相似三角形存在性问题

相似三角形存在性问题
相似三角形存在性问题

因动点产生得相似三角形问题

例1 2015年上海市宝山区嘉定区中考模拟第24题

如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m).

(1)求k与m得值;

(2)此双曲线又经过点B(n, 2),过点B得直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC得面积;

(3)在(2)得条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成得三角形与△ACD相似,且相似比不为1,求点E得坐标、

图1

动感体验

请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到,

△ACE与△ACD相似,存在两种情况。

思路点拨

1、直线AD//BC,与坐标轴得夹角为45°.

2.求△ABC得面积,一般用割补法.

3。讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程.

满分解答

(1)将点A(2, m)代入y=x+2,得m=4.所以点A得坐标为(2,4).

将点A(2, 4)代入,得k=8。

(2)将点B(n, 2),代入,得n=4。

所以点B得坐标为(4, 2)、

设直线BC为y=x+b,代入点B(4, 2),得b=—2.

所以点C得坐标为(0,—2).

由A(2, 4) 、B(4, 2) 、C(0,-2),可知A、B两点间得水平距离

与竖直距离都就是2,B、C两点间得水平距离与竖直距离都就是4.

所以AB=,BC=,∠ABC=90°.

图2

所以S△ABC===8、

(3)由A(2, 4)、D(0, 2) 、C(0,—2),得AD=,AC=、

由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE。

所以△ACE与△ACD相似,分两种情况:

①如图3,当时,CE=AD=.

此时△ACD≌△CAE,相似比为1.

②如图4,当时,、解得CE=.此时C、E两点间得水平距离与竖直距离都就是10,所以E(10, 8)、

图3 图4

考点伸展

第(2)题我们在计算△ABC得面积时,恰好△ABC就是直角三角形、

一般情况下,在坐标平面内计算图形得面积,用割补法、

如图5,作△ABC得外接矩形HCNM,MN//y轴.

由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8.

图5

例22014年武汉市中考第24题

如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm得速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm得速度向点B匀速运动,运动时间为t秒(0

(1)若△BPQ与△ABC相似,求t得值;

(2)如图2,连接AQ、CP,若AQ⊥CP,求t得值;

(3)试证明:PQ得中点在△ABC得一条中位线上、

图1图2

动感体验

请打开几何画板文件名“14武汉24”,拖动点P运动,可以体验到,若△BPQ可以两次成为直角三角形,与△ABC相似.当AQ⊥CP时,△ACQ∽△CDP、PQ得中点H在

△ABC得中位线EF上、

思路点拨

1、△BPQ与△ABC有公共角,按照夹角相等,对应边成比例,分两种情况列方程、

2.作PD⊥BC于D,动点P、Q得速度,暗含了BD=CQ。

3。PQ得中点H在哪条中位线上?画两个不同时刻P、Q、H得位置,一目了然。

满分解答

(1)Rt△ABC中,AC=6,BC=8,所以AB=10.

△BPQ与△ABC相似,存在两种情况:

①如果,那么.解得t=1.

②如果,那么.解得。

图3 图4

(2)作PD⊥BC,垂足为D。

在Rt△BPD中,BP=5t,cos B=,所以BD=BPcosB=4t,PD=3t。

当AQ⊥CP时,△ACQ∽△CDP、

所以,即。解得.

图5图6

(3)如图4,过PQ得中点H作BC得垂线,垂足为F,交AB于E.

由于H就是PQ得中点,HF//PD,所以F就是QD得中点、

又因为BD=CQ=4t,所以BF=CF。

因此F就是BC得中点,E就是AB得中点。

所以PQ得中点H在△ABC得中位线EF上.

例3 2012年苏州市中考第29题

如图1,已知抛物线(b就是实数且b>2)与x轴得正半轴分别交于点A、B(点A位于点B 就是左侧),与y轴得正半轴交于点C、

(1)点B得坐标为______,点C得坐标为__________(用含b得代数式表示);

(2)请您探索在第一象限内就是否存在点P,使得四边形PCOB得面积等于2b,且△PBC 就是以点P为直角顶点得等腰直角三角形?如果存在,求出点P得坐标;如果不存在,请说明理由;

(3)请您进一步探索在第一象限内就是否存在点Q,使得△QCO、△QOA与△QAB中得任意两个三角形均相似(全等可瞧作相似得特殊情况)?如果存在,求出点Q得坐标;如果不存在,请说明理由.

图1

动感体验

请打开几何画板文件名“12苏州29”,拖动点B在x轴得正半轴上运动,可以体验到,点P到两坐标轴得距离相等,存在四边形PCOB得面积等于2b得时刻.双击按钮“第(3)题”,拖动点B,可以体验到,存在∠OQA=∠B得时刻,也存在∠OQ′A=∠B得时刻.

思路点拨

1。第(2)题中,等腰直角三角形PBC暗示了点P到两坐标轴得距离相等.

2.联结OP,把四边形PCOB重新分割为两个等高得三角形,底边可以用含b得式子表示。

3、第(3)题要探究三个三角形两两相似,第一直觉这三个三角形就是直角三角形,点Q最大得可能在经过点A与x轴垂直得直线上.

满分解答

(1)B得坐标为(b, 0),点C得坐标为(0, )、

(2)如图2,过点P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,那么△PDB≌△PEC。

因此PD=PE、设点P得坐标为(x, x)、

如图3,联结OP.

所以S四边形PCOB=S△PCO+S△PBO==2b。

解得。所以点P得坐标为()。

图2图3

(3)由,得A(1, 0),OA=1、

①如图4,以OA、OC为邻边构造矩形OAQC,那么△OQC≌△QOA。

当,即时,△BQA∽△QOA.

所以.解得。所以符合题意得点Q为().

②如图5,以OC为直径得圆与直线x=1交于点Q,那么∠OQC=90°。

因此△OCQ∽△QOA.

当时,△BQA∽△QOA、此时∠OQB=90°。

所以C、Q、B三点共线.因此,即.解得。此时Q(1,4).

图4 图5

考点伸展

第(3)题得思路就是,A、C、O三点就是确定得,B就是x轴正半轴上待定得点,而∠QOA 与∠QOC就是互余得,那么我们自然想到三个三角形都就是直角三角形得情况.

这样,先根据△QOA与△QOC相似把点Q得位置确定下来,再根据两直角边对应成比例确定点B得位置、

如图中,圆与直线x=1得另一个交点会不会就是符合题意得点Q呢?

如果符合题意得话,那么点B得位置距离点A很近,这与OB=4OC矛盾.

例5 2010年义乌市中考第24题

如图1,已知梯形OABC,抛物线分别过点O(0,0)、A(2,0)、B(6,3)。

(1)直接写出抛物线得对称轴、解析式及顶点M得坐标;

(2)将图1中梯形OABC得上下底边所在得直线OA、CB以相同得速度同时向上平移,分别交抛物线于点O1、A1、C1、B1,得到如图2得梯形O1A1B1C1.设梯形O1A1B1C1得面积为S,A1、B1得坐标分别为(x1,y1)、(x2,y2).用含S得代数式表示x2-x1,并求出当S=36时点A1得坐标;

(3)在图1中,设点D得坐标为(1,3),动点P从点B出发,以每秒1个单位长度得速度沿着线段BC运动,动点Q从点D出发,以与点P相同得速度沿着线段DM运动.P、Q两点同时出发,当点Q到达点M时,P、Q两点同时停止运动.设P、Q两点得运动时间为t,就是否存在某一时刻t,使得直线PQ、直线AB、x轴围成得三角形与直线PQ、直线AB、抛物线得对称轴围成得三角形相似?若存在,请求出t得值;若不存在,请说明理由.

图1图2

动感体验

请打开几何画板文件名“10义乌24”,拖动点I上下运动,观察图形与图象,可以体验到,x2-x1随S得增大而减小.双击按钮“第(3)题”,拖动点Q在DM上运动,可以体验到,如果∠GAF=∠GQE,那么△GAF与△GQE相似.

思路点拨

1.第(2)题用含S得代数式表示x2-x1,我们反其道而行之,用x1,x2表示S。再注意平移过程中梯形得高保持不变,即y2-y1=3、通过代数变形就可以了、

2.第(3)题最大得障碍在于画示意图,在没有计算结果得情况下,无法画出准确得位置关系,因此本题得策略就是先假设,再说理计算,后验证.

3。第(3)题得示意图,不变得关系就是:直线AB与x轴得夹角不变,直线AB与抛物线得对称轴得夹角不变.变化得直线PQ得斜率,因此假设直线PQ与AB得交点G在x轴得下方,或者假设交点G在x轴得上方.

满分解答

(1)抛物线得对称轴为直线,解析式为,顶点为M(1,)、

(2)梯形O1A1B1C1得面积,由此得到.由于,所以.整理,得、因此得到.

当S=36时, 解得此时点A1得坐标为(6,3).

(3)设直线AB与PQ交于点G,直线AB与抛物线得对称轴交于点E,直线PQ与x轴交于点F,那么要探求相似得△GAF与△GQE,有一个公共角∠G。

在△GEQ中,∠GEQ就是直线AB与抛物线对称轴得夹角,为定值、

在△GAF中,∠GAF就是直线AB与x轴得夹角,也为定值,而且∠GEQ≠∠GAF、因此只存在∠GQE=∠GAF得可能,△GQE∽△GAF.这时∠GAF=∠GQE=∠PQD、由于,,所以.解得.

图3图4

考点伸展

第(3)题就是否存在点G在x轴上方得情况?如图4,假如存在,说理过程相同,求得得t得值也就是相同得.事实上,图3与图4都就是假设存在得示意图,实际得图形更接近图3。

例6 2009年临沂市中考第26题

如图1,抛物线经过点A(4,0)、B(1,0)、C(0,-2)三点、

(1)求此抛物线得解析式;

(2)P就是抛物线上得一个动点,过P作PM⊥x轴,垂足为M,就是否存在点P,使得以A、P、M为顶点得三角形与△OAC相似?若存在,请求出符合条件得点P得坐标;若不存在,请说明理由;

(3)在直线AC上方得抛物线就是有一点D,使得△DCA得面积最大,求出点D得坐标、

,

图1

动感体验

请打开几何画板文件名“09临沂26”,拖动点P在抛物线上运动,可以体验到,△P AM得形状在变化,分别双击按钮“P在B左侧”、“P在x轴上方”与“P在A右侧”,可以显示△P AM与△OAC相似得三个情景.

双击按钮“第(3)题", 拖动点D在x轴上方得抛物线上运动,观察△DCA得形状与面积随D变化得图象,可以体验到,E就是AC得中点时,△DCA得面积最大.

思路点拨

1.已知抛物线与x轴得两个交点,用待定系数法求解析式时,设交点式比较简便、

2.数形结合,用解析式表示图象上点得坐标,用点得坐标表示线段得长.

3。按照两条直角边对应成比例,分两种情况列方程.

4。把△DCA可以分割为共底得两个三角形,高得与等于OA.

满分解答

(1)因为抛物线与x轴交于A(4,0)、B(1,0)两点,设抛物线得解析式为,代入点C得坐标(0,—2),解得.所以抛物线得解析式为.

(2)设点P得坐标为、

①如图2,当点P在x轴上方时,1〈x<4,,。

如果,那么.解得不合题意、

如果,那么.解得.

此时点P得坐标为(2,1).

②如图3,当点P在点A得右侧时,x>4,,。

解方程,得.此时点P得坐标为.

解方程,得不合题意.

③如图4,当点P在点B得左侧时,x〈1,,、

解方程,得。此时点P得坐标为.

解方程,得.此时点P与点O重合,不合题意。

综上所述,符合条件得点P得坐标为(2,1)或或、

图2 图3图4

(3)如图5,过点D作x轴得垂线交AC于E、直线AC得解析式为、

设点D得横坐标为m,那么点D得坐标为,点E得坐标为.所以.

因此.

当时,△DCA得面积最大,此时点D得坐标为(2,1)。

图5图6

考点伸展

第(3)题也可以这样解:

如图6,过D点构造矩形OAMN,那么△DCA得面积等于直角梯形CAMN得面积减去△CDN与△ADM得面积、

设点D得横坐标为(m,n),那么

.

由于,所以。

中考数学之全等三角形的存在性(讲义)

1. 2. 3. 1.

2.

3. 如图,在平面直角坐标系xOy 中,抛物线2y ax bx c =++与 y 交于点C (0 ,4),对称轴直线2x =与x 轴交于点D ,顶点为且DM =OC +OD .(1)求该抛物线的解析式. (2)设点P (x ,y )是第一象限内该抛物线上的一动点,△的面积为S ,求S 与x 之间的函数关系式,并写出自变量的取值范围. (3)设点Q 是y 轴右侧该抛物线上的一动点,若经过点Q 直线QE 与y 轴交于点E ,是否存在以O ,Q ,E 形与△OQD 全等?若存在,求出直线QE 的解析式;请说明理由.

4. 如图,在平面直角坐标系中,直线1l 过点A (1,0)且与 y 轴平 行,直线2l 过点B (0,2)且与x 轴平行,直线1l 与2l 相交于点P .点 E 为直线2l 上一点,反比例函数k y x =(0k >)的图象过点E 且 与直线1l 相交于点F . (1)若点E 与点P 重合,求k 的值. (2)连接OE ,OF ,EF .若2k >,且△OEF 的面积为△PEF 面积的2倍,求点E 的坐标. (3)是否存在点E 及y 轴上的点M ,使得以M ,E ,F 为顶点的三角形与△PEF 全等?若存在,求出点E 的坐标;若不存在,请说明理由.

【参考答案】 1. (1)223y x x =-++ (2)a =7,b =2或a =7,b =-2或a =-1,b =2或a =-1,b =-2或 a =1, b =-4或a =5,b =-4或a =5,b =4 2. (1)213442 y x x =-++ (2) (18(18-+-+---,, (4(4+, 3.(1) 21242y x x =-++(2)21 4(022 S x x x =-+<<+ (3)122y x =+,y =6或7 24 y x = - 4.(1)2 (2)(3,2)(3)3(2)8,,8 (2)3,

(完整版)二次函数与三角形的存在性问题的解法

二次函数与三角形的存在性问题 一、预备知识 1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y ) (1)线段对称轴是直线2x 2 1x x += (2)AB 两点之间距离公式:221221)()(y y x x PQ -+-= 中点公式:已知两点 ()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++222121y y ,x x 。 2、两直线的解析式为11b x k y +=与 22b x k y += 如果这两天两直线互相垂直,则有121-=?k k 3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2 (1)当k1=k2,b1≠b2 ,L1∥L2 (2)当k1≠k2, ,L1与L2相交 (3)K1×k2= -1时, L1与L2垂直 二、三角形的存在性问题探究: 三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形 (一)三角形的性质和判定: 1、等腰三角形 性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。 判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。 2、直角三角形 性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。 判定:有一个角是直角的三角形是直角三角形。 3、等腰直角三角形 性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。 判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形 4、等边三角形 性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。 判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。

一次函数之全等三角形存在性

一次函数之全等三角形存在性(北师版)11.26 1.(本小题16分)如图,直线与x轴、y轴分别交于A,B两点,若x轴的负半轴、y轴的负半轴上分别 存在点E,F,使得△EOF与△AOB全等,则直线EF的表达式为( ) ? A. B. ? C. D. 1 2 2.(本小题16分)如图,直线与x轴、y轴分别交于A,B两点,点C是直线上不与A,B重合 的动点.过点C的另一直线CD与y轴相交于点D,若使△BCD与△AOB全等,则点C的坐标为( ) ? A. B. ? C. D.

3.(本小题16分)如图,直线y=-2x+4与x轴、y轴分别交于A,B两点,点P(x,y)是直线y=-2x+4上的一个动点, 过P作AB的垂线与x轴、y轴分别交于E,F两点,若△EOF与△AOB全等,则点P的坐标为( ). A. B. ? C. D. 4.(本小题16分)如图,直线y=x+2与x轴、y轴分别交于A,B两点,点C是直线y=x+2上不与A,B重合的动点.过 点C的另一直线CD与x轴相交于点D,若使△ACD与△AOB全等,则点C的坐标为( ) ? A. B. ? C. D. 4 5 5.(本小题18分)如图,直线AB与x轴、y轴分别交于A,B两点,已知A(2,0),B(0,4),线段CD的两端点在坐标 轴上滑动(点C在y轴上,点D在x轴上),且CD=AB.若满足点C在y轴负半轴上,且△COD和△AOB全等,则满足题意的点D有( )个. A. 2 B. 3 C. 4 D. 5

6.(本小题18分)如图,直线与x轴、y轴分别交于A,B两点,点C的坐标为(-3,0), P(x,y)是直线上的一个动点(点P不与点A重合).当△OPC的面积为时,点P的坐标为( ) ? A. B. C. D. 一次函数之等腰三角形存在性(北师版) 11.25 1.(本小题16分)如图,直线与x轴、y轴分别交于A,B两点,点P是x轴上的动点, 若使△ABP为等腰三角形,则点P的坐标是( ) A. B. C. D.

第48讲压轴之函数与几何综合类型⑥全等三角形存在性问题探究

第48讲全等三角形存有性问题探究 【考点】抛物线上是否存有一点,使之与另3个点构成的两个三角形全等. 【重点】抛物线上是否存有一点,使之与另3个点构成的两个三角形全等. 【难点】1.一般有2个不确定的点,三角形形状不明确,学生分析对应边有困难.2.原理是“边角边”的全等判定理解有困难 【典型例题及针对训练】 【例】如图,在平面直角坐标系xOy中,点P(x,y)是抛物线y=-1 2x 2-2x+4上的一个动点,抛 物线的对称轴与x轴交于点D,经过点P的直线PE与y轴交于点E,是否存有△OPE与△OPD全等?若存有,请求出直线PE的解析式;若不存有,请说明理由. 1. 如图所示,m∥n,点B,C是直线n上两点,点A是直线m上一点,AB与AC的长不相等,在直线m上另找一点D,使得以点D,B,C为顶点的三角形和△ABC全等,这样的点D()A.不存有B.有1个C.有3个D.有无数个 2. 在如图所示的5×5方格中,每个小方格都是边长为1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC有一条公共边且全等的所有格点三角形的个数是() A.1 B.2 C.3 D.4 3.(2016·赤峰)如图,正方形ABCD的边长为3 cm,P,Q分别从B,A出发沿BC,AD方向运动,P点的运动速度是1 cm/s,Q点的运动速度是2 cm/s,连接AP并过点Q作QE⊥AP,垂足为E. (1)求证:△ABP∽△QEA; (2)当运动时间t为何值时,△ABP≌△QEA;

【提升训练】 3、如图,在平面直角坐标系中,已知抛物线y =ax 2+bx -8与x 轴交于A ,B 两点,与y 轴交于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称轴交于点E ,连接CE ,已知点A ,D 的坐标分别为(-2,0),(6,-8). (1)求抛物线的函数解析式,并分别求出点B 和点E 的坐标; (2)试探究抛物线上是否存有点F ,使△FOE ≌△FCE ,若存有,请写出点F 的坐标;若不存有,请 说明理由. 5.(2015·蚌埠六校联考)正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC 上(不含点B),∠ BPE =12 ∠ACB ,PE 交BO 于点E ,过点B 作BF ⊥PE ,垂足为F ,交AC 于点G. (1)当点P 与点C 重合时(如图1).求证:△BOG ≌△POE ; (2)通过观察、测量、猜想:BF PE =12 ,并结合图2证明你的猜想; (3)把正方形ABCD 改为菱形,其他条件不变(如图3),若∠ACB =α,求BF PE 的值.(用含α的式子表示)

直角三角形存在性

直角三角形的存在性问题代数法 1.写出三边的平方 2.分类列方程 3.解方程 几何法 1.分类 2.画图——“两线一圆” 3.计算

例1.如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1,0),C(0,-3). (1)求抛物线的解析式; (2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标; (3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.

例 2.如图,在直角坐标系中,R t△O A B的直角顶点A在x轴上,O A=4,A B=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O 移动;同时点N从点O出发,以每秒 1.25个单位长度的速度,沿O B 向终点B移动.当两个动点运动了x秒(0

例 3.(2015·益阳中考)已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A,B关于y轴的对称点分别为点A′,B′. (1)求m的值及抛物线E2所表示的二次函数的表达式. (2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q,B,B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由. (3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连接O P并延长与抛物线E2相交于点P′,求△P AA′与△P′BB′的面积之比.

中考压轴题等腰三角形存在性问题 -

中考压轴题等腰三角形存在性问题 数学因运动而充满活力,数学因变化而精彩纷呈.动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等.解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况.以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射. 动态几何形成的存在性问题是动态几何中的基本类型,包括等腰(边)三角形存在问题;直角三角形存在问题;平行四边形存在问题;矩形、菱形、正方形存在问题;梯形存在问题;全等三角形存在问题;相似三角形存在问题;其它存在问题等.本专题原创编写面动形成的等腰三角形存在性问题模拟题. 在中考压轴题中,面动形成的等腰三角形存在性问题的重点和难点在于应用分类思想和数形结合的思想准确地进行分类. 原创模拟预测题1.如图,抛物线 223 y x x =-++与y轴交于点C,点D(0,1),点P是 抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为. 【答案】(122)或(122). 【分析】当△PCD是以CD为底的等腰三角形时,则P点在线段CD的垂直平分线上,由C、D坐标可求得线段CD中点的坐标,从而可知P点的纵坐标,代入抛物线解析式可求得P 点坐标. 【解析】 ∵△PCD是以CD为底的等腰三角形,∴点P在线段CD的垂直平分线上,如图,过P作 PE⊥y轴于点E,则E为线段CD的中点,∵抛物线 223 y x x =-++与y轴交于点C,∴C (0,3),且D(0,1),∴E点坐标为(0,2),∴P点纵坐标为2,在 223 y x x =-++中, 令y=2,可得 2232 x x -++=,解得x=12 ±,∴P点坐标为(122)或(12, 2),故答案为:(122)或(12,2).

直角三角形存在性问题解决方法汇总

【问题描述】 如图,在平面直角坐标系中,点A 坐标为(1,1),点B 坐标为(5,3),在x 轴上找一点C 使得△ABC 是直角三角形,求点C 坐标. 【几何法】两线一圆得坐标 (1)若∠A 为直角,过点A 作AB 的垂线,与x 轴的交点即为所求点C ; (2)若∠B 为直角,过点B 作AB 的垂线,与x 轴的交点即为所求点C ; (3)若∠C 为直角,以AB 为直径作圆,与x 轴的交点即为所求点C .(直径所对的圆周角为直角) 重点还是如何求得点坐标,C1、C2求法相同,以C2为例: 【构造三垂直】 01问题与方法

C3、C4求法相同,以C3为例: 构造三垂直步骤: 第一步:过直角顶点作一条水平或竖直的直线; 第二步:过另外两端点向该直线作垂线,即可得三垂直相似.【代数法】表示线段构勾股 还剩下C1待求,不妨来求下C1: 【解析法】 还有个需要用到一个教材上并没有出现但是大家都知道的算法:互相垂直的两直线斜率之积为-1. 考虑到直线AC1与AB互相垂直,k1k2=-1, 可得:kAC=-2, 又直线AC1过点A(1,1), 可得解析式为:y=-2x+3, 所以与x轴交点坐标为(1.5,0), 即C1坐标为(1.5,0). 确实很简便,但问题是这个公式出现在高中的教材上

方法小结 几何法: (1)两线一圆作出点; (2)构造三垂直相似,利用对应边成比例求线段,必要时可设未知数. 代数法: (1)表示点A、B、C坐标; (2)表示线段AB、AC、BC; (3)分类讨论①AB2+AC2=BC2、②AB2+BC2=AC2、③AC2+BC2=AB2; (4)代入列方程,求解. 02从等腰直角说起 再特殊一些,如果问题变为等腰直角三角形存在性,则同样可采取上述方法,只不过三垂直得到的不是相似,而是全等. 2019兰州中考删减 【等腰直角存在性——三垂直构造全等】 通过对下面数学模型的研究学习,解决问题. 【模型呈现】 如图,在Rt△ABC,∠ACB=90°,将斜边AB绕点A顺时针旋转90°得到AD,过点D作DE⊥AC于点E,可以推理得到△ABC≌△DAE,进而得到AC=DE,BC=AE.我们把这个数学模型成为“K型”. 推理过程如下: 【模型迁移】 二次函数y=ax2+bx+2的图像交x轴于点A(-1,0),B(4,0)两点,交y轴于点C.动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式; (2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.

相似三角形的存在性问题解题策略

中考数学压轴题解题策略(2) 相似三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者 上海 马学斌 专题攻略 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验,如例题1、2、3、4. 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等,如例题6. 应用判定定理3解题不多见,如例题5,根据三边对应成比例列连比式解方程(组). 例题解析 例? 如图1-1,抛物线213482 y x x =-+与x 轴交于A 、B 两点(A 点在B 点左侧),与y 轴交于点C .动直线EF (EF //x 轴)从点C 开始,以每秒1个单位的速度沿y 轴负方向平移,且分别交y 轴、线段BC 于E 、F 两点,动点P 同时从点B 出发,在线段OB 上以每秒2个单位的速度向原点O 运动.是否存在t ,使得△BPF 与△ABC 相似.若存在,试求出t 的值;若不存在,请说明理由. 图1-1 【解析】△BPF 与△ABC 有公共角∠B ,那么我们梳理两个三角形中夹∠B 的两条边. △ABC 是确定的.由213482 y x x = -+,可得A (4, 0)、B (8, 0)、C (0, 4). 于是得到BA =4,BC =12CE CO EF OB ==. △BPF 中,BP =2t ,那么BF 的长用含t 的式子表示出来,问题就解决了. 在Rt △EFC 中,CE =t ,EF =2t ,所以CF . 因此)BF t ==-. 于是根据两边对应成比例,分两种情况列方程: ①当BA BP BC BF ==.解得43t =(如图1-2).

一次函数之全等三角形存在性

一次函数之全等三角形存在性(北师版)11.26
1.(本小题 16 分) 如图,直线 与 x 轴、y 轴分别交于 A,B 两点,若 x 轴的负半轴、y 轴的负半轴上分别 )
存在点 E,F,使得△EOF 与△AOB 全等,则直线 EF 的表达式为(
?
A.
B.
?
C.
D.
1
2
2.(本小题 16 分) 如图,直线
与 x 轴、y 轴分别交于 A,B 两点,点 C 是直线
上不与 A,B 重合 )
的动点.过点 C 的另一直线 CD 与 y 轴相交于点 D,若使△BCD 与△AOB 全等,则点 C 的坐标为(
?
A.
B.
?
C.
D.
3.(本小题 16 分) 如图,直线 y=-2x+4 与 x 轴、y 轴分别交于 A,B 两点,点 P(x,y)是直线 y=-2x+4 上的一个动点, 过 P 作 AB 的垂线与 x 轴、y 轴分别交于 E,F 两点,若△EOF 与△AOB 全等,则点 P 的坐标为( ).
A.
B.
?
C.
D.

4.(本小题 16 分) 如图,直线 y=x+2 与 x 轴、y 轴分别交于 A,B 两点,点 C 是直线 y=x+2 上不与 A,B 重合的动点.过 点 C 的另一直线 CD 与 x 轴相交于点 D,若使△ACD 与△AOB 全等,则点 C 的坐标为(
? ?
)
A. C.
B. D.
4
5
5.(本小题 18 分) 如图,直线 AB 与 x 轴、y 轴分别交于 A,B 两点,已知 A(2,0),B(0,4),线段 CD 的两端点在坐标 轴上滑动(点 C 在 y 轴上,点 D 在 x 轴上),且 CD=AB.若满足点 C 在 y 轴负半轴上,且△COD 和△AOB 全等,则满足 题意的点 D 有( )个. A. 2 B. 3 C. 4 D. 5
6.(本小题 18 分) 如图,直线
与 x 轴、y 轴分别交于 A,B 两点,点 C 的坐标为(-3,0),
P(x,y)是直线
上的一个动点(点 P 不与点 A 重合).当△OPC 的面积为
时,点 P 的坐标为(
)
?
A.
B.
C.
D.

2018二次函数与直角三角形存在性问题

二次函数中直角三角形存在性问题 1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么 以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点 2. 方法:以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1 以已知线段为斜边时,利用K 型图,构造双垂直模型,最后利用相似求解,或者 三条边分别表示之后,利用勾股定理求解 例一:如图,抛物线()2 230y mx mx m m =-->与x 轴交于A B 、两点,与y 轴交于C 点. (1)请求出抛物线顶点M 的坐标(用含m 的代数式表示),A B 、两点的坐标; (2)经探究可知,BCM △与ABC △的面积比不变,试求出这个比值; (3)是否存在使BCM △为直角三角形的抛物线?若存在,请求出;如果不存在,请说明 理由.

例二、如图,抛物线y=-x2+mx+n与x轴分别交于点A(4,0),B(-2,0),与y轴交于点C.(1)求该抛物线的解析式; (2)M为第一象限内抛物线上一动点,点M在何处时,△ACM的面积最大; (3)在抛物线的对称轴上是否存在这样的点P,使得△PAC为直角三角形?若存在,请求出所有可能点P的坐标;若不存在,请说明理由. 练习:

2.如图,抛物线y=x2-2mx (m>0)与x轴的另一个交点为A,过P(1,-m)作PM⊥x轴与点M,交抛物线于点B.点B关于抛物线对称轴的对称点为C. (1)若m=2,求点A和点C的坐标; (2)令m>1,连接CA,若△ACP为直角三角形,求m的值; (3)在坐标轴上是否存在点E,使得△PEC是以P为直角顶点的等腰直角三角形?若存在,求出点E的坐标;若不存在,请说明理由. 3. 如图,抛物线y=ax2+bx+2与x轴交于点A(1,0)和B(4,0).

相似三角形存在性问题

因动点产生得相似三角形问题 例1 2015年上海市宝山区嘉定区中考模拟第24题 如图1,在平面直角坐标系中,双曲线(k≠0)与直线y=x+2都经过点A(2, m). (1)求k与m得值; (2)此双曲线又经过点B(n, 2),过点B得直线BC与直线y=x+2平行交y轴于点C,联结AB、AC,求△ABC得面积; (3)在(2)得条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成得三角形与△ACD相似,且相似比不为1,求点E得坐标、 图1 动感体验 请打开几何画板文件名“15宝山嘉定24”,拖动点E在射线CB上运动,可以体验到, △ACE与△ACD相似,存在两种情况。 思路点拨 1、直线AD//BC,与坐标轴得夹角为45°. 2.求△ABC得面积,一般用割补法. 3。讨论△ACE与△ACD相似,先寻找一组等角,再根据对应边成比例分两种情况列方程. 满分解答 (1)将点A(2, m)代入y=x+2,得m=4.所以点A得坐标为(2,4). 将点A(2, 4)代入,得k=8。 (2)将点B(n, 2),代入,得n=4。 所以点B得坐标为(4, 2)、 设直线BC为y=x+b,代入点B(4, 2),得b=—2. 所以点C得坐标为(0,—2). 由A(2, 4) 、B(4, 2) 、C(0,-2),可知A、B两点间得水平距离 与竖直距离都就是2,B、C两点间得水平距离与竖直距离都就是4. 所以AB=,BC=,∠ABC=90°.

图2 所以S△ABC===8、 (3)由A(2, 4)、D(0, 2) 、C(0,—2),得AD=,AC=、 由于∠DAC+∠ACD=45°,∠ACE+∠ACD=45°,所以∠DAC=∠ACE。 所以△ACE与△ACD相似,分两种情况: ①如图3,当时,CE=AD=. 此时△ACD≌△CAE,相似比为1. ②如图4,当时,、解得CE=.此时C、E两点间得水平距离与竖直距离都就是10,所以E(10, 8)、 图3 图4 考点伸展 第(2)题我们在计算△ABC得面积时,恰好△ABC就是直角三角形、 一般情况下,在坐标平面内计算图形得面积,用割补法、 如图5,作△ABC得外接矩形HCNM,MN//y轴. 由S矩形HCNM=24,S△AHC=6,S△AMB=2,S△BCN=8,得S△ABC=8. 图5 例22014年武汉市中考第24题 如图1,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm得速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm得速度向点B匀速运动,运动时间为t秒(0

全等三角形的存在性问题针对演练

第二部分 攻克题型得高分 题型八 二次函数综合题 类型四 全等三角形的存在性问题 针对演练 1. (2017常州节选)如图,在平面直角坐标系xOy 中,已知二次函数y =-12x 2 +bx 的图象过点A (4,0),顶点为B ,连接AB 、BO . (1)求二次函数的表达式; (2)若点D 在线段BO 上,OD =2DB ,点E 、F 在△OAB 的边上,且满足△DOF 与△DEF 全等,求点E 的坐标. 第1题图 第2题图 2. (2017包头)如图,在平面直角坐标系中,已知抛物线y =3 2x 2 +bx +c 与x 轴交于A (-1,0),B (2,0)两点,与y 轴交于点C . (1)求该抛物线的解析式; (2)直线y =-x +n 与抛物线在第四象限内交于点D ,与线段BC 交于点E ,与x 轴交于点F ,且BE =4EC . ①求n 的值; ②连接AC ,CD ,线段AC 与线段DF 交于点G ,△AGF 与△CGD 是否全等?请说明理由;

答案 1. (1)解:∵二次函数图象过点A(4,0), ∴将点A(4,0)代入二次函数表达式y =-12x 2+bx 可得-1 2×42 +4b =0, 解得b =2, ∴二次函数的表达式为y =-12x 2 +2x ; (2)此二次函数的对称轴为x =-b 2a =2,∵点B 在二次函数的对称轴上, ∴B 点为(2,2) ∴OB =22, ∴OD =2BD ,∴OD =42 3. 如解图①,当点F ,点E 均在OA 上,且△DFO ≌△DFE ,则DF ⊥OA , 第1题解图① ∴DF =43=OF =EF ,此时点E 的坐标为(8 3,0); 其他情况不存在; 如解图②,当点F 在OA 上,点E 在AB 上,

直角三角形的存在性问题解题策略

中考数学压轴题解题策略(3) 直角三角形的存在性问题解题策略 《挑战压轴题·中考数学》的作者上海马学斌 专题攻略 解直角三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根. 一般情况下,按照直角顶点或者斜边分类,然后按照三角比或勾股定理列方程. 有时根据直角三角形斜边上的中线等于斜边的一半列方程更简便. 解直角三角形的问题,常常和相似三角形、三角比的问题联系在一起. 如果直角边与坐标轴不平行,那么过三个顶点作与坐标轴平行的直线,可以构造两个新的相似直角三角形,这样列比例方程比较简便. 在平面直角坐标系中,两点间的距离公式常常用到. 怎样画直角三角形的示意图呢?如果已知直角边,那么过直角边的两个端点画垂线,第三个顶点在垂线上;如果已知斜边,那么以斜边为直径画圆,直角顶点在圆上(不含直径的两个端点). 例题解析 例?如图1-1,在△ABC中,AB=AC=10,cos∠B=4 5 .D、E为线段BC上的两个 动点,且DE=3(E在D右边),运动初始时D和B重合,当E和C重合时运动停止.过E 作EF//AC交AB于F,连结DF.设BD=x,如果△BDF为直角三角形,求x的值. 图1-1 【解析】△BDF中,∠B是确定的锐角,那么按照直角顶点分类,直角三角形BDF存在两种情况.如果把夹∠B的两条边用含有x的式子表示出来,分两种情况列方程就可以了.如图1-2,作AH⊥BC,垂足为H,那么H是BC的中点. 在Rt△ABH中,AB=10,cos∠B=4 5 ,所以BH=8.所以BC=16. 由EF//AC,得BF BE BA BC =,即 3 1016 BF x+ =.所以BF= 5 (3) 8 x+. 图1-2 图1-3 图1-4

初中数学相似三角形的存在性问题(word版+详解答案)

相似三角形的存在性问题 【考题研究】 相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快. 【解题攻略】 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 【解题类型及其思路】 相似三角形存在性问题需要注意的问题: 1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。 2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF , ②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、 3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。 【典例指引】 类型一 【确定符合相似三角形的点的坐标】 典例指引1.(2019·贵州中考真题)如图,抛物线212 y x bx c = ++与直线1 32y x =+分别相交于A ,B 两 点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.

中考数学压轴题破解策略专题25《全等三角形的存在性》

专题25《全等三角形的存在性》 破解策略 全等三角形的存在性问题的解题策略有: (1)当有一个三角形固定时(三角形中所有边角为定值),另一个三角形会与这个固定的三角形有一个元素相等;再根据全等三角形的判定,利用三角函数的知识(画图)或列方程来求解. (2)当两个三角形都不固定时(三角形中有角或边为变量),若条件中有一条边对应相等时,就要使夹这条边的两个角对应相等,或其余两条边对应相等;若条件中有一个角对应相等时,就要使夹这个角的两边对应相等,或再找一个角和一条边对应相等. 例题讲解 例1 如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B. (1)求抛物线的表达式; (2)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,求点P 的坐标;若不存在,请说明理由. (3)若点M在y轴的正半轴上,连结MA,过点M作MA的垂线,交抛物线的对称轴于点N.问:是否存在点M,使以点M、A、N为顶点的三角形与△BAN全等?若存在,求出点M 的坐标;若不存在,请说明理由. 解:(1)由题意可列方程组 4240 3 2 a b b a -+= ? ? ? -= ?? ,解得 1 4 3 2 a b ? =- ?? ? ?= ?? ,

所以抛物线的表达式为213 442 y x x =-++. (2)显然OA =2, OB =3, OC =4. 所以5BC BA =. 若△P BD ≌△PBC ,则BD = BC =5,PD =PC 所以D 为抛物线与x 轴的左交点或右交点,点B ,P 在CD 的垂直平分线上, ①若点D 为抛物线与 x 轴的左交点,即与点A 重合. 如图1,取AC 的中点E ,作直线BE 交抛物线于P 1(x 1,y 1),P 2(x 2.y 2)两点. 此时△P 1BC ≌△P 1BD ,△P 2BC ≌△P 2 B D . 由A 、C 两点的坐标可得点E 的坐标为(-1,2). 所以直线BE 的表达式为13 22y x =-+. 联立方程组2132213442y x y x x ?=-+????=-++?? ,解得114x y ?=??=?? 224x y ?=+??= ?? . 所以点P 1,P 2的坐标分别为(4 ).(4 ②若D 为抛物线与x 轴的右交点,则点D 的坐标为(8,0). 如图2,取CD 的中点F .作直线BF 交抛物线于P 3(x 3,y 3),P 4(x 4,,y 4)两点. 此时△P 3BC ≌△P 3BD ,△P 4BC ≌△P 4 B D . 由C 、D 两点的坐标可得点F 的坐标为(4,2), 所以直线BF 的表达式为y =2x -6. 联立方程组22613 442y x y x x =-?? ?=-++?? ,解得3318x y ?=-+??=-+?? 4418x y ?=--??=--??所以点P 3,P 4的坐标分别为(-1 ,-8+ ),( -1 ,-8- ), 综上可得,满足题意的点P 的坐标为(4 ),(4 (-1 ,-8+ )或(-1 ,-8- ). (3)由题意可设点M (0,m ),N (3,n ),且m >0, 则AM 2=4+m 2,MN 2=9+(m -n )2,BN 2=n 2. 而∠AMN =∠ABN =900 , 所以△AMN 与△ABN 全等有两种可能: ①当AM =AB ,MN =BN 时, 可列方程组222 4259()m m n n ?+=? ?+-=?? ,解得11m n ?=??=?? 22m n ?=??=?? (舍), 所以此时点M 的坐标为(0 ). ②当AM =NB ,MN =BA 时,可列方程组:222 49()25 m n m n ?+=??+-=??·

二次函数压轴题等腰三角形存在性-直角三角形存在性

中考数学压轴题 一、等腰三角形存在性 1 解题思想:分类讨论 2 解题技巧:坐标系内线段长度表示 (1)线段在坐标轴上或平行于坐标轴 在x轴或平行于x轴:x右-x左 在y轴或平行于y轴:y上-y下 (2)线段为倾斜(斜线段)A(X A,Y A)B(X B,Y B)C(X C,Y C) 由勾股定理得:AB2= AC2= BC2= 3 解题方法 (1)代数法:(1)根据条件用坐标表示三边或三边的平方 (2)分三种情况列方程,解方程 (3)根据题目条件及方程解确定坐标(注意重根) (2)几何法:(1)先分三种情况A为顶点,B为顶点,C为顶点 (2)画图,作圆法,垂直平分线法 (3)计算:以两定点为腰则腰长已知,先求出腰长进行几何构造,注意不要漏解,以两定点为底则利用腰相等建立方程求解(表示腰长可结合代数法)。 例1. 如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B 两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标. 代数法: 几何法: 例2 如图△ABC中,AB=AC=5,BC=6,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持DE∥BC,以ED为边,在点A的异侧作正方形DEFG.

(1)试求△ABC 的面积; (2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设AD=x ,当△BDG 是等腰三角形时,求出AD 的长. 只能选择几何法 1 先分析三种情况 2 根据已知表示三边长度(相似) 3 列方程计算 同步练习: 1.如图,抛物线2 54y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC=BC . (1)写出A,B,C 三点的坐标并求抛物线的解析式; (2)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由. 2.如图,点A 在x 轴上,OA =4,将线段OA 绕点O 顺时针旋转120°至OB 的位置. A C B y x 0 1 1

初中数学专题03相似三角形的存在性问题(原卷版)

专题三 相似三角形的存在性问题 【考题研究】 相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快. 【解题攻略】 相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等. 判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。 应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等. 应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组). 【解题类型及其思路】 相似三角形存在性问题需要注意的问题: 1、若题目中问题为△ABC ∽△DEF ,则对应线段已经确定。 2、若题目中为△ABC 与 △DEF 相似,则没有确定对应线段,此时有三种情况:①△ABC ∽△DEF , ②△ABC ∽△FDE 、 ③△ABC ∽△EFD 、 3、若题目中为△ABC 与 △DEF 并且有 ∠A 、 ∠D (或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC ∽△DEF ,②、△ABC ∽△DFE 需要分类讨论上述的各种情况。 【典例指引】 类型一 【确定符合相似三角形的点的坐标】 典例指引1.(2019·贵州中考真题)如图,抛物线212 y x bx c = ++与直线1 32y x =+分别相交于A ,B 两 点,且此抛物线与x 轴的一个交点为C ,连接AC ,BC .已知(0,3)A ,(3,0)C -.

中考数学压轴题专题全等三角形的存在性

专题25 全等三角形的存在性 破解策略 全等三角形的存在性问题的解题策略有: (1)当有一个三角形固定时(三角形中所有边角为定值),另一个三角形会与这个固 定的三角形有一个元素相等;再根据全等三角形的判定,利用三角函数的知识(画图)或列方程来求解. (2)当两个三角形都不固定时(三角形中有角或边为变量),若条件中有一条边对应 相等时,就要使夹这条边的两个角对应相等,或其余两条边对应相等;若条件中有一个角对应相等时,就要使夹这个角的两边对应相等,或再找一个角和一条边对应相等. 例题讲解 例1 如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B. (1)求抛物线的表达式; (2)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,求点P 的坐标;若不存在,请说明理由. (3)若点M在y轴的正半轴上,连结MA,过点M作MA的垂线,交抛物线的对称轴于点N.问:是否存在点M,使以点M、A、N为顶点的三角形与△BAN全等?若存在,求出点M 的坐标;若不存在,请说明理由. 解:(1)由题意可列方程组 4240 3 2 a b b a -+= ? ? ? -= ?? ,解得 1 4 3 2 a b ? =- ?? ? ?= ?? ,

所以抛物线的表达式为213 442 y x x =-++. (2)显然OA =2, OB =3, OC =4. 所以225BC OB OC BA =+==. 若△P BD ≌△PBC ,则BD = BC =5,PD =PC 所以D 为抛物线与x 轴的左交点或右交点,点B ,P 在CD 的垂直平分线上, ①若点D 为抛物线与 x 轴的左交点,即与点A 重合. 如图1,取AC 的中点E ,作直线BE 交抛物线于P 1(x 1,y 1),P 2(x 2.y 2)两点. 此时△P 1BC ≌△P 1BD ,△P 2BC ≌△P 2 B D . 由A 、C 两点的坐标可得点E 的坐标为(-1,2). 所以直线BE 的表达式为1322 y x =-+. 联立方程组21322 13442y x y x x ?=-+????=-++?? ,解得114261262x y ?=-??-+=??,224261262x y ?=+??--= ?? . 所以点P 1,P 2的坐标分别为(4一26, 1262 -+).(4+26,1262--). ②若D 为抛物线与x 轴的右交点,则点D 的坐标为(8,0). 如图2,取CD 的中点F .作直线BF 交抛物线于P 3(x 3,y 3),P 4(x 4,,y 4)两点. 此时△P 3BC ≌△P 3BD ,△P 4BC ≌△P 4 B D . 由C 、D 两点的坐标可得点F 的坐标为(4,2), 所以直线BF 的表达式为y =2x -6. 联立方程组22613 442y x y x x =-?? ?=-++?? ,解得331418241x y ?=-+??=-+??,441418241x y ?=--??=--?? 所以点P 3,P 4的坐标分别为(-1+41,-8+241),( -1-41,-8-241), 综上可得,满足题意的点P 的坐标为(426126-+),(426126 --, (-1418+41)或(-1418-41). (3)由题意可设点M (0,m ),N (3,n ),且m >0, 则AM 2=4+m 2,MN 2=9+(m -n )2,BN 2=n 2. 而∠AMN =∠ABN =900 , 所以△AMN 与△ABN 全等有两种可能: ①当AM =AB ,MN =BN 时, 可列方程组222 4259()m m n n ?+=? ?+-=??,解得1121521m n ?=??=??2221521m n ?=-??=??(舍), 所以此时点M 的坐标为(021). ②当AM =NB ,MN =BA 时,可列方程组:222 49()25 m n m n ?+=??+-=??·

(完整版)全等三角形难题题型归类及解析

全等三角形难题题型归类及解析 一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴 对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是 经过平分线上一点作两边的垂线。另外掌握两个常用的结论:角平分 线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。 1. 如图,在Δ ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取 AE=AC, 连结DE,已知DE=2cm,BD=3cm,求线段BC的长。 已知:如图所示,BD为∠ ABC的平 分线,?PN⊥CD于N,判断PM与 PN的关系. AB=BC,点P在BD上,PM⊥AD于 M, 3. 如图所示,P为∠ AOB的平分线上一 点,若OC=4cm,求AO+BO的值. BD 2. PC⊥OA于C,?∠OAP+∠OBP=18°0 ,

4. 已知: 如 图 E 在△ ABC 的边 AC 上,且∠ AEB=∠ABC 。 ABE=∠C ; (2) 若∠BAE 的平分线 AF 交 BE 于 F ,FD ∥BC 交 AC 于 D ,设 AB=5, AC=8,求 DC 的长。 5、如图所示,已知∠ 1=∠2,EF ⊥AD 于 P ,交 BC 延长线于 M ,求证: 2∠M= (∠ ACB- ∠B ) 6、如图,已知在△ ABC 中,∠ BAC 为直角, AB=AC ,D 为 AC 上一点, CE ⊥BD 于 E . 1 (1) 若 BD 平分∠ ABC ,求证 CE=2BD ; (2) 若 D 为 AC 上一动点,∠AED 如何变化, 若变化,求它的变化范 围; 若不变,求出它的度数,并说明理由。

相关文档
最新文档