利用导数解决生活中的优化问题

利用导数解决生活中的优化问题
利用导数解决生活中的优化问题

利用导数解决生活中的优化问题

导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。

一.解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.

二.利用导数解决优化问题的基本思路:

三、应用举例

例1(体积最大问题)用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 解:设长方体的宽为(m)x ,则长为2(m)x ,高为

181234.53(m)042x h x x -??==-<< ??

?.故长方体的体积为 22323()2(4.53)96(m )02V x x x x x x ??=-=-<<

???

. 从而2()181818(1)V x x x x x '=-=-. 令()0V x '=,解得0x =(舍去)或1x =,因此1x =.

当01x <<时,()0V x '>;当312

x <<时,()0V x '<. 故在1x =处()V x 取得极大值,并且这个极大值就是()V x 的最大值.

从而最大体积233

(1)91613(m )V V ==?-?=,此时长方体的长为2m ,高为1.5m . 答:当长方体的长为2m ,宽为1m ,高为1.5m 时,体积最大,最大体积为33m . 点评:用导数来解决实际问题时,一般首确定自变量,选定了自变量,要搞清自变量的范围,再列出关系式,对关系式进行求导,最后求出最值来。

例2(帐篷设计问题)请您设计一个帐篷。它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥。试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐

篷的体积最大?

解:设OO1为x m,则由题设可得正六棱锥底面边长为(单位:m

=于是底面正六边形的面积为

22

62)

x x

==+- m2

帐篷的体积为23

1

()2)(1)112)

3

V x x x x x x

??

=+--+=+-

??

??

m3

求导数,得2

()3)

2

V x x

'=-令()0

V x

'=解得x=-2(不合题意,舍去),x=2.当1

V x

'>,V(x)为增函数;当2

V x

'<,V(x)为减函数。所以当x=2时,V(x)最大。即当OO1为2m时,帐篷的体积最大。

点评:本小题主要考查利用导数研究函数的最大值和最小值的基础知识,以及运用数学知识解决实际问题的能力。求解关键是设法构建函数关系,将实际问题如何转化为数学问题,再利用导数求解.

例3(瞬时速度问题)若已知某质点的运动方程为S(t)=1

2+

t-at,要使在t∈[0, +∞]上的每一时刻的瞬时速度的绝对值都不大于1,求实数a的取值范围。

解:S’(t)=a

t

t

-

+1

2

. ∵| S’(t)|≤1,∴|

1

|

2

a

t

t

-

+

≤1,

?

?

?

?

?

?

?

-

-

+

-

+

1

1

1

1

2

2

a

t

t

a

t

t

,即

?

?

?

?

?

?

?

+

+

-

+

.1

1

,1

1

2

2

t

t

a

t

t

a

当t∈[0,+∞]时,(1

1

2

+

+

t

t

)min=1,∴a≤1.

当t +∞时,1

1

2

+

t

t

,且

1

2+

t

t

连续递增,所有值都小于1,

∴a≥0. 故实数a的取值范围是0≤a≤1。

点评:①质点运动方程S(t)的导数S’(t)的物理意义就是质点在时刻t的瞬时速度. ②利用导数的物理意义列出不等式,根据不等式在t∈[0, +∞﹞上恒成立,求出a的取值范围.

例4(容器的容积最大)用长为90cm,宽为48cm的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边形翻转?

90角,再焊接而成.问该容器的高为多少时,容器的容积最大?最大容积是多少?

解:设容器高为xcm,容器的容积为)

(x

V cm3,则

)

(x

V= x(90-2x)(48-2x) = 4x3-276x2+4320x (0<x<24).

求)(x V '=12x 2-552x +4320 = 12(x 2-46x +360) = 12(x -10)(x -36).

令)(x V '= 0,得x 1= 10,x 2= 36 (舍去),

当0<x <10 时,)(x V '>0,那么)(x V 为增函数;

当10<x <24 时,)(x V '<0,那么)(x V 为减函数.

因此,在定义域(0,24)内,函数)(x V 只有当x = 10时取得最大值,其最大值为: )10(V = 10×(90-20)(48-20) = 19600(cm 3).

所以当容器的高为10cm 时,容器的容积最大,最大容积为19600cm 3.

点评:函数的应用题主要存在于用料最省、造价最低、利润最大等最优化问题中,由于函数的应用性问题是一种最广泛,实用性又极强的问题,并且利用导数运算工具简化了运算量,所以函数应用题已成为高考的一大热点.

例5(水库的蓄水量问题)水库的蓄水量随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年数据,某水库的蓄水量(单位:亿立方米)关于t 的近似函数关系式为

124(1440)50,010,()4(10)(341)50,1012.

x t t e t V t t t t ??-+-+<≤=??--+<≤?

(Ⅰ)该水库的蓄求量小于50的时期称为枯水期.以1i t i -<<表示第1月份(1,2,,12i =L ),同一年内哪几个月份是枯水期?

(Ⅱ)求一年内该水库的最大蓄水量(取 2.7e =计算).

解:(Ⅰ)①当010t <≤时,124()(1440)5050x V t t t e =-+-+<,化简得

214400t t -+>,

解得4t <,或10t >,又010t <≤,故04t <<.

②当1012t <≤时,()4(10)(341)5050V t t t =--+<,化简得(10)(341)0t t --<, 解得41103

t <<,又1012t <≤,故1012t <≤. 综合得04t <<,或1012t <≤;

故知枯水期为1月,2月,3月,11月,12月共5个月.

(Ⅱ)(Ⅰ)知:V (t )的最大值只能在(4,10)内达到.

由V ′(t )=),8)(2(41)42341(41241-+-=++-t t c t t c t t

令V ′(t )=0,解得t=8(t=-2舍去).

当t 变化时,V ′(t ) 与V (t )的变化情况如下表:

由上表,V (t )在t =8时取得最大值V (8)=8e 2+50-108.52(亿立方米).

故知一年内该水库的最大蓄水量是108.32亿立方米

点评:本题以水库蓄水为背景,考查了函数、导数和不等式等基本知识,同时还考查了运用导数知识求最值和综合运用数学知识解决生产生活实际问题的能力.

例6(磁盘的最大存储量问题)计算机把数据存储在磁盘上。磁盘是带有磁性介质的圆盘,并有操作系统将其格式化成磁道和扇区。磁道是指不同半径所构成的同心轨道,扇区是指被同心角分割所成的扇形区域。磁道上的定长弧段可作为基本存储单元,根据其磁化与否可分别记录数据0或1,这个基本单元通常被称为比特(bit )。

为了保障磁盘的分辨率,磁道之间的宽度必需大于m ,每比特所占用的磁道长度不得小于n 。为了数据检索便利,磁盘格式化时要求所有磁道要具有相同的比特数。

问题:现有一张半径为R 的磁盘,它的存储区是半径介于r 与R 之间的环形区域.

(1)是不是r 越小,磁盘的存储量越大?

(2)r 为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?

解:由题意知:存储量=磁道数×每磁道的比特数。

设存储区的半径介于r 与R 之间,由于磁道之间的宽度必需大于m ,且最外面的磁道

不存储任何信息,故磁道数最多可达R r m

-。由于每条磁道上的比特数相同,为获得最大存储量,最内一条磁道必须装满,即每条磁道上的比特数可达2r n

π。所以,磁盘总存储量()f r =R r m -×2r n

π2()r R r mn π=-. (1)它是一个关于r 的二次函数,从函数解析式上可以判断,不是r 越小,磁盘的存储量越大.

(2)为求()f r 的最大值,计算()0f r '=.

()2()2f r R r mn

π'=-,令()0f r '=,解得2R r =, 当2R r <时,()0f r '>;当2

R r >时,()0f r '<. 因此2

R r =时,磁盘具有最大存储量。此时最大存储量为2

24R mn π。 例7(饮料瓶大小对饮料公司利润的影响问题)

(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?

(2)是不是饮料瓶越大,饮料公司的利润越大?

【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是2

0.8r π分,其中 r 是瓶子的半径,单位是厘米。已知每出售1 mL 的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm

问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?

(2)瓶子的半径多大时,每瓶的利润最小?

解:由于瓶子的半径为r ,所以每瓶饮料的利润是 ()332240.20.80.8,0633r y f r r r r r πππ??==?-=-<≤ ???

令()2

0.8(2)0f r r r π'=-= 解得 2r =(0r =舍去) 当()0,2r ∈时,()0f r '<;当()2,6r ∈时,()0f r '>.

当半径2r >时,()0f r '>它表示()f r 单调递增,即半径越大,利润越高;

当半径2r <时,()0f r '< 它表示()f r 单调递减,即半径越大,利润越低.

(1)半径为2cm 时,利润最小,这时()20f <,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值.

(2)半径为6cm 时,利润最大.

换一个角度:如果我们不用导数工具,直接从函数的图像上观察,会有什么发现?

可根据单调区间画出函数的大致图像,由图像知:当3r =时,()30f =,即瓶子的半径为3cm 时,饮料的利润与饮料瓶的成本恰好相等;当3r >时,利润才为正值.

当()0,2r ∈时,()0f r '<,()f r 为减函数,其实际意义为:瓶子的半径小于2cm 时,瓶子的半径越大,利润越小,半径为2cm 时,利润最小.

欢迎您的下载,

资料仅供参考!

致力为企业和个人提供合同协议,策划案计划书,学习资料等等

打造全网一站式需求

导数在解决实际问题中的应用

导数在解决实际问题中的应用 导数知识是学习高等数学的基础, 它在自然科学、工程技术及日常生活等方面都有着广泛的应用.导数是从生产技术和自然科学的需要中产生的, 同时, 又促进了生产技术和自然科学的发展, 它不仅在天文、物理、工程领域有着广泛的应用, 而且在日常生活及经济领域也是逐渐显示出重要的作用.导数是探讨数学乃至自然科学的重要的、有效的工具之一, 它也给出了我们生活中很多问题的答案.诸如生活中的有关环境问题、工程造价最省、容积最大、边际效益等, 本文将介绍如何将生活中的有关数学问题转化为相关的导数问题来求解, 以此说明如何应用所学数学知识灵活地应用于生活. 类型一:环境问题 例1 烟囱向其周围地区散落烟尘造成环境污染, 已知落在地面某处的烟尘浓度与该处到烟囱的距离的平方成反比, 而与该烟囱喷出的烟尘量成正比.现有A 、B 两座烟囱相距20km, 其中B 座烟囱喷出的烟尘量是 A 的8 倍, 试求出两座烟囱连线上的点C, 使该点的烟尘浓度最低. 分析由题意知要确定某点的烟尘浓度最低,显然其烟尘浓度源自这两座烟囱, 与其距离密切相关, 因此可考虑先设出与某个烟囱的距离, 从而表示出相应的烟尘浓度, 再确定其最小值即可. 解:不妨设A 烟囱喷出的烟尘量是1, 而B 烟囱喷出的烟尘量为8, 设AC=x ( 其中00) , '6(350)y k x =- 令y ′=0 503 x = .因为当50(0,)3 x ∈)时, y ′<0; 当50(,20)3 x ∈时, y ′>0, 故当50=3 x 时, y 取得最小值, 即当C 位于距点A 为503km 时, 使该点的烟尘浓度最低. 评注:在经济高速发展的同时, 人们也越来越关心我们赖以生存的环境质量, 这提示我们不能仅一味地追求经济效益, 同时应当注意保护环境. 类型二:工程造价问题 例2 如图所示, 某地为了开发旅游资源, 欲修建一条连接风景点P 和居民区O 的公路, 点P 所在的山坡面与山脚所在水平面α所成的二面角为θ( 0°<θ<90°) , 且sin θ= 25 , 点P 到平面α的距离PH=0.4( km) .沿山脚原有一段笔直的公路AB 可供利用.从点O 到山脚修路的造价为a 万元/km, 原有公路改建费用为2 a 万元/km.当山坡上公路长度为l km( 1≤l ≤2) 时, 其造价为( l2+1) a 万元.已知OA ⊥AB, PB ⊥AB, AB=1.5( km) , OA=3 km. ( 1) 在AB 上求一点D, 使沿折线PDAO 修建公路的总造价最小; ( 2) 对于( 1) 中得到的点D, 在DA 上求一点E,使沿折线PDEO 修建公路的总造价最小; ( 3) 在AB 上是否存在两个不同的点D ′、E ′, 使沿折线PD ′E ′O 修建公路的总造价小于( 2) 中得到

利用导数解决生活中的优化问题

利用导数解决生活中的优化问题 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。 一.解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 二.利用导数解决优化问题的基本思路: 三、应用举例 例1(体积最大问题)用长为18m 的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少? 解:设长方体的宽为(m)x ,则长为2(m)x ,高为 181234.53(m)042x h x x -??==-<< ?? ?.故长方体的体积为 22323()2(4.53)96(m )02V x x x x x x ??=-=-<< ??? . 从而2()181818(1)V x x x x x '=-=-. 令()0V x '=,解得0x =(舍去)或1x =,因此1x =. 当01x <<时,()0V x '>;当312 x <<时,()0V x '<. 故在1x =处()V x 取得极大值,并且这个极大值就是()V x 的最大值. 从而最大体积233 (1)91613(m )V V ==?-?=,此时长方体的长为2m ,高为1.5m . 答:当长方体的长为2m ,宽为1m ,高为1.5m 时,体积最大,最大体积为33m . 点评:用导数来解决实际问题时,一般首确定自变量,选定了自变量,要搞清自变量的围,再列出关系式,对关系式进行求导,最后求出最值来。 例2(帐篷设计问题)请您设计一个帐篷。它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥。试问当帐篷的顶点O 到底面中心1o 的距离为多少时,帐

1最优化问题与数学预备知识

第一章 最优化问题与数学预备知识 本章主要内容:最优化的概念 经典最优化中两种类型的问题——无约束极值问 题、具有等式约束的极值问题的求解方法 最优化问题的模型及 分类 向量函数微分学的有关知识 最优化的基本术语 教学目的及要求:理解最优化的概念,掌握经典最优化中两种类型的问题——无 约束极值问题、具有等式约束的极值问题的求解方法,了解最 优化问题的模型及分类,掌握向量函数微分学的有关知识,了 解最优化的基本术语. 教学重点:向量函数微分学的有关知识. 教学难点:向量函数微分学的有关知识. 教学方法:启发式. 教学手段:多媒体演示、演讲与板书相结合. 教学时间:2学时. 教学内容: §1.1 模型与实例 无约束最优化问题 12min (),(,,,)T n n f x x x x x R =∈ . 约束最优化问题({|,()0,1,2,,;()0,1,2,,}n i j S x x R g x i m h x j l ∈≥=== ) min ();.f x x S ??∈?s.t. 即 m i n ();()0,1,2,,,()0,1,2,,.i j f x g x i m h x j l ??≥=??==? s.t. 其中()f x 称为目标函数,12,,,n x x x 称为决策变量,S 称为可行域, ()0(1,2,,),()0(1,2,,)i j g x i m h x j l ≥=== 称为约束条件. 例1 (海洋运输问题)某航运公司承接了一项将客户停放在港口等待运输的N 种货物运往目的地的业务.设航运公司运输单位货物i 的收益为i c (元/吨),货船能够装载的货物的重量限制为W (吨),相应的容积限制为V (立方米),设i a 是单位货物i 所占的容积(立方米/吨),i b 是货物i 可提供的最大数量(吨), i w 是货物i 的日平均装船速度(吨/日) ,1q 为货船的日泊位费(元/日),2q 为货船在海上航行时的日费用(元/日),d 为航行距离(公里),v 为航行速度(公里/日).问如何确定货船的装载方案,使航运公司获利最大?

2012高考数学热点考点精析:10导数在研究函数中的应用与生活中的优化问题举例(新课标地区)

考点10 导数在研究函数中的应用 与生活中的优化问题举例 一、选择题 1.(2011·安徽高考文科·T10)函数()()2 1n f x ax x =-在区间[]0,1上的 图象如图所示,则n 可能是( ) (A )1 (B )2 (C )3 (D )4 【思路点拨】 代入验证,并求导得极值,结合图象确定答案. 【精讲精析】选A. 代入验证,当n=1时,)2()1()(232x x x a x ax x f +-=-=,则 )143()(2+-='x x a x f ,由)143()(2+-='x x a x f =0可知,1,3 1 21==x x ,结合图 象可知函数应在(0,31)递增,在) (1,31递减,即在3 1 =x 处取得最大值,由 ,2 1 )311(31)31(2=-??=a f 知a 存在. 2.(2011·辽宁高考理科·T11)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,2)(>'x f ,则f (x )>2x+4的解集为 (A )(-1,1) (B )(-1,+∞) (C )(-∞,-1) (D )(-∞,+∞) 【思路点拨】先构造函数)42()()(+-=x x f x g ,求其导数,将问题转化为求)(x g 单调性问题即可求解.

【精讲精析】选B.构造函数)42()()(+-=x x f x g ,则 =-)1(g 022)42()1(=-=+---f , 又因为2)(>'x f ,所以02)()(>-'='x f x g ,可知)(x g 在R 上是增函数,所以)42()(+>x x f 可化为0)(>x g ,即 )1()(->g x g ,利用单调性可知,1->x .选B. 3.(2011·安徽高考理科·T10)函数()()1n m f x ax x =-在区间[]0,1上的 图象如图所示,则,m n 的值可能是 (A )1,1m n == (B) 1,2m n == (C) 2,1m n == (D) 3,1m n == 【思路点拨】本题考查函数与导数的综合应用,先求出)(x f 的导数,然后根据函数图像确定极值点的位置,从而判断m,n 的取值. 【精讲精析】选B.函数()()1n m f x ax x =-的导数 11()()(1)(),m n m f x m n ax x x m n --'=-+-- +则)(x f '在),0(n m m +上大于0,在 )1,(n m m +上小于0,由图象可知极大值点为31,结合选项可得m=1,n=2. 二、填空题 4.(2011·广东高考理科·T12)函数32()31f x x x =-+在x = 处取得极小值. 【思路点拨】先求导函数的零点,然后通过导数的正负分析函数的增减情况,从而得出取得极值的时刻. 【精讲精析】答案:2 由063)(2=-='x x x f 解得0=x 或2=x ,列表如下:

生活中的优化问题举例

高二数学◆选修2-2◆导学案编写:刘方贵张晓丽审核:仇国宗陈兆平袁全升2011-03-21 1 建立数学模型§1.4生活中的优化问题举例 教学目标: 1.使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作 用 2.提高将实际问题转化为数学问题的能力 教学重点:利用导数解决生活中的一些优化问题. 教学难点:利用导数解决生活中的一些优化问题. 一.创设情景 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为 优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节, 我们利用导数,解决一些生活中的优化问题. 二.新课讲授 导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有 以下几个方面: 1、与几何有关的最值问题; 2、与物理学有关的最值问题; 3、与利润及其成本有关的最值问题; 4、效率最值问题。 解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函 数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是 建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决, 在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路: 三.典例分析 例1.海报版面尺寸的设计学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图 1.4-1所示的竖向张贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。 如何设计海报的尺寸,才能使四周空心面积最小? 本节课精华记录预习心得:解决数学模型 作答用函数表示的数学问题 优化问题用导数解决数学问题 优化问题的答案

导数在实际生活中的应用

导数在实际生活中的应用 导数是近代数学的重要基础,是联系初、高等数学的纽带,它的引入为解决中学数学问题提供了新的视野,是研究函数性质、证明不等式、探求函数的极值最值、求曲线的斜率和解决一些物理问题等等的有力工具。 导数知识是学习高等数学的基础,它是从生产技术和自然科学的需要中产生的,同时,又促进了生产技术和自然科学的发展,它不仅在天文、物理、工程领域有着广泛的应用。而且在工农业生产及实际生活中,也经常会遇到如何才能使“选址最佳”“用料最省”“流量最大”“效率最高”等优化问题。这类问题在数学上就是最大值、最小值问题,一般都可以应用导数知识得到解决。接下来就导数在实际生活中的应用略微讨论。 1.导数与函数的极值、最值解读 函数的极值是在局部范围内讨论的问题,是一个局部概念,函数的极值可能不止一个,也可能没有极值。 函数()y f x =在点0x 处可导,则'0()0F x =是0x 是极值点的必要不充分条件,但导数不存在的点也有可能是极值点。 最大值、最小值是函数对整个定义域而言的,是整体范围内讨论的问题,是一个整体性的概念,函数的最大值、最小值最多各有一个。函数最值在极值点处或区间的断点处取得。 2.导数在实际生活中的应用解读 生活中的优化问题:根据实际意义建立好目标函数,体会导数在解决实际问题中的作用。 例1:在边长为60cm 的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少? 思路:设箱底边长为x cm ,则箱高602 x h -=cm ,得箱子容积V 是箱底边长x 的函数:23 2 60()(060)2x x r x x h x -==<<,从求得的结果发现,箱子的高恰好是原正方形边长的

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ (若是存在性问题,那么最大变最小,最小变最大) 1.对于单变量的恒成立问题 如:化简后我们分析得到,对[],x a b ?∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ?∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题 如:化简后我们分析得到,对[]12,,x x a b ?∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ?∈,[]2,x c d ?∈使12()()f x g x ≥,那么只需 min min ()()f x g x ≥ 如:化简后我们分析得到,[]1,x a b ?∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话(双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题(201 4.03苏锡常镇一模那题特别典型) 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,(甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是 ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是1 1,,e e 之类) ,所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一.二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知()f x =R ,求a 的取值范围 思考:① 引入定义域(非R ) ②参数在二次项,就需考虑是否为0 ③引入高次(3次,4次,1 x ,ln x ,x e 等等) ④引入2a ,3a 等项(导致不能分离变量)

最优化方法,汇总

最优化方法结课作业 年级数学121班 学号201200144209 姓名李强

1、几种方法比较 无约束优化:不对定义域或值域做任何限制的情况下,求解目标函数的最小值。这是因为实际应用中,许多情形被抽象为函数形式后均为凸函数,对于凸函数来说局部最小值点即为全局最小值点,因此只要能求得这类函数的一个最小值点,该点一定为全局最小值。(直接法:又称数值方法,它只需计算目标函数驻点的函数数值,而不是求其倒数,如坐标轮换法,单纯型法等。间接法:又称解析法,是应用数学极值理论的解析方法。首先计算出目标函数的一阶或一阶、二阶导数,然后根据梯度及海赛矩阵提供的信息,构造何种算法,从而间接地求出目标函数的最优解,如牛顿法、最速下降法共轭梯度法及变尺度法。)在优化算法中保证整体收敛的重要方法就是线搜索法与信赖域法,这两种算法既相似又有所不同。根据不同的线搜索准则就延伸出不同的线搜索算法,譬如比较常见和经典的最速下降法,牛顿法,拟牛顿法以及共辄梯度法等。 一维搜索又称线性搜索(Line Search),就是指单变量函数的最优化,它是多变量函数最优化的基础,是求解无约束非线性规划问题的基本方法之一。 一维搜索技术既可独立的用于求解单变量最优化问题,同时又是求解多变量最优化问题常用的手段,虽然求解单变量最优化问题相对比较简单,但其中也贯穿了求解最优化问题的基本思想。由于一维搜索的使用频率较高,因此努力提高求解单变量问题算法的计算效率具有重要的实际意义。 在多变量函数的最优化中,迭代格式Xk+1=Xk+akdk其关键就是构造搜索方向dk和步长因子ak 设Φ(a)=f(xk+adk) 这样从凡出发,沿搜索方向dk,确定步长因子ak,使Φ(a)<Φ(0)的问题就是关于步长因子a 的一维搜索问题。其主要结构可作如下概括:首先确定包含问题最优解的搜索区间,然后采用某种分割技术或插值方法缩小这个区间,进行搜索求解。 一维搜索通常分为精确的和不精确的两类。如果求得ak使目标函数沿方向dk达到极小,即使得f (xk+akdk)=min f (xk+ adk) ( a>0)则称这样的一维搜索为最优一维搜索,或精确一维搜索,ak叫最优步长因子;如果选取ak使目标函数f得到可接受的下降量,即使得下降量f (xk)一f (xk+akdk)>0是用户可接受的,则称这样的一维搜索为近似一维搜索,或不精确一维搜索,或可接受一维搜索。由于在实际计算中,一般做不到精确的一维搜索,实际上也没有必要做到这一点,因为精确的一维搜索需要付出较高的代价,而对加速收敛作用不大,因此花费计算量

高考数学(理)一轮复习检测:《导数在生活中的优化问题举例》

第3讲 导数在生活中的优化问题举例 1.从边长为10 cm ×16 cm 的矩形纸板的四角截去四个相同的小正方形,做成一个无盖的盒子,则盒子容积的最大值为( ) A .12 cm 3 B .72 cm 3 C .144 cm 3 D .160 cm 3 2.要制作一个圆锥形的漏斗,其母线长为20 cm ,要使其体积最大,则高为( ) A.33 cm B.10 33 cm C.16 33 cm D.20 33 cm 3.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为y =-13 x 3+81x -234,则使该生产厂家获得最大年利润的年产量为( ) A .13万件 B .11万件 C .9万件 D .7万件 4.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( ) A .f (0)+f (2)<2f (1) B .f (0)+f (2)≤2f (1) C .f (0)+f (2)≥2f (1) D .f (0)+f (2)>2f (1) 5.某厂生产某种产品x 件的总成本C (x )=1200+275 x 3(单位:万元),又知产品单价的平方与产品件数x 成反比,生产100件这样的产品单价为50万元,则产量定为( )元时总利润最大.( ) A .10 B .25 C .30 D .40 6.已知函数f (x )=13 x 3+ax 2-bx +1(a ,b ∈R )在区间[-1,3]上是减函数,则a +b 的最小值是( ) A.23 B.32 C .2 D .3 7.(2012年福建)已知f (x )=x 3-6x 2+9x -abc ,a 0;②f (0)f (1)<0;③f (0)f (3)>0;④f (0)f (3)<0. 其中正确结论的序号是( )

导数与函数的极值最值问题解析版

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步判断'()f x 在方程的根的左、右两侧值的符号; 第四步利用结论写出极值. 例1已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于() A .11或18B .11C .18D .17或18 【答案】C 【解析】 试题分析:b ax x x f ++='23)(2 ,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或? ??=-=33b a .?

当???=-=33b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值.?当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 () A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为函数x m x m x x f )1(2)1(2 1 31)(23-++-= 在)4,0(上无极值, 而()20,4∈,所以只有12m -=,3m =

3.4生活中的优化问题举例

二、预习内容 :生活中的优化问题,如何用导数来求函数的最小

二、学习过程 1.汽油使用效率最高的问题 阅读例1,回答以下问题: (1)是不是汽车速度越快,汽油消耗量越大? (2)“汽车的汽油使用效率最高”含义是什么? (3)如何根据图3.4-1中的数据信息,解决汽油的使用效率最高的问题? 2.磁盘最大存储量问题 阅读背景知识,思考下面的问题: 问题:现有一张半径为的磁盘,它的存储区是半径介于r与R的环形区域。(1)是不是r越小,磁盘的存储量越大? (2)r为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)? 3饮料瓶大小对饮料公司利润的影响 阅读背景知识,思考下面的问题: (1)请建立利润y与瓶子半径r的函数关系。 (2)分别求出瓶子半径多大时利润最小、最大。 (3)饮料瓶大小对饮料公司利润是如何影响的? 三、反思总结 通过上述例子,我们不难发现,解决优化问题的基本思路是:

收集一下各种型号打印纸的数据资料,并说明其中所蕴含的设计原理。【资料】打印纸型号数据(单位:厘米)

§3.4 生活中的优化问题举例教学目标: 1.要细致分析实际问题中各个量之间的关系,正确设定所求最大值或最小值的变量y 与自变量x ,把实际问题转化为数学问题,即列出函数解析式()y f x =,根据实际问题确定函数()y f x =的定义域; 2.要熟练掌握应用导数法求函数最值的步骤,细心运算,正确合理地做答. 重点:求实际问题的最值时,一定要从问题的实际意义去考察,不符合实际意义的理论 值应予舍去。 难点:在实际问题中,有()0f x '=常常仅解到一个根,若能判断函数的最大(小)值 在x 的变化区间内部得到,则这个根处的函数值就是所求的最大(小)值。 教学方法:尝试性教学 教学过程: 前置测评: (1)求曲线y=x 2+2在点P(1,3)处的切线方程. (2)若曲线y=x 3上某点切线的斜率为3,求此点的坐标。 【情景引入】 生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题 例1.汽油的使用效率何时最高 材料:随着我国经济高速发展,能源短缺的矛盾突现,建设节约性社会是众望所归。现实生活中,汽车作为代步工具,与我们的生活密切相关。众所周知,汽车的每小时耗油量与汽车的速度有一定的关系。如何使汽车的汽油使用效率最高(汽油使有效率最高是指每千米路程的汽油耗油量最少)呢? 通过大量统计分析,得到汽油每小时的消耗量 g(L/h)与汽车行驶的平均速度v (km/h )之间的函数关系g=f(v) 如图3.4-1,根据图象中的信息,试说出汽车的速度v 为多少时,汽油的使用效率最高? 解:因为G=w/s=(w/t)/(s/t)=g/v 这样,问题就转化为求g/v 的最小值,从图象上看,g/v

导数在解决实际问题中的应用

导数在解决实际问题中的应用 导数在实际生活中的应用主要是解决相关函数最大值、最小值的实际问题,主要有以下几个方面: 1、与几何相关的最值问题; 2、与物理学相关的最值问题; 3、与利润及其成本相关的最值问题; 4、效率最值问题。 解决实际问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相对应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 例1在边长为60 cm 的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少? 解法一:设箱底边长为x cm ,则箱高602x h -= cm ,得箱子容积 2 60) ( 322x x h x x V -== )600(<

x x x V 2)260()(-=)300(<

导数在解决实际问题中的应用.

导数在解决实际问题中的应用 导数在解决实际问题中的应用研究导数用到的主要工具是极限,其研究对象是函数——即导数主要是用极限的方法研究函数的,本文主要从基本概念入手条分缕析地介绍与之相关的知识与基本方法,对学习认识导数有现实的可行性。 一、 导数的背景 1、瞬时速度 设物体的运动规律是)(t s s =,则物体在t 到t t ?+这段时间内的平均速度为t t s t t s t s ?-?+=??)()(.如果t ?无限地趋近于零时,t s ??无限地趋近于某个常数a ,就说当t ?趋近于零时, t s ??的极限为a ,这时a 就是物体在时刻t 的瞬时速度 2、切线的斜率 已知函数)(x f y =的图象是曲线C ,点P ),(),,(00000y y x x Q y x ?+?+是曲线C 上的两点。当点Q 沿着曲线逐渐向P 点接近时,割线PQ 绕着点P 转动。当点Q 沿着曲线无限接近于点P ,即x ?趋向于零时,如果割线PQ 无限趋近于一个极限位置PT ,那么直线PT 叫做曲线在点P 处的切线。此时割线PQ 的斜率x y k PQ ??= 无限趋近于PT 的斜率k 。就说当x ?趋向于零时,割线PQ 的斜率x y k PQ ??= 的极限为k 。 3、边际问题 设C 是成本,q 是产量,成本与产量的函数关系式为C=C (q ).当产量为0q 时,产量变化q ?对成本的影响可用增量比q q C q q C q C ?-?+=??)()(00来刻画。如果q ?无限趋近于零时,q C ??无限趋近于常数A ,经济学上称A 为边际成本,它表明当产量为0q 时,增加单位产量需付出成本A. 二、 导数的概念 1、对于函数)(x f y =.如果自变量x 在0x 处有增量x ?,那么函数y 相应的有增量)()(00x f x x f y -?+=?.比值 x y ??就叫做函数)(x f y =在0x 到x x ?+0之间的平均变化率,即x x f x x f x y ?-?+=??)()(00.如果当0→?x 时,x y ??有极限,我们就说函数)(x f y =在点0x 处可导,并且把这个极限叫做)(x f 在点0x 处的导数 ,记作)(0'x f 或0|'x x y =,

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

最新导数的应用之优化问题

导数的应用之优化问 题

导数的综合应用--优化问题 广东省和平县福和高级中学高三数学组颜贞 1.知识与能力 通过用料最省,利润最高等优化问题,使学生体会导数在解决实际问题中的作用,并且会利用导数解决简单的实际生活优化问题。 2.过程与方法 让学生参与问题的分析,探究解决过程,体会数学建模,从而掌握用导数法解决优化问题的方法。 3.情感、态度与价值观 形成数学建模思想,培养学生应用数学意识,进一步体会导数作为解决函数问题的工具性。激发学生学习热情,培养学生解决问题的能力和创新能力. 4.教学重点和难点 优化问题的数学建模与求解方法的掌握. 上课内容详细分解: 一、复习导数作为工具的具体体现: 1.解决函数的单调性 2.解决函数在某一区间内的极值或最值 3.知识点的综合运用 二、提出本节课听课要求 1.深化理解导数作为工具的卓越表现力 2.掌握用导数法解决生活中优化问题的一般步骤 3.解决生活中优化问题时应注意的问题 三、回顾解决优化问题的一般常用方法 1.基本函数型(如二次函数型,指数对数型)

2.基本不等式型 3.线性规划型…. 最后提出本节课的目的:用导数法解决实际生活中的优化问题. 【设计理念:通过复习知识点,构建学生的知识网络,对开展进一步的教学有一定的好处,也适合学生的学习习惯。】 四、探究实例一(用料最省问题) 老师:设圆柱形金属罐的容积一定,请问怎么来设计它的高与底面的关系,才能使所用材料最身? 学生:积极探索,寻求关系并初步分析问题。部分学生可以解决问题. 老师:(详细分析) 解:设圆柱的高为h ,底面半径为r ,容积为V 。则用料最省问题即可转化为求圆柱体的表面积最小问题。可找函数关系:222r rh S ππ+=, 由V=22r V h h r ππ= ?,有2222222)(r r V r r V r r S ππππ+=+?=.令0)(='r S ,可求得时用料最省。达到最大,即此时r V r V h S V r 24,2323====πππ 【设计理念:探究性学习是我们在新课程改革中一个很重要的成果,通过这道实际例题,既可以培养学生的学习热情,又可以充分调动学生的积极探索的欲望,真正将学生从“要去学”转变到“我要学”.】 五、探究实例一的变式 (问题转化为利润型问题) 老师:某制造商制造并销售瓶装球形饮料,瓶子的制造成本是0.82r π 分/个,已知每出售1mL 饮料,获利0.2分,且制造商能制作的瓶子的最大半径是6cm 。请分析瓶子的半径与利润的关系. 学生:同桌之间开始讨论,有的在独立思考. 老师:(详细分析) 解:由于瓶子的半径为r ,所以每瓶饮料的利润是

高中数学第一章 导数及其应用1.4 生活中的优化问题举例(含答案解析)

1.4 生活中的优化问题举例 考点 学习目标 核心素养 优化问题 了解利润最大、用料最省、效率最高等优化 问题 数学抽象 导数的实际应用 会利用导数解决简单的实际生活中的优化 问题 数学建模 面积、容积最值问题 请你 设计一个帐篷,它下部的形状是高为1 m 的正六棱柱,上部的形状是侧棱长为3 m 的正六棱锥(如图所示).试问当帐篷的顶点O 到底面中心O 1的距离为多少时,帐篷的体积最大? 【解】 设OO 1为x m ,则10,V (x )为增函数; 当2

(1)优化问题往往涉及变量之间的变化,因而就产生了函数关系,这时就可以利用导数解决优化问题. (2)导数是解决优化问题的基本方法之一.利用导数解决生活中的优化问题的基本思路是: 用长为90 cm ,宽为48 cm 的长方形铁皮做一个无盖的容器,先在四个 角分别截去一个小正方形,然后把四边翻转90°,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少? 解:设容器的高为x ,容器的容积为V , 则V =(90-2x )(48-2x )x (0<x <24), 即V =4x 3-276x 2+4 320x . 因为V ′=12x 2-552x +4 320, 由V ′=12x 2-552x +4 320=0,得x 1=10,x 2=36. 因为0<x <10时,V ′>0,10<x <36时,V ′<0,x >36时,V ′>0,所以当x =10时,V 有极大值V (10)=19 600. 又因为0<x <24, 所以V (10)也是最大值. 所以当x =10时,V 有最大值V (10)=19 600. 故当容器的高为10 cm 时,容器的容积最大,最大容积是19 600 cm 3. 用料(费用)最省问题 现有一批货物由海上从A 地运往B 地,已知轮船的最大航行速度为35海里/时, A 地至 B 地之间的航行距离约为500海里,每小时的运输成本由燃料费和其余费用组成,轮船每小时的燃料费与轮船速度的平方成正比(比例系数为0.6),其余费用为每小时960元. (1)把全程运输成本y (元)表示为速度x (海里/时)的函数; (2)为了使全程运输成本最小,轮船应以多大速度行驶? 【解】 (1)依题意得y =500 x (960+0.6x 2) = 480 000 x +300x , 且由题意知,函数的定义域为(0,35],

导数在生活中的优化问题举例

1.4第一课时 生活中的优化问题举例 一、课前准备 1.课时目标 (1)了解函数极值和最值的基本应用. (2)会用导数解决某些实际问题. 2.基础预探 利用导数解决生活中的优化问题的一般步骤: (1) 分析实际问题中各量之间的关系,建立实际问题的 ,写出实际问题中变量之间的 ,根据实际意义确定定义域. (2) 求函数()y f x =的导数f '(x ),解方程f '(x )=0,求定义域内的根,确定 . (3) 比较函数在 和极值点处的函数值,获得所求的最大(小)值. (4) 还原到原 中作答. 三、学习引领 1. 常见的优化问题 主要有几何方面的应用,物理方面的应用,经济方面的问题等.例如,使经营利润最大、生产效率最高,或使用力最省、用料最少、消耗最省等等,需要寻求相应的最佳方案或最佳策略,这些都是最优化问题.导数是解决这类问题的基本方法之一. 2.解决优化问题的方法 首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系.再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 解决优化问题的基本程序是: 读题 建模 求解 反馈 (文字语言) (数学语言) (导数应用) (检验作答) 3. 需要注意的几个问题 (1) 目标函数的定义域往往受实际问题的具体意义约束,所以在建立目标函数时,需要注意定义域的确定,并注意定义域对函数最值的影响. (2) 如果实际问题中的目标函数在定义域上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较,但要注意说明极值点的唯一性. 四、典例导析 题型一 几何图形中的优化问题 例1请你设计一个包装盒,如图所示,ABCD 是边长为60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E 、F 在AB 上是被切去的等腰直角三角形斜边的两个端点,设AE =FB =x cm (1)某广告商要求包装盒侧面积S (cm 2 )最大,试问x 应取何值? (2)某广告商要求包装盒容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.

相关文档
最新文档