钢结构抗风柱如何计算

钢结构抗风柱如何计算
钢结构抗风柱如何计算

钢结构抗风柱如何计算

问:单层轻钢厂房跨度30米,应设几根抗风柱?

答:间距不宜超过6米。可设4~5根。不含两端钢架柱。

问:那抗风柱的平面外计算长度可以设为3米?我的檩条间距是1.5米,隅撑是间隔布置的。还有就是我的支撑的长细比在PKPM中验算也过不去,我在网上查的是可以设为拉杆,但是2010版中我没找到在哪里可以设置

答:哪里的支撑?

问:柱间支撑

答:抗风柱的作用在于固定墙板,抵抗风荷载。侧向力由钢架本身承担,不需要设置柱间支撑。

当本身长细比不满足时,可在适当位置设置刚性系杆。

钢构抗风柱计算书

抗风柱设计和支撑设计

一、 抗风柱设计和支撑设计 1、抗风柱设计 跨度18米的两端山墙封闭单层厂房,檐口标高8米,每侧山墙设置两根抗风柱,形式为实腹工字钢。山墙墙面板及檩条自重为0.15kN/m 2,基本风压为0.55kN/m 2,试设计抗风柱的截面。 1)荷载计算 墙面恒载值2/15.0m kN p =; 风压高度变化系数0.1=z μ,风压体型系数9.0=s μ,风压设计值20/693.055.00.19.04.14.1m kN z s =×××==ωμμω; 单根抗风柱承受的均布线荷载设计值: 恒载m kN L p q /26.11815.03 14.1314.1=×××=×××=; 风荷载m kN L q W /82.518693.03 14.1314.1=×××=×××=ω。 2) 内力分析 抗风柱分析模型 抗风柱的柱脚和柱顶分别由基础和屋面支撑提供竖向及水平支承,分析模型如上图。可得到构件的最大轴压力为12.3kN ,最大弯矩为46.6m kN ?。 3) 截面选择 取工字钢截面为300x200x6x8,绕强轴长细比62,绕弱轴考虑墙面檩条隅撑的支承作用,计算长度取3米,那么绕弱轴的长细比为65,满足抗风柱的控制长细比限值[]λ150的要求。 强度校核: a a e MP MP W M A N 2152.90531209/106.464904/1230061<=×+=+=σ 稳定验算:

a a x by tx y MP MP W M A N 21509.93531209 97.0466000004904783.01230011<=×+×=+?β? 挠度验算: 在横向风荷载作用下,抗风柱的水平挠度为13.6mm 小于L/400(20mm),满足挠度要求。 2、支撑设计 跨度18米的两端山墙封闭单层厂房,檐口标高8米,榀距6米,每侧边柱各设有一道柱间支撑,形式为单层X 形交叉支撑。取山墙面的基本风压0.55,试设计支撑形式及截面。 对于单层无吊车普通厂房,支撑采用张紧的圆钢截面,预张力控制在杆件拉力设计值的10%左右。 1)荷载计算 风压高度变化系数0.1=z μ,风压体型系数9.0=s μ,风压设计值20/693.055.00.19.04.14.1m kN z s =×××==ωμμω; 单片柱间支撑柱顶风荷载集中力: kN S F W 95.24188693.04 141=×××=××=ω。 2) 内力分析 柱间支撑分析模型 如上图的计算模型,考虑张紧的圆钢只能受拉,故虚线部分退出计算,得到的支撑杆件拉力值kN N 5.41=; 考虑钢杆的预加张力作用,在拉杆设计中留出20%的余量,杆件拉力设计值kN N 8.492.15.41=×=; 3)截面选择 杆件净面积223221549800mm f N A ===。取20φ的圆钢,截面积为314mm 2

窗抗风载荷计算

窗抗风载荷计算 一、计算依据 二、风荷载计算 1、基本情况:门窗计算风荷最大标高取70米;根据工程所处的地理位置,其风压高度变化系数按C类算。平开窗的受力杆件MQ25-24a最大计算长度为2400mm,杆件两边的最大受力宽度为:1375mm,;推拉窗的受力杆件QLC30-25最大计算长度为:1960mm,杆件两边的最大受力宽度为1480mm。 2、风荷载标准值的计算 风荷载标准值ωk=βzμSμZωO (资料③P24式 ωk—风荷载设计标准值 βZ—高度Z处的阵风系数, (资料③P44表 μS—风荷载体型系数,取μS =0.8 (资料③P27表 ωO—基本风压,取ωO =0.7KPa (资料③全国基本风压分布图) μz—风压高度变化系数, (资料③P25表 风荷载标准值计算: ωk=βzμSμZωO =1.66×0.8×1.45×0.7=1.35KPa 三、主要受力构件的设计及校核 1、受力构件的截面参数 根据( BH^3-bh^3 )/12 Ix=0.0491(D4 – d4 ) (资料④P112表1-63) Ix1=Ix+a2 F W=I/h (资料④P106表1-62) 则平开窗的受力构件的惯性矩I为118684m4,抗弯模量为5395 m3;推拉窗的受力构件的惯性矩I为119638.67m4,抗弯模量为7477.42m3。

2、受力构件的设计 根据挠度计算公式:μmax = 5qL^4 /(384EI) (资料②P494表5-31) 其中线荷载计算值:q = awk /2 (资料②P494) 装单层玻璃时,型材许允挠度:μmax< L /120,且绝对挠不大于15mm(资料③) 则有:5awk L^4 /(2x384EI)5×120awk L^3 /(2×384E)=263513.25mm^4> 118684mm^4 则构件的截面惯性矩不能满足挠度要求,故需在铝合金型材内加经防腐处理的冷轧槽钢。 冷轧钢衬的截面惯性矩:I钢=(263513.25-118684)/3=48276.42mm^4 钢衬的截面抗弯模量为:W=I/h=2099 mm^3 (2)推拉窗受力杆件的长度为1960mm其两边最大的受力宽度为1480mm时满足要求的型材截面惯性矩: I>5×120awk L^3 /(2×384E)=154488.43 mm^4>119638.67 mm^4 则构件的截面惯性矩不能满足挠度要求,故需在铝合金型材内加经防腐处理的冷轧槽钢。 冷轧钢衬的截面惯性矩:I钢=(153597-119638.67)/3=11616.59 mm^4 钢衬的截面抗弯模量为:W=I/h=726 mm^3 3、型材的强度校核 (1)平开窗受力杆件长度为2400mm其两边最大的受力宽度为1375mm时作用在受力构件上的荷载按均布荷载计算(偏于安全)则载荷作用下受力构件上的最大弯矩为: Mmax=ql^2/8= awkl^2/(2×8)=

抗风柱设计(相关知识)

抗风柱设计 | | 钢材等级:Q345 柱距(m):8.000 柱高(m):12.100 柱截面:焊接组合H形截面: H*B1*B2*Tw*T1*T2=400*200*220*6*10*10 铰接信息:两端铰接 柱平面内计算长度系数:1.000 柱平面外计算长度:7.000 强度计算净截面系数:1.000 设计规范:《门式刚架轻型房屋钢结构技术规程》 容许挠度限值[υ]: l/400 = 30.250 (mm) 风载信息: 基本风压W0(kN/m2):0.420 风压力体形系数μs1:1.000 风吸力体形系数μs2:-1.000 风压高度变化系数μz:1.050 柱顶恒载(kN):0.000 柱顶活载(kN):0.000 墙板自承重 风载作用起始高度 y0(m):1.100 ----- 设计依据 ----- 1、《建筑结构荷载规范》 (GB 50009-2012) 2、《门式刚架轻型房屋钢结构技术规范》(GB 51022-2015) ----- 抗风柱设计 ----- 1、截面特性计算 A =6.4800e-003; Xc =1.1000e-001; Yc =2.0602e-001; Ix =1.8694e-004; Iy =1.5547e-005; ix =1.6985e-001; iy =4.8982e-002; W1x=9.0740e-004; W2x=9.6371e-004; W1y=1.4133e-004; W2y=1.4133e-004; 2、风载计算

抗风柱上风压力作用均布风载标准值(kN/m): 3.528 抗风柱上风吸力作用均布风载标准值(kN/m): -3.528 3、柱上各断面内力计算结果 △组合号 1:1.35恒+0.7*1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 0.000 0.000 0.000 0.000 0.000 0.000 轴力(kN) : 8.256 7.568 6.880 6.192 5.504 4.816 4.128 断面号: 8 9 10 11 12 13 弯矩(kN.m): 0.000 0.000 0.000 0.000 0.000 0.000 轴力(kN) : 3.440 2.752 2.064 1.376 0.688 0.000 △组合号 2:1.2恒+1.4风压+0.7*1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 -24.902 -47.728 -65.554 -78.358 -86.139 -88.899 轴力(kN) : 7.339 6.727 6.116 5.504 4.893 4.281 3.669 断面号: 8 9 10 11 12 13 弯矩(kN.m): -86.638 -79.354 -67.048 -49.721 -27.371 0.000 轴力(kN) : 3.058 2.446 1.835 1.223 0.612 0.000 △组合号 3:1.2恒+0.6*1.4风压+1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 -14.941 -28.637 -39.332 -47.015 -51.684 -53.340 轴力(kN) : 7.339 6.727 6.116 5.504 4.893 4.281 3.669 断面号: 8 9 10 11 12 13 弯矩(kN.m): -51.983 -47.612 -40.229 -29.832 -16.423 0.000 轴力(kN) : 3.058 2.446 1.835 1.223 0.612 0.000

抗风柱计算书

#、#抗风柱计算书 ------------------------------- | 抗风柱设计| | | | 构件:KFZ1 | | 日期:2012/11/09 | | 时间:09:09:59 | ------------------------------- ----- 设计信息----- 钢材等级:Q235 柱距(m):8.800 柱高(m):7.440 柱截面:焊接组合H形截面: H*B1*B2*Tw*T1*T2=300*250*250*6*10*10

铰接信息:两端铰接 柱平面内计算长度系数:1.000 柱平面外计算长度:7.440 强度计算净截面系数:1.000 设计规范:《门式刚架轻型房屋钢结构技术规程》容许挠度限值[υ]: l/400 = 18.600 (mm) 风载信息: 基本风压W0(kN/m2):0.400 风压力体形系数μs1:1.000 风吸力体形系数μs2:-1.000 风压高度变化系数μz:1.000 柱顶恒载(kN):0.000 柱顶活载(kN):0.000 考虑墙板荷载 风载、墙板荷载作用起始高度y0(m):0.000 ----- 设计依据----- 1、《建筑结构荷载规范》(GB 50009-2012)

2、《门式刚架轻型房屋钢结构技术规程》(CECS 102:2002) ----- 抗风柱设计----- 1、截面特性计算 A =6.6800e-003; Xc =1.2500e-001; Yc =1.5000e-001; Ix =1.1614e-004; Iy =2.6047e-005; ix =1.3186e-001; iy =6.2444e-002; W1x=7.7428e-004; W2x=7.7428e-004; W1y=2.0837e-004; W2y=2.0837e-004; 2、风载计算 抗风柱上风压力作用均布风载标准值(kN/m): 3.520 抗风柱上风吸力作用均布风载标准值(kN/m): -3.520 3、墙板荷载计算 墙板自重(kN/m2) : 0.200 墙板中心偏柱形心距(m): 0.260 墙梁数: 6

抗风柱计算书

抗风柱计算书 验算规范 《GB 50017-2003钢结构设计规范》 《CECS 102:2002门式刚架轻型房屋钢结构技术规程》《GB 50009-2001建筑结构荷载规范》 构件几何信息 柱高:10.2m 抗风柱间距:6m 柱顶节点:铰接 柱脚节点:铰接 截面特性:焊接H型钢H400x200x6x8 A n = 5504 mm2 I x = 15.126x 107 mm4 W x = 7.563 x 105 mm3 i x = 165.8 mm I y = 1.067 x 107 mm4 W y = 1.067 x 105 mm3 i y = 44.0 mm λx = 61.5 λy = 68.2(计算长度取隅撑间距3.0m) 材料特性 材料牌号:Q235B 屈服强度fy:235.0 MPa 抗拉强度设计值f:215.0 MPa 抗剪强度设计值fv:125.0 MPa 弹性模量E:206000.0 MPa 荷载信息 抗风柱承受山墙墙板重量:恒载0.60 kN/m2 风荷载:基本风压W0 = 0.65 kN/m2 地面粗糙度:B类 风载体型系数:+1.0(风压)-1.0(风吸) 高度变化系数:1.0 内力计算 计算简图如图所示. 轴向力N = 0.6 x 10.2 x 6 = 36.72kN 风压力q = 1.0 x 1.0 x 0.65 X 1.05 x 6 =4.095 kN/m “1.2恒载+1.4风载”组合: 轴力 N = 36.72 x 1.2 = 44.064 kN 跨中弯矩M = 1.4 x 4.095 x 10.22 / 8 = 74.56 kN.m 构件强度验算 截面塑性发展系数x = 1.05 “1.2恒载+1.4风载”组合:

钢结构抗风柱的设计样本

钢构造抗风柱设计 一、简介设立在房屋构造两端山墙内,抵抗水平风荷载钢筋混凝土构造柱简称为抗风柱。将抗风柱在水平方向连接起来、起整体加固作用钢筋混凝土梁简称为抗风横梁。普通用于高耸、内部大空间、横墙少砖混构造房屋,如工业厂房、大型仓库等。图1为单层厂房透视图,咱们从图中可以看一下抗风柱位置状况: 抗风柱虽然在《钢构造设计规范》和《门式刚架规范》中均未有专门条文简介如何设计,但是作为构造受力构件,只要分析清晰它在构造体系中受力状态,按照规范有关条文进行计算分析,并满足规范规定构造规定,咱们就能合理设计出安全经济抗风柱。接下来咱们就抗风柱设计全面简介如下: 二、力学分析 抗风柱有三种布置办法: (1) 即抗风柱柱脚与基本刚接,柱顶与屋架通过弹簧片连接。 (2) 即抗风柱柱脚与基本铰接,柱顶与屋架通过长圆孔连接板或弹簧片连接。按这两种布置办法,屋面荷载所有由刚架承受,抗风柱不承受上部刚架传递竖向荷载,只承受墙体和自身重量和风荷载,成为名副其实“抗风柱”。 (3)按门式刚架轻钢构造布置,抗风柱与屋架梁刚接,与钢梁、钢柱一起构成门式刚架构造。即抗风柱柱脚与基本铰接(或刚接),柱顶与屋架刚接。按

这种布置办法,屋面荷载由刚架及抗风柱共同承担。抗风柱同步承担竖向荷载和风荷载。 第一种布置方式即悬臂梁式。 重要特点是:抗风柱柱脚刚接,相称于咱们普通悬臂梁受力形式,抗风柱自身独立承受墙面传递风荷载。在过去重屋面单层工业厂房中,由于抗风柱和厂房构造柱所承受竖向荷载差距较大,为避免不均匀沉降对构造受力形式变化和不利影响,普通需要释放竖向约束。在轻钢厂房开始初期,咱们经常看到某些图纸中,在抗风柱顶部加设弹簧板,与主钢架连接,就是这种设计理念。 这种抗风柱重要特点是: 1)柱脚刚接; 2)截面依照实际状况,有时较大,有时就会很节约; 3)顶部弹簧板连接。 咱们当前把悬臂梁式抗风柱力学模型展示如图2所示:第二种为简支梁式,这种抗风柱特点是:柱脚铰接、顶部与主钢架铰接,这种抗风柱受力形式简朴,采用较小截面就能满足。风荷载通过抗风柱传递到主钢架,依托主钢架支撑体系承受水平风荷载。在轻型钢构造厂房设计中,受力形式简朴,力传递途径明确。 重要特点是: 1)主钢架承受竖向荷载和横向水平荷载;

10米路灯抗风强度校对5mm

10米太阳能路灯抗风强度校核一、计算依据

1.风速V=120km/h(十二级风) 2.基本风压W0= 3. 整基杆风振系数取 3.设计计算依据: ①、《建筑结构荷载规范》GB50009-2001 ②、《建筑地基基础设计规范》GB5007-2002 ③、《钢结构设计规范》GB50017-2003 ④、《高耸结构设计规范》GBJ135-90 二、设计条件 ⑴.基本数据:170W硅铁模块距地面高度10m,面积1.34m2 ,每块重量45kg,220W硅铁模块距地面高度7m,面积1.74m2 ,每块重量30kg,灯杆截面为圆形,灯杆上口径直径d为120mm,底部下口径直径D为260mm,厚度δ=5mm。法兰厚度为20mm,直径500mm。材料为Q235钢,屈服强度为f屈=240N/mm2,灯杆高度为10m,路灯含模块灯头总重为380kg。 二、灯柱强度计算 1.风载荷系数 W K=βz·μs·μz·u r·W0 式中:W K—风荷载标准值(KN/m2); βz—高度z处的风振系数; μs—风荷载体型系数; μz—风压高度变化系数;

μr—高耸结构重现期调整系数,对重要的高耸结构取。⑴.太阳能板:高度为10m和7m, 风压高度变化系数μz取, 风荷载体型系数μs = μr= 整基杆风振系数βz取 灯盘风载荷系数W K1=βz·μs·μz·ur·W0 =××××=m2 ⑵.灯杆:简化为均布荷载 风压高度变化系数μz取 风荷载体型系数μs = μr= 整基杆风振系数βz取 灯杆风载荷系数W K2=βz·μs·μz·ur·W0 =××××=m2 2.太阳能板及灯杆迎风面积 S太阳能板1=+×Sin22°=㎡ S太阳能板2=×Sin22°=㎡ S灯杆=+×10/2=㎡ 3.内力计算 弯矩设计值:M=M灯盘+M灯杆 M=γQ×WK1×S太阳能板×10m+γQ×WK2×S灯杆×5m

风压计算方法

下面我们就来讨论风压的计算问题。 我们知道,风压就是垂直于气流方向的平面所受到的风的压力。根据伯努利方程得出的风-压关系,风的动压为 wp=0.5·ro·v2 (1) 其中wp为风压[kN/m2],ro为空气密度[kg/m3],v为风速[m/s]。 由于空气密度(ro)和重度(r)的关系为r=ro·g, 因此有 ro=r/g。在(1)中使用这一关系,得到 wp=0.5·r·v2/g (2) 此式为标准风压公式。在标准状态下(气压为1013 hPa, 温度为15°C), 空气重度 r=0.01225 [kN/m3]。纬度为45°处的重力加速度g=9.8[m/s2], 我们得到 wp=v2/1600 (3) 此式为用风速估计风压的通用公式。应当指出的是,空气重度和重力加速度随纬度和海拔高度而变。一般来说,r/g 在高原上要比在平原地区小,也就是说同样的风速在相同的温度下,其产生的风压在高原上比在平原地区小。 现在我们将风速代入(3), 10 级大风相当于 24.5-28.4m/s, 取风速上限 28.4m/s, 得到风压wp=0.5 [kN/m2], 相当于每平方米广告牌承受约51千克力。 级现象米/秒 1 烟能表示风向。 0.3~1.5 2 人面感觉有风,树叶微动。 1.6~3.3 3 树叶及微技摇动不息,旌旗展开。 3.4~5.4 4 能吹起地面灰尘和纸张,树的小枝摇动。 5.5~7.9 5 有叶的小树摇摆,内陆的水面有小波。 8.0一10.7

6 大树枝摇动,电线呼呼有声,举伞困难。 10.8~13.8 7 全树动摇,迎风步行感觉不便。 13.9~17.l 8 微枝折毁,人向前行感觉阻力甚大。 17.2~20.7 9 草房遭受破坏,大树枝可折断。 20.8~24.4 10 树木可被吹倒,,一般建筑物遭破坏。 24.5~28.4 11 陆上少见,大树可被吹倒,一般建筑物遭严重破坏。 28.5~32.6 12 陆上绝少,其催毁力极大。 32.7~36.9 13 37.0~41.4 14 41.5~46.1 15 46.2——50.9 16 51.0~56.0 17 56.1——61.2 基本风压(KN/m2) 相当抗风能力(级别) 观测高度距地 0.35 7 10米 0.40 8 10米 0.50 9 10米 0.60 10 10米 0.70 11 10米 0.85 12 10米

抗风柱设计

抗风柱设计 抗风柱就是一根梁,无非是两段都是铰接,或是一端铰接一端固结,或者都是固结。 抗风柱受力的模型: 大家可以清楚的看到,抗风柱只是承受一个均部的风荷载(如果考虑高度变化的话,其实应该是一个梯形荷载,就是下端小,上端大)。这里还需要注意一个问题,就是抗风柱其实也是多少承担一些屋面梁的恒载和活载的。不过我们通常的做法是不考虑屋面梁恒载和活载传递给抗风柱的。而实际上,就是考虑也没有多少力量,轴向力对于抗风柱来说就无关紧要了。(大家注意,我们一定要忽略一些对主体影响很小的因素,这样才能保证我们计算的简单化)

抗风柱的计算要点: A 需要参考的是轻钢规程附录的风荷载规定

我们来简单解释下轻钢规程中的风荷载规定: 轻型房屋钢结构的风荷载,是以我国现行国家标准《建筑结构荷载规范》为基础确定的。计算这种房屋结构风荷载标准值时所需的风荷载体型系数,由于我国现有资料不完备,因此主要采用了美国金属房屋制造商协会《低层房屋体系手册》()中有关小坡度房屋的规定。分析研究表明,当柱脚铰接且刚架的小于 和柱脚刚接且小于(例如,檐口高度为,刚架跨度分别小于和)时,采用规定的风荷载体型系数计 GB50009MBMA 1996l/h 2.3l/h 3.0h 8m l 18m 24m GB50009

算所得控制截面的弯矩,较按规定的体型系数计算所得值低,即严重不安全。因此,需要采用的规定值。 手册中关于风荷载的规定,是在有国际权威性的加拿大西安大略大学边界层风动试验室,由美国钢铁研究会、美国和加拿大钢铁工业结构研究会等专业机构共同试验研究得出,是专门针对低层钢结构房屋的,内容全面且详尽,已为多国采用,并纳入国际标准。 手册规定的风荷载体型系数必须与以年一遇的最大英里风速为基础的速度风压配套使用。因此转换到与我国荷载规范规定的以年一遇的平均最大风速为基础的基本风压㎡配套使用时,必须乘以的平均换算系数。此外,美国规范规定,这遇风组合时,结构构件设计的允许应力可提高 倍。考虑到这两个因素的影响,引用的体型系数后,我国的基本风压值应乘以综合调整系数即。 关于阵风系数,荷载规范的说明中指出,“对于低矮房屋的围护结构,按本规范提供的阵风系数确定的风荷载,与某些国外规范专为低矮房屋制定的规定相比,有估计过高的可能。考虑到近地面湍流规律的复杂性,在取得更多资料以前,本规范暂不明确低矮房屋围护结构风荷载的具体规定,容许设计者参照国外对低矮房屋的边界层风洞试验资料或有关规定进行设计”。由于手册中规定的风荷载体型系数已经包含了阵风效应,且是内、外压力的峰值组合,因此可以不用考虑阵风系数。 MBMA 0~60%MBMA MBMA AISI MBMA SICC ISO MBMA 50(mph)(psf)GB500095010min (m/s)(kN/) 1.41.33MBMA 1.05( 1.4/1.33)GB50009MBMA

抗风柱计算结果

抗风柱计算结果 ------------------------------- | 抗风柱设计 | | | | 构件:KFZ1 | | 日期:2003/08/16 | | 时间:08:10:43 | ------------------------------- ----- 设计信息 ----- 钢材等级:Q345 柱距(m):7.000 柱高(m):12.500 柱截面:焊接组合H形截面: H*B1*B2*Tw*T1*T2=300*200*200*6*8*8 铰接信息:两端铰接 柱平面内计算长度系数:1.000 柱平面外计算长度:6.000 风载信息: 基本凤压W0(kN/m2):0.350 风压力体形系数μs1:1.000 风吸力体形系数μs2:-1.000 凤压高度变化系数μz:1.140 柱顶恒载(kN):0.000 柱顶活载(kN):0.000 墙板自承重 ----- 设计依据 ----- 1、《建筑结构荷载规范》(GB 50009-2001) 2、《钢结构设计规范》(GBJ 17-88) ----- 抗风柱设计 ----- 1、截面特性计算

A =4.9040e-003; Xc =1.0000e-001; Yc =1.5000e-001; Ix =7.9681e-005; Iy =1.0672e-005; ix =1.2747e-001; iy =4.6649e-002; W1x=5.3121e-004; W2x=5.3121e-004; W1y=1.0672e-004; W2y=1.0672e-004; 2、风载计算 抗风柱上风压力作用均布风载标准值(kN/m): 2.793 抗风柱上风吸力作用均布风载标准值(kN/m): -2.793 3、柱上各断面内力计算结果 △组合号 1:1.35恒+0.7*1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 0.000 0.000 0.000 0.000 0.000 0.000 轴力(kN) : 6.455 5.917 5.379 4.841 4.303 3.765 3.227 断面号: 8 9 10 11 12 13 弯矩(kN.m): 0.000 0.000 0.000 0.000 0.000 0.000 轴力(kN) : 2.690 2.152 1.614 1.076 0.538 0.000 △组合号 2:1.2恒+1.4风压+0.7*1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 -23.336 -42.428 -57.278 -67.885 -74.250 -76.371 轴力(kN) : 5.738 5.260 4.781 4.303 3.825 3.347 2.869 断面号: 8 9 10 11 12 13 弯矩(kN.m): -74.250 -67.885 -57.278 -42.428 -23.336 0.000 轴力(kN) : 2.391 1.913 1.434 0.956 0.478 0.000 △组合号 3:1.2恒+0.6*1.4风压+1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 -14.001 -25.457 -34.367 -40.731 -44.550 -45.823 轴力(kN) : 5.738 5.260 4.781 4.303 3.825 3.347 2.869 断面号: 8 9 10 11 12 13 弯矩(kN.m): -44.550 -40.731 -34.367 -25.457 -14.001 0.000 轴力(kN) : 2.391 1.913 1.434 0.956 0.478 0.000 △组合号 4:1.2恒+1.4风吸+0.7*1.4活 断面号: 1 2 3 4 5 6 7 弯矩(kN.m): 0.000 23.336 42.428 57.278 67.885 74.250 76.371

建筑门窗的抗风压计算书

一、计算依据 二、风荷载计算 1、基本情况:门窗计算风荷最大标高取70米;根据工程所处的地理位置,其风压高度变化系数按C类算。平开窗的受力杆件MQ25-24a最大计算长度为2400mm,杆件两边的最大受力宽度为:1375mm,;推拉窗的受力杆件 QLC30-25最大计算长度为:1960mm,杆件两边的最大受力宽度为1480mm。 2、风荷载标准值的计算 风荷载标准值ωk=βzμSμZωO (资料③ ωk―风荷载设计标准值 βZ―高度Z处的阵风系数,(资料③ μS―风荷载体型系数,取μS =0.8 (资料③ ωO―基本风压,取ωO =0.7KPa (资料③全国基本风压分布图) μz―风压高度变化系数, (资料③ 风荷载标准值计算: ωk=βzμSμZωO =1.66×0.8×1.45×0.7=1.35KPa

三、主要受力构件的设计及校核 1、受力构件的截面参数 根据(BH^3-bh^3 )/12 Ix=0.0491(D4 3 建筑门窗的抗风压计算 一、概况 1.1计算依据 风荷载标准按GB50009-2001《建筑结构荷载》的规定计算 任何材料制作的门窗玻璃按JGJ113-2003《建筑玻璃应用》的规定计算 玻璃幕墙按JGJ102-2003《玻璃幕墙工程技术规范》的规定计算 建筑外窗抗风强度计算方法 1.2说明 什么是围护结构呢?指建筑物及房间的围档物,包括墙壁、挡板等,按是否与室内外空气分割而言,包括内外围护结构,有透明与不透明之分。 “对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当提高,并应由有关的结构具体规定。”提出了几个问题:一、高层建筑,二、高耸结构,三、比较敏感的其他结构,四、有关的规范。如何理解和应用的问题。 高层建筑:定义、基准,可从下列资料中找到。 JGJ37-87 《民用建筑设计通则》 GB50096-99 《住宅设计规范》 GB50045-95 《高层民用建筑设计防火规范》 GBJ 16-87 《建筑设计防火规范》 JGJ 3-2002 《高层建筑混凝土结构技术》 有一句基本雷同的说法:在通则与防火等规范中指出为: 居住建筑大于10层(约30M) 公用建筑大于24M 在JGJ3中定义为:10层及10层以上或房屋高度大于28M的建筑物。 高耸结构 在GBJ135-90中规定,如电视塔、发射塔、微波塔、拉绳桅杆、石油化工塔、大气污染检测塔、烟囱、排气塔、碾井架等。 有的塔有可能使用门窗、幕墙,例如上海、北京等地电视塔等。 有关结构设计规范 建筑风荷载标准值宜按计算值加大10%采用。 换句话讲,也就是玻璃承载能力要降低10%。风荷载标准值起点为0.75kPa;但比门窗产品抗风压检测标准

钢结构抗风柱地设计

钢结构抗风柱的设计 一、介绍设置在房屋结构两端山墙内,抵抗水平风荷载的钢筋混凝土构造 柱简称为抗风柱。将抗风柱在水平方向连接起来、起整体加固作用的钢筋混凝 土梁简称为抗风横梁。一般用于高耸、内部大空间、横墙少的砖混结构房屋, 如工业厂房、大型仓库等。图1为单层厂房透视图,我们从图中可以看一下抗 风柱的位置情况: 抗风柱虽然在《钢结构设计规范》和《门式刚架规范》中均未有专 门条文介绍如何设计,但是作为结构受力构件,只要分析清楚它在结构体系中 的受力状态,按照规范相关条文进行计算分析,并满足规范规定的构造要求, 我们就能合理的设计出安全经济的抗风柱。接下来我们就抗风柱的设计全面介 绍如下: 二、力学分析 抗风柱有三种布置方法: (1) 即抗风柱柱脚与基础刚接,柱顶与屋架通过弹簧片连接。 (2) 即抗风柱柱脚与基础铰接,柱顶与屋架通过长圆孔连接板或弹簧片连接。按这两种布置方法,屋面荷载全部由刚架承受,抗风柱不承受上部刚架传递的竖向荷载,只承受墙体和自身的重量和风荷载,成为名副其实的“抗风柱”。 (3)按门式刚架轻钢结构布置,抗风柱与屋架梁刚接,与钢梁、钢柱一起组成门式刚架结构。即抗风柱柱脚与基础铰接(或刚接),柱顶与屋架刚接。按这种布置方法,屋面荷载由刚架及抗风柱共同承担。抗风柱同时承担竖向荷 载和风荷载。 第一种布置方式即悬臂梁式。 主要特点是:抗风柱柱脚刚接,相当于我们一般的悬臂梁受力形式,抗风柱本身独立承受墙面传递的风荷载。在过去重屋面的单层工业厂房中,因

为抗风柱和厂房结构柱所承受的竖向荷载差距较大,为避免不均匀沉降对结构 受力形式的改变和不利影响,一般需要释放竖向约束。在轻钢厂房开始的初期,我们经常看到一些图纸中,在抗风柱的顶部加设弹簧板,与主钢架连接,就是 这种设计理念。 这种抗风柱的主要特点是: 1)柱脚刚接; 2)截面根据实际情况,有时较大,有时就会很节省; 3)顶部弹簧板连接。 我们现在把悬臂梁式抗风柱力学模型展示如图2所示:第二种为简 支梁式,这种抗风柱的特点是:柱脚铰接、顶部与主钢架铰接,这种抗风柱的 受力形式简单,采用较小的截面就能满足。风荷载通过抗风柱传递到主钢架, 依靠主钢架的支撑体系承受水平风荷载。在轻型钢结构厂房设计中,受力形式 简单,力的传递途径明确。 主要的特点是: 1)主钢架承受竖向荷载和横向水平荷载; 2)抗风柱承受和传递水平纵向风荷载; 3)支撑体系承受纵向水平荷载。 这种抗风柱的优点是: 1)受力形式简单,截面较小; 2)铰接节点加工和安装比较方便,成本低; 3)充分发挥了整体结构的承载能力,总体成本低。 我们现在把简支梁式抗风柱力学模型展示如图3所示: 三、设计计算对于抗风柱首先要满足《钢结构设计规范》中对于钢柱的基 本规定: 1、容许长细比

(建筑门窗抗风压性能等级计算)

致: 华联房地产公司壹号公馆建设单位工作联系涵 建筑幕墙抗风压性能等级确定 1、工程条件 1) 工程所在省市:湖南 2) 工程所在城市:长沙 3)风压高度变化系数μz: A类地区:μZ=1.379 * (z / 10) ^ 0.24,z为安装高度; B类地区:μZ=(z / 10) ^ 0.32,z为安装高度; C类地区:μZ=0.616 * (z / 10) ^ 0.44,z为安装高度; D类地区:μZ=0.318 * (z / 10) ^ 0.6,z为安装高度; 4) 地面粗糙度类别:C类(有密集建筑群的城市市区取值) 2、风荷载标准值计算 1)基本风压 W0=0.35KN/m^2(按《建筑结构荷载规范》GB 50009-2001规定,采用50年一遇的风压,但不得小于0.3KN/m^2)。 2)阵风系数 βgz= 1.6,离地面高度按100m记(按《建筑结构荷载规范》GB 50009-2001表7.5.1规定)。

3)局部风压体型系数 μsl=0.8,(按《建筑结构荷载规范》GB 50009-2001第7.3.3条及表7.3.1规定)。 4)风荷载标准值 Wk = βgz*μsl*μZ*w0=1.6*0.8*1.7*0.35=0.76 3、抗风压性能等级 门窗的综合抗风压能力为:Qmax=11.06N/mm^2 (按《建筑门窗气密、水密、抗风压性能分级及检测方法》GB/T7106-2008) 建筑门窗抗风压性能分级表 根据《建筑门窗》GB/T21086-2008表12,P3=1,次建筑门窗抗风压性能分级为1级即可满足规范要求。 本设计检测门窗抗风压性能等级有原来的4级改为2级,符合规范及标准要求。 建设单位签章:设计单位签章: 2011年月日 2011年月日

抗风柱的设计理念与建议

抗风柱的设计理念与建议 王崇帅1,周光华2 摘要:抗风柱是排架结构或门式刚架结构中支撑山墙墙板抵抗水平风荷载作用的主要构件。抗风柱的上端与刚架梁相连,下端设置单独的基础。抗风柱的设计方法和构造措施不但影响到抗风柱本身的受力特点,而且影响到与之相连的刚架、屋面支撑和基础的设计与受力。关键词:抗风柱,山墙,铰接,刚接。 前言:在工业厂房设计中,承担厂房山墙墙板承受的风荷载需要设置抗风柱,抗风柱是厂房支撑山墙抵抗水平风荷载作用的主要受力构件。但是由于规范、规程在抗风柱设计方面没有明确的设计规定,因此对抗风柱的设计理念说法不一。不同的节点做法不仅仅影响到抗风柱本身的受力,也对与之相连的屋面结构和基础影响较大。基于上述原因,本文对抗风柱的设计方法进行探讨,论述了一些抗风柱的设计理念与建议。 一、山墙抗风的主要结构形式山墙抗风形式主要有两种;一种是采用抗风柱与抗风梁或抗风桁架的组合,另一种是抗风柱及其屋面结构的组合。第一种结构形式在较高厂房中比较普遍,这种是把山墙柱的水平风荷载通过抗风桁架传给纵向的框架及排架,其优点是充分利用了框架及排架柱的纵向刚度,从而减小山墙柱的截面尺寸。缺点是当采用抗风梁时,抗风梁截面很大,总体而言不经济。当采用抗风桁架时,抗风桁架占据了厂房空间,致使主厂房吊车的有效起吊范围变窄,而且抗风桁架安装的精度要求很高。随着社会经济的发展,钢结构越来越多地应用于各种工业与民用建筑房屋中,山墙抗风柱大多采用钢柱。钢柱与屋面结构共同承受山墙水平风荷载是现阶段用得最广泛的形式。它考虑了屋架对钢柱的约束作用,充分利用屋架承受一部分水平风荷载的作用。 二、抗风柱有两种布置方法 1、按传统抗风柱布置。即抗风柱柱脚与基础铰接(或刚接),柱顶与屋架通过弹簧片连接。按这种布置方法,屋面荷载全部由刚架承受,抗风柱不承受上部刚架传递的竖向荷载,只承受墙体和自身的重量和风荷载,成为名副其实的“抗风柱”。 2、按门式刚架轻钢结构布置。即抗风柱柱脚与基础铰接(或刚接),柱顶与屋架铰接。按这种布置方法,屋面荷载由刚架及抗风柱共同承担。抗风柱同时承担竖向荷载和风荷载。对于第一种布置方式,抗风柱就可以按两端简支的梁考虑,承受计算宽度内的均布风荷载。计算长度可以按支承情况分别取值。对于第二种布置方式,抗风柱就需要按双向受压的压弯构件考虑,在抗风柱平面内承受计算宽度内的均布风荷载,同时还受轴向压力。 第一种布置方式在社会中普通使用。第二种布置方式有些钢结构企业也会使用。因边框架受荷面积较小,屋面荷载较小,故抗风柱所受轴力不大,与只受风荷载的抗风柱相比没有很大区别,用钢量不会增加多少。但同时会带来一个问题,就是边框架与中间框架的变形相差比较大,屋面板最后使用能适应大变形的锁缝板来弥补。 三、抗风柱柱脚与柱顶连接方式 1、抗风柱的柱脚节点分刚接和铰接两种形式。铰接时,基础只承受较小的轴力与剪力,设计和构造件简单。抗风柱传递给基础的轴力只有抗风柱本身的重量和相邻山墙墙板的重量。如果采用刚接,传递给基础的弯矩和轴力要大得多,偏心距非常大,不利于基础的设计。但抗风柱比较高的时候,如果柱脚还采用铰接模式,抗风柱截面将很不经济,这时候可以做成刚接柱脚、或者设置抗风桁架。 2、抗风钢柱与屋架的连接形式分为:铰接和弹簧板连接。但是铰接传递的屋面桁架竖向力

12m路灯灯杆抗风、抗挠强度计算

12m 路灯灯杆抗风、抗挠技术 1、已知条件 1.1 最大风速 Vm=35m/s (P 风压:ω0=0.81KN/m 2) 1.2 材料 材质符合Q235(A3)/Q345 1.3 许用应力[σ]=210Mpa(《钢结构设计规范》)(Q235) 许用应力[σ]=345Mpa(《钢结构设计规范》)(Q345) 1.4 弹性模量:E= 2.06×1011N/M 2(《机械设计手册》) 1.5 灯管外形为选用Q235钢管焊接,100*200,壁厚分别为4mm. 1.6 灯体自重10kg ,杆重 500 kg 2、迎风面积 2.1 S 灯体= 0.1m 2 2.2 S 灯杆= 6m 2 3、结构自振周期 I= ?64π (0.174-0.1724)=8.5×10-6m 4 A=?4π (0.172-0.1722)=0.0022m 2 T1=3.63×)236.0(3AH m EI H ρ+ =0.56s T1>0.25s 采用风振系数来考虑,风压脉动的影响。 4、风振系数βz 4.1 基本风压 ω0T 12= 0.81×0.562 =0.254kN/ m 2 ∴脉动增大系数 ξ =2.10

4.2 风压脉动和风压高度变化的影响系数 ε1 =0.75 4.3 振型、结构外形影响系数 ε2=0.76 ∴β =1+ξ ·ε1?ε2=2.20 5、顶端灯具大风时的风荷载: (u τ 取1.3) F1=βzUsUzU τ灯体S ?0ω =2.20×0.9×1.3×1.0×0.81×0.15 =0.31KN 6、灯杆大风的风荷载: F2=βzUsUzU τ杆S ?0ω =2.20×0.7×1.0×1.1×0.81×1 =1.40KN 7、灯杆距底法兰处所受的最大弯矩: M 总=0.31×8+1.40×4=8.08KN ·m 8 、灯杆底端(危险截面即筋板上部开孔处的截面) 风压弯曲应力 σb σb = S M 总 = 3 4417.0)162.017.0(098.004.8m m KN -?? =87MPa σb <[ σb ]=210Mpa 结论:结构设计是满足国家相关设计规程的要求是安全的。

抗风设计计算

抗风设计计算 1.太阳能电池组件支架的抗风设计 依据电池组件厂家的技术参数资料,太阳能电池组件可以承受的迎风压强为2700Pa。若抗风系数选定为40m/s(相当于十级台风),依据非粘性流体力学,电池组件承受的风压只有565 Pa。所以组件本身是完全可以承受40 m/s的风速而不至于损坏的。所以,设计中关键要考虑的是电池组件支架与灯杆的连接。 在本套路灯系统的设计中电池组件支架与灯杆的连接设计使用螺栓固定连接。 2.路灯灯杆的抗风设计 路灯的参数如下: 电池板倾角A=16°,灯杆高度=4米 设计选取灯杆底部焊缝宽度δ=4mm灯杆底部外径Φ218 焊缝所在面即灯杆破坏面。灯杆破坏面抵抗矩W的计算点P到灯杆受到的电池板作用荷载F作用线的距离为 PQ=【5000+(218+6)/tan16°】*sin16°=1616mm=1.616m。所以,风载荷在灯杆破坏面上的作用矩M=F*1.616 根据40 m/s的设计最大允许风速,50W的单灯头太阳能路灯电池板的基本荷载为630N。考虑1.3的安全系数,F=1.3*630=819N。 所以,M=F*1.616=819*1.616=1323N·m。 根据数学推导,圆环形破坏面的抵抗矩W=π*(3r2δ+3rδ2+δ3) 上式中,r是圆环内径,δ是圆环宽度。 破坏面抵抗矩W=π*(3r2δ+3rδ2+δ3) =π*(3*105*105*4+3*105*16+64)=137404mm3 =137.404*10-6m3 风载荷在破坏面上作用矩引起的应力为=M/W =1323(137.404*10-6)=12.5*106Pa=12.5MPa<<215 MPa 其中,215 MPa是Q235钢的抗弯强度。 所以灯杆及太阳能组件均满足抗风技术要求。

抗压强度计算2015(DOC)

第四部分外窗的抗风压强度计算 第一节标准与方法 一、相关标准: 《建筑结构荷载规范》GB 50009-2012: ——用于计算建筑物围护结构的风荷载标准值 《建筑外窗抗风压强度、挠度计算方法》(建筑用塑料窗附录B)——用于进行门窗抗风压强度计算、受力杆件挠度校核《建筑玻璃应用技术规程》JGJ113-2009 ——用于玻璃的设计

《建筑外门窗气密、水密、抗风压性能分级及检测方法》GB/T 7016-2008——用于门窗性能检测及性能分级 《门窗、幕墙风荷载标准值》04J906 ——用于直接查询建筑物的风荷载标准值,编制时间较早(2004年按GB50009-2001编制)。三、计算与分级 一)、计算方法有两种: 第一种是挠度校核,即在规定的风荷载标准值作用下,受力杆件的挠度不大于规定值; 第二种是抗风压值计算,即挠度达到最大值(等于L/150,且小于或等于20mm)时的风荷载值。二)、分级 抗风压强度计算与分级可分三步进行:

1、确定建筑物围护结构风荷载标准值。依据《建筑结构荷载规范》GB 50009计算,可由设计院或甲方提供,也可从相关规范、规定获取。。 2、按照《建筑外窗抗风压强度、挠度计算方法》进行门窗受力杆件挠度的校核或门窗抗风压值的计算 3、依据《建筑玻璃应用技术规程》JGJ113确定玻璃风荷载设计值,并进行玻璃强度计算。 4、按《建筑外门窗气密、水密、抗风压性能分级及检测方法》进行级别的判定。 第二节风荷载标准值 一、风荷载标准值的确定 ★甲方或设计院提供(当地有规定的按规定执行)。

★按《建筑结构荷载规范》GB 50009计算确定 按规范计算的风荷载标准值是最小值,根据建筑物的具体情况,可在计算的基础上,乘以安全系数确定。 ★风荷载标准值的直接选用 中国建筑标准设计研究院,在2004年以《建筑结构荷载规范》GB 50009-2001为依据,编制了《门窗、幕墙风荷载标准值》04J906(虽然荷载规范修订了,也许此图册会修订)。 《门窗、幕墙风荷载标准值》04J906是采用基本风压、地面粗糙度类别、建筑物高度三个参数,查表确定该建筑物的风荷载标准值。 在查表的过程中,没有用到建筑物的体形系数,是因为《门窗、幕墙风荷载标准值》04J906是取最大值计算的,即外表面是按负压区墙角边部位-1.8取值,内表面按+0.2取值的。

相关文档
最新文档