脱硫效率和脱硫剂的利用率有较大的负廁影响。采用生石灰粉代替石灰石粉喷入炉内,此冋题将得到很好的解决。 {” CaCOs的锻烧分解温度与炉内CO2的浓度有关,一般炉内 C02的浓度为14%,此时CaCOs的博烧分解温度为765 C o " ”采用压力消化石灰代替石灰石,钙硫比为1.5时,脱硫效率达到80%(煤粉炉)。这是因为用加压水化,在快速缺压出料中,水合物爆裂,形成高速分散的微粒,而且微粒具有较大的比表面积,有利于钙硫的接触。罔” }

循环流化床锅炉的历史、现状及发展趋势

循环流化床锅炉的历史、现状及发展趋势 一、循环流化床锅炉的发展历程" 新一代的循环流化床真正得到应用始于七十年代末八十年代初。1979年,芬兰奥斯龙(Ahlsltrom)公司开发的世界首台20t/h 商用循环流化床锅炉投入运行,随后,1982年,德国鲁奇(Lurgi)公司开发的世界上首台用于产汽与供热的循环流化床(84MWth)建成投运。至此,循环流化床技术开始迅速发展。2009年,即发展到460MW 超临界参数锅炉。可见这种技术的巨大经济效益、环保效益,以及各国政府对此项技术的重视。 我国对循环流化床锅炉的研究方面,虽然起步较晚,但政府高度重视,所以,发展非常迅速。1987年,中科院工程热物理所与原开封锅炉厂联合,生产出中国第一台循环流化床锅炉,并在原开封中药厂(现在的天地药业)投入运行,取得了循环流化床锅炉在中国零的突破。20多年后的今天,该台锅炉还在稳定运行,对该企业的发展起到了巨大的推动作用。1987年之后,几乎所有与热工程有关的科研院校,如清华大学、浙江大学、华中理工大学、西安交通大学和西安热工研究院等,都投入到循环流化床锅炉额研发当中,各锅炉制造厂先后开发出20t/h、35t/h、65t/h、75t/h、130t/h及220t/h等中、小型循环流化床锅炉,通过多年的发展,我国在中、小型循环流化床技术方面已经相当成熟。并相继开发出具有自主知识产权的100MW、135MW、150MW及200MW等级的循环流化床锅炉,并在全国范围内大量投运。

从中可以看出,循环流化床锅炉,是中国锅炉行业的发展趋势,其他类型的锅炉,必将被循环流化床锅炉所取代。对此,国家有较为明确的表述。《中华人民共和国国民经济和社会发展第十一个五年规划纲要》明确要求:“低效燃煤工业锅炉(窑炉)改造---采用循环流化床、粉煤燃烧等技术改造或替代现有中小燃煤锅炉(窑炉)”。 二、我国能源的基本构成决定了其地位 我国是产煤大国,也是用煤大国,一次能源结构中,煤炭占70%左右,优中质煤、劣质煤均丰富。全国煤产量的25%是含硫量超过2%的高硫煤。优质煤集中在华北、西北,劣质煤多分布在中南、西南地区。目前积存下来的煤矸石达14亿吨,并以每年6千到7千万吨的数量增加。与此同时,因煤燃烧每年有大量的SO2和NOX排入大气,造成严重的环境污染。另一方面,由于中国仍然是一个发展中国家,其经济条件决定它不能保证所有电站都能安装占电站总投资的1/5到1/4的昂贵的除硫及除硝设备,结果导致了严重的大气污染。因此发展高效、低污染的清洁燃烧技术是当今社会持续发展的必然要求。 三、“循环”“流化床”的基本含义 燃料随床料在炉内多次循环,反复燃烧。这是“循环”二字的来历。 煤预先经破碎加工成一定大小的颗粒(一般为<8mm)而臵于布风板上,空气通过布风板由下向上吹送,当气流速度增大并达到某一较高值时,气流对煤粒的推力恰好等于煤粒的重力,煤粒开始飘浮

循环流化床锅炉司炉理论知识题库

循环流化床锅炉司炉理论知识题库 一、填空: 1、循环流化床锅炉简称CFB锅炉。 *2、型号YG75-5.29/M12的锅炉,其额定蒸发量75t;其额定蒸汽压力5.29MPa。 3、流体的体积随它所受压力的增加而减小;随温度的升高而增大。 4、1工程大气压=9.80665×104Pa。 5、流体的流动性是流体的基本特性。 6、流体是液体和气体的总称。 7、管道产生的阻力损失分为沿程阻力损失和局部阻力损失两种。 8、管道内流体的流动状态分为层流和紊流两种。 9、锅炉受热面表面积灰或结渣,会使管内介质与烟气热交换时的传热量减小,因为灰渣的热导率小。 10、朗肯循环是由等压加热、绝热膨胀、定压凝结放热、等熵压缩四个过程组成。 11、液体在管内流动,管子内径增大时,流速降低。 12、标准状态是指压力为1物理大气压、温度为0℃的状态。 13、比热是指单位质量的物质温度升高1℃所吸收或放出的热量。 14、热电偶分为普通型热电偶和铠装热电偶两种。 15、热电阻温度计是应用金属导体的电阻随温度变化的规律制成的。 16、饱和温度和饱和压力是一一对应的,饱和压力越高,其对应的饱和温度越高。若水温低于水面上压力所对应的饱和温度,这样的水称为不饱和水;若水温高于水面上压力所对应的饱和温度,这样的水称为过热水。 17、水蒸汽凝结放热,其温度保持不变,主要放出汽化潜热。 18、蒸汽锅炉按其用途可分为电站锅炉和工业锅炉。 19、锅炉设备包括本体和辅助设备两大部分。 20、火力发电厂生产过程的三大设备是锅炉、汽轮机和发电机。 *21、燃料在炉内的四种主要燃烧方式是层状燃烧、悬浮燃烧、旋风燃烧和流化燃烧。 22、煤的成分分析有元素分析和工业分析两种方法。 23、煤的发热量的高低是由碳、氢元素成分决定的。 24、煤的元素分析成分中的可燃元素是碳、氢、硫。 25、根据燃料中的挥发分含量,将电厂用煤划分为无烟煤、烟煤和褐煤。 26、煤灰的熔融性常用三个温度表示它们是变形温度、软化温度、融化温度。在通常情况下控制炉膛出口烟温比变形温度低50-100℃。 27、氢是煤中单位发热量最高的元素,硫是煤中可燃而又有害的元素。 28、灰分是煤中的杂质成分,当其含量高时,煤的发热量降低燃烧效率降低。*29、发生燃烧必须同时具备三个条件可燃物质、氧化剂和着火热源。 30、单位数量的燃料完全燃烧时所需的空气量称为理论空气量。 31、实际空气量与理论空气量之比值称为过量空气系数。 *32、煤在炉内的燃烧过程大致可分为三个阶段着火前的准备阶段、燃烧阶段和燃尽阶段。 *33、所谓锅炉热效率,就是锅炉的有效利用热量占输入锅炉热量的百分数。34、计算锅炉热效率有两种方法,即正平衡法和反平衡法,火力发电厂一般采用

相关文档
最新文档