制冷压缩机性能测试实验

制冷压缩机性能测试实验
制冷压缩机性能测试实验

制冷压缩机性能测试实验

试验台简介

本试验台采用图1所示系统,通过阀门的转换,可进行制冷压缩机性能测试实验、冷水机组性能实验、水-水换热器性能实验和水泵性能实验。

制冷压缩机性能实验系统由压缩机、冷凝器、蒸发器、电子膨胀阀、恒温器电参数仪等设备组成。压缩机吸气压力、吸气温度、排气压力分别控制在国家标准规定的状态下。吸气温度由恒温器2调节蒸发器冷媒水进口温度T9控制,吸气压力由电子膨胀阀控制,排气压力由恒温器1调节冷凝器冷却水进口温度T7控制。压缩机的实际制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。由此得到压缩机的主辅测质量流量,进而计算出标准工况下的主辅侧制冷量。压缩机的输入功率由电参数仪测得。在制冷系统内部安装多个压力和温度测点,可以方便地确定系统内部的状态。

冷水机组性能实验系统,由压缩机、冷凝器、蒸发器、热力膨胀阀、恒温器等设备组成。实验时,可以设置不同的冷媒水和冷却水温度。冷水机组冷媒水进口温度通过调节恒温器2中的电加热器控制,冷却水进口温度通过调节恒温器1中的电加热器控制,而出口温度则通过阀门调节。冷水机组的输入功率通过电参数仪表测得。冷水机组的制冷量由通过蒸发器的冷媒水进出口温度和流量测出,冷凝换热量由通过冷凝器的冷却水进出口温度及流量测得。同时在系统中加入了相应的温度和压力测点,可以使学生能更加深入地了解冷水机组的工作特性。

水-水换热器性能实验系统,由冷水机组、恒温器、流量计、水泵等设备组成。冷热侧流体分别通过冷水机组和恒温器1获得。换热器冷侧和热侧流体进口温度分别通过恒温器2和恒温器1控制。通过测量换热器两侧流体进出口温度和两侧的流量,可以求出换热量,在已知换热面积的前提下,可以求出换热器的换热系数K。

水泵性能实验系统,由水泵、流量计、电参数仪等设备组成。水泵的流量通过流量计测得,水泵的扬程通过水泵进出口压力变送器测得。在水泵的出口处设立调节阀,通过改变阀门的开度来改变水泵进口处的参数,获得水泵变工况运行特性曲线。

图1 试验台系统图

一、实验目的

1、通过本试验,熟悉和了解制冷压缩机的测试工况和测试方法,增强对制冷压缩机的认识。

2、学习本实验中所涉及的各种参数的测量方法,掌握制冷压缩机性能的热力计算。

3、熟悉对制冷压缩机性能实验系统软件的操作。

二、实验原理

制冷压缩机的性能随蒸发温度和冷凝温度的变化而变化,因此需要在国家标准规定的工况下进行制冷压缩机的性能测试。

压缩机的性能可由其工作工况的性能系数COP 来衡量:

0Q COP W

= 式中,0Q 为压缩机的制冷量;

W 为压缩机输入功率。

在一个确定的工况下,蒸发温度、冷凝温度、吸气温度以及过冷度都是已知的。这样,对于单级蒸气压缩式制冷机来说,其循环p-h 图如图2 所示。

图2

图中,1点为压缩机吸气状态;4-5为过冷段。

在特定工况下,压缩机的单位质量制冷量是确定的,即:015q h h =- 。这样只要测得流经压缩机的制冷剂质量流量m G ,就可计算出压缩机的制冷量,即

0015()m m Q G q G h h =?=?-

压缩机的输入功率:开启式压缩机为输入压缩机的轴功率,封闭式(包括半封闭式和全封闭式)压缩机为电动机输入功率。

三、实验方法

为了确保实验系统运行在一个特定的工况下,实验中通过控制吸气压力、排气压力和吸气温度这三个量稳定在设定值附近。这三个参数允许的偏差范围按如下规定: 实验参数 每一个测量值与规定值

控制,吸气温度用载冷剂进口温度T9通过恒温器2控制。

压缩机性能实验要包括主要试验和校核试验,二者应同时进行测量。校核试验和主要试验的试验结果之间的偏差应在4%±以内,并以主要试验的测量结果为计算依据。

本次实验中的主要试验是通过测量冷凝器的换热量,从而根据冷凝器热平衡关系计算出流经压缩机的制冷剂流量,并由此流量计算出压缩机制冷量,为主测制冷量。而校核试验是对蒸发器进行的,通过测量蒸发器的换热量,由蒸发器的热平衡关系,得出流经压缩机的制冷剂流量,同样可根据该流量计算出压缩机制冷量,为辅测制冷量。判断主测制冷量和辅测制冷量的偏差,如偏差在4%±以内,则以主测制冷量进行计算压缩机性能系数。

通过恒温器1、恒温器2 、电子膨胀阀控制调节系统稳定运行在指定的标准工况下,则此时压缩机在标准工况下的单位质量制冷量是确定的,为

*

*

015q h h =-

式中,*1h 、*

5h 为标准工况的焓值。

a) 主测制冷量的计算

本实验中,主测制冷量的计算是从冷凝器端考虑的。首先,冷凝器的换热量可由冷却水侧的热量变化来计算,为

111187()Q Cp G T T ρ'=???-

式中,1Q '——冷凝器的冷凝换热量(kW );

1Cp ——冷却水比热容 (()kJ kg K ?);

1G ——由涡轮流量计1测得的载冷剂流量(3m );

1ρ——冷却水密度(3kg m );

7T ——冷却水进口温度(K );

8T ——冷却水出口温度(K )。

其中计算某一温度t 时冷却水比热容1Cp 和密度1ρ公式如下:

21 4.2060.001305910.00001378982Cp t t =--

2311000.830.083883760.0037279550.000003664106t t t ρ=--+

同样,根据冷凝器制冷剂侧的热量变化也可计算出冷凝器的换热量,在不考虑冷凝器漏热损失的情况下,可以认为由制冷剂侧的换热量应等于冷却水侧的热量变化1Q '。这样,即有 :

1341()Gm h h Q '?-=

式中,1Gm ——冷凝器制冷剂侧制冷剂质量流量,即主测制冷剂流量; 34,h h ——取测试工况下对应点的焓值。

由此,可以计算出主测制冷剂流量,从而对比标准工况下吸气口制冷剂比容差异,可得到标准工况下主测制冷量1Q 为:

1110*

1

v Q Gm q v =?? 式中,1v ——测试工况下的压缩机吸气口制冷剂比容;

*

1v ——标准工况下的压缩机吸气口制冷剂比容。

b) 辅测制冷量的计算

相对于主测制冷量,本实验的辅测制冷量的计算,是从制冷系统另一主要热交换器——

蒸发器着手考虑的。同样,根据蒸发器两侧流体的热平衡来计算辅测的制冷剂制冷流量。

蒸发器制冷量先可由载冷剂的热量变化来计算,即

2222910()Q Cp G T T ρ'=???-

式中,2Q '——蒸发器制冷量(kW );

2Cp ——载冷剂比热容 (()kJ kg K ?);

2G ——由涡轮流量计2测得的载冷剂流量(3m s );

2ρ——载冷剂密度(3kg m );

9T ——载冷剂进口温度(K );

10T ——载冷剂出口温度(K )。

其中计算某一温度t 时载冷剂(质量浓度为35%的乙二醇溶液)比热容2Cp 和密度2ρ公式如下:

2 4.091760.00106375Cp t =+

221001.440.194910.00243t t ρ=--

在不考虑蒸发器“跑冷”损失的情况下,则有蒸发器热平衡关系计算出辅测制冷剂流量2Gm ,为

2265

Q Gm h h '=- 式中,56,h h ——取测试工况下对应点的焓值。

再对比标准工况下吸气口制冷剂比容差异,可得到标准工况下辅测制冷量2Q 为:

1220*1

v Q Gm q v =?? 式中,1v ——测试工况下的压缩机吸气口制冷剂比容;

*

1v ——标准工况下的压缩机吸气口制冷剂比容。

四、操作步骤

(一)实验前的准备工作

1、仔细阅读本实验指导以及相关资料,对本实验的方法和原理做到充分了

解。

2、熟悉本实验系统流程,打开相应阀门(各阀门编号见系统总图),使总实

验装置处于压缩机实验运行流程。阀门具体操作如下:

a)制冷剂环路:打开阀门D,以使用电子膨胀阀(阀门F)进行控制(确保阀门C处于关闭状态)。阀门A、G均已调至合适状态,无需再调。

b)冷却水环路:打开阀门2、7、13、6、1;

c)载冷剂环路:打开阀门17。

其余阀门(红色标签的)应都处于关闭状态。阀门15用于给系统补充载冷

剂。

3、确保双元件铂电阻T1放在压缩机吸气口,以控制压缩机吸气温度。

(二)实验开始

1、接通多功能试验台电源,将控制台上选择开关切换至“压缩机”档。首

先,打开冷却塔水泵电源,使冷却水环路运行。其次,对控制台进行开关操作,依次启动冷媒泵、电子膨胀阀、恒温器(1)、恒温器(2)、被测压缩机。检查压缩机是否正常运转,若压缩机并未启动,按下装置现场压缩机旁电器柜的复位按钮。

注: 试验台上绿色按钮表示启动状态。被测压缩机只有在冷媒泵启动后才能开启。

2、在系统设置界面设置实验设定参数;

3、切换到压缩机实验控制量过程线界面,观察压缩机吸气温度和吸、排气

压力曲线;

4、待系统稳定运行在设定工况附近后,开始记录实验数据;

5、实验数据记录完毕后,选择打印控制量过程线,查看工况稳定程度,并

打印报表及数据记录表。

(三)实验结束

1、退出制冷压缩机性能实验系统软件。

2、依次关闭控制台上电子膨胀阀、被测压缩机、恒温器(1)、恒温器(2)、

冷媒泵电源。并将控制台上选择开关复位至零位。断开试验台总开关。

3、关闭制冷剂环路阀门D;关闭冷却水环路和载冷剂环路所有阀门(红色

标签的阀门)。

4、分析实验数据,撰写实验报告。

五、习题

1.根据测试记录的数据,计算制冷压缩机的性能系数(COP),需要有比较详细的计算过程。

2.本实验台架中,流量、温度和压力的测量使用了哪些传感器?简单说明其原理。

3.制冷压缩机按结构原理分有哪些类型?

4.制冷压缩机中“液击”指的是什么?如何避免“液击”现象?

5.本实验台架中,蒸发器和冷凝器分别选用了什么类型的换热器?为什么这样选择?

6. 本实验台架中,2只恒温器的作用分别是什么?

YUYJD55制冷压缩机性能测试实训装置

YUY-JD55制冷压缩机性能测试实训装置 实 验 指 书 导 上海育仰科教设备有限公司

一、实验目的 1、了解压缩机性能测定的原理及方法; 2、了解压缩式制冷的循环流程及各组成设备; 3、测定蒸气压缩式制冷循环的性能; 4、理解与认识回热循环; 5、比较单级压缩制冷机在实际循环中有回热与无回热性能上的差异; 6、熟悉实验装置的有关仪器、仪表,掌握其操作方法。 二、实验原理 1、单级压缩制冷机的理论循环 图1显示了压力-比焓图上单级蒸气压缩制冷机的理论循环。压缩机吸入的是以点1表示的饱和蒸气,1-2表示制冷剂在压缩机中的等熵压缩过程;2-3表示制冷剂在冷凝器中的等压放热过程,在冷却过程22'-中制冷剂与环境介质有温差,放出过热热量,在冷凝过程32'-'中制冷剂与环境介质无温差,放出比潜热,在冷却和冷凝过程中制冷剂的压力保持不变,且等于冷凝温度T K 下的饱和蒸气压力P K ;(33-')是液态再冷却放出的热量;3-4表示节流过程,制冷剂在节流过程中压力和温度都降低,且焓值保持不变,进入两相区;4-1表示制冷剂在蒸发器中的蒸发过程,制冷剂在温度T 0、饱和压力P 0保持不变的情况下蒸发,而被冷却物体或载冷剂的温度得以降低。 图 1

2、有回热的单级蒸气压缩制冷理论循环 为了使膨胀阀前液态制冷剂的温度降得更低(即增加再冷度),以便进一步减少节流损失,同时又能保证压缩机吸入具有一定过热度的蒸气,可以采用蒸气回热循环。 图3示为来自蒸发器的低温气态制冷剂1,在进入压缩机前先经过一个热交换器——回热器。在回热器中低温蒸气与来自冷凝器的饱和液体3进行热交换,低温蒸气1定压过热到状态1',而温度较高的液体3被定压再冷却到状态3',回热循环1'—2'—3—3'—4'—1—1'中,3—3'为液体的再冷却过程,过热后的蒸气温度称为过热温度,过热温度与蒸发温度之差称为过热度。 根据稳定流动连续定理,流经回热器的液态制冷剂和气态制冷剂的质量流量相等。因此,在对外无热损失情况下,每公斤液态制冷剂放出的热量应等于每公斤气态制冷剂吸收的热量。也就是说,单位质量制冷剂再冷却所增加的制冷能力△q0(面积b'4'4bb')等于单位质量气体制冷剂所吸收的热量△q(面积a11'a'a)。由于有了回热器,虽然单位质量制冷能力有所增加,但是,压缩机的耗功量也增加了△w0(面积11'2'21)。因此,回热式蒸气压缩制冷循环的理论制冷系数有可能提高,也有可能降低,应具体分析。 图3 采用回热器的优点: (1)对于一个给定的制冷量,制冷剂流量减少。 (2)在液体管路上气化的可能性减少(特别是在管路较长的情况下)。 (3)在压缩机的吸气管道上,可减少吸入外界热量。 (4)在压缩机吸气口消除液滴,防止失压缩。

风机测试方案

通风机安全检测检验方案 山西公信安全技术有限公司 二〇一八年六月二十一日

通风机安全检测检验方案 为搞好通风管理、确保通风机装置安全、经济运行提供科学的依据,依据《煤矿在用主通风机系统安全检测检验规范》AQ1011-2005的规定要求,山西公信安全技术有限公司受炭窑坪煤业有限公司委托对该矿主通风机不同角度(+2.5,-2.5,0,+5,-5)进行安全检测检验。经现场查看和矿方对检测检验的要求,制订本方案。 一、确定通风网络的组成 本次通风机安全检测检验是在由防爆门、回风井、风硐、通风机、扩散器等部分组成可供调节的通风网络。 二、检测项目及测点布置 1.风压 利用风机现有静压测孔,接上矿井通风参数测定仪,直接测定各调节点的相对静压值。 位置:风机集流器处 形状:圆形 2.风量测定 在扩散器风流出口处安装智能测试风杯,测量风速。 3.电气参数 在主通风机电控柜的二次测线路中接入电动机经济运行测试仪,测取电动机的输入功率、电压、电流、功率因数等电气参数。 4.空气密度 用矿井通风参数仪测定风机房阴凉处的大气压力,用温湿度计在

风流出口处测取风流的温湿度,计算各调节工况点空气密度。 5.噪声 在距离通风机扩散器45°方向的3.4m处、离地高度1m处用声级计测取扩散器的A声级噪声。距通风机电机外壳1m外测量机壳辐射噪声。 6.转速 参照额定转速。 7.振动 用便携式测振仪在通风机直接与坚硬基础紧固连接处测量风机的振动。 8.轴承温度 利用矿方现有传感器直接读取数值。 9. 叶片径向间隙 用塞尺在主通风机叶片与机壳(或保护圈)的间隙处测量该间隙值。 三、测定条件 1.装置完好条件: ①测定前应检查通风机、电动机各零部件是否齐全,装配是否紧固,运行是否正常,备用风机确保在10分钟内启动,以保障在测定过程中通风机能安全运行。 ②通风机进风口或出风口至风量、风压测定断面之间应无明显漏风,以确保测定工作的准确性。

压缩机性能实验报告

.. 压缩机性能实验报告 实验小组: 小组成员:0

实验时间: 一、实验目的 1.了解制冷循环系统的组成及压缩机在制冷系统中的重要作用 2. 测定制冷压缩机的性能 3.分析影响制冷压缩机性能的因素 二、实验装置 实验台由封闭式压缩机、冷凝器、蒸发器、储液罐、节流阀、电加热器、冷水泵、热水泵、冷水流量计、热水流量计、排气压力表、吸气压力表、测温显示仪表、测温热电偶等组成小型制冷系统(如下图所示)。 三、实验步骤 1. 将水箱中注满水,接通电源后,开启冷水泵和热水泵,并调整其流量; 2. 打开吸、排气阀、储液罐阀门,启动压缩机,开节流阀,右旋调温旋钮,调整电压使蒸发器进口水温稳定在某一温度值,作为一个实验工况点; 3.当各点温度趋于稳定时,依次按下测温表测温按键,观测各点温度值; 4.将数据进行记录,该工况点实验结束。 5.改变热水箱加热电压,使热水温度上升,稳定后再对温度、电流、电压等数据进行记录,一般可作3个工况点结束; 6.实验完成后,停止电热水箱加热,关闭吸气阀门,等压力继电器动作,压缩机自停,关闭压缩机开关,关闭节流阀,关排气阀,继续让水泵循环5分钟后断电,系统停止工作。 四、实验数据 1. 压缩机制冷量: ' 171112"" 161()i i v Q GC t t i i v -=-- (1) 式中:G — 载冷剂(水)的流量(kg/s); C — 载冷剂(水)的比热(kJ/kg); t1、t2 — 载冷剂(水)的进出蒸发器的温差(℃); i1 — 在压缩机规定吸气温度,吸气压力下制冷剂蒸汽的比焓(kJ/kg); i7 — 在压缩机规定过热温度下,节流阀后液体制剂的比焓(kJ/kg); i1″— 在实验条件下,离开蒸发器制冷剂蒸汽的比焓(kJ/kg); i6″— 在实验条件下,节流阀前液体制冷剂的比焓(kJ/kg); v1 — 压缩机规定吸气温度,吸气压力下制冷剂蒸汽的比容(m 3/kg); v1′— 压缩机实际吸气温度、压力下制冷剂蒸汽的比容(m 3/kg)。 2.压缩机轴功率: i N W η=? (2) 式中:W —压缩机配用电动机输入功率(kW); i η—压缩机电动机效率,一般取0.8~0.9。 3.制冷系数: 0Q N ε= (3) 4.热平衡误差: 011 () Q Q N Q --Λ= (4) 式中: Q1 —冷凝器换热量(kW)

SG-ZL81制冷压缩机性能测试实训装置

SG-ZL81制冷压缩机性能测试实训装置 "SG-ZL81制冷压缩机性能测试实训装置"采用蒸汽压缩式制冷循环系统,配备全封闭式制冷压缩机、冷凝器、蒸发器等制冷系统真实部件,并设有智能温度调节仪、流量计、压力表、电压表、电流表等测量仪表。不但能开设制冷压缩机性能参数的测定实训,还能进行制冷循环基本原理的演示实训。适用于职业院校制冷专业相关课程的教学实训。 一、装置特点 1.本实训装置按照国际标准GB/T 5773-2004容积式制冷压缩机性能实训方法建立,以"蒸发器液体载冷剂循环法"为主要测量,以"水冷冷凝器量热器法"作为辅助测量

2.采用1匹制冷机组,冷凝器和蒸发器均为壳管式水换热器,系统结构紧凑、布局合理,造型美观大方 3.设有电压型漏电保护、电流型漏电保护、过流保护、过载保护、接地保护,可对人身及设备进行有效保护 二、技术性能 1.输入电源:单相三线~220V±10% 50Hz 2.工作环境:温度-10℃~+40℃相对湿度<85%(25℃) 海拔<4000m 3.装置容量:<2.5kVA 4.制冷剂:R22 5.制冷量:1.3kW 6.重量:100kg 7.外形尺寸:120cm×60cm×142cm 三、基本配置及功能 1.控制屏 采用双层亚光密纹喷塑结构,造型新颖。最上层布置制冷系统,可直观展示制冷系统结构;正面设有电源控制及测量仪表功能板。底部装有四个带刹车的万向轮,便于移动和固定。 2.交流控制单元 单相三线220V交流电源供电,经漏电流保护器控制总电源,动作电流30mA 3.制冷系统 1匹全封闭压缩机、卧式壳管式冷凝器、视液镜、干燥过滤器、手动节流阀、储液器和干式蒸发器 4.循环水系统 (1)水泵2只 主要技术参数为: 额定功率:95W 额定扬程:6m 额定流量:1.08立方米/小时 (2)水箱2只 采用不锈钢材料制成,分别为冷凝器循环水箱和蒸发器循环水箱 (3)加热器1只(功率1000W) 输出功率可通过电位器进行调节,用于加热蒸发器循环水 5.测量仪表 (1)功率表2只(精度0.5级) 分别测量加热功率和压缩机功率。通过键控、数显窗口实现人机对话的智能控制模式,可测量负载的有功功率、无功功率、功率因数、电压、电流、频率及负载的性质;并可以贮存、查询15组功率和功率因数的测试数据 (2)数显温度表1只(精度0.5级)

空压机的性能检测

1空压机的概述 1.1 NPT5 空压机的组成结构和工作原理 (1)组成结构 NPT5空气压缩机是一种常用的空气压缩机,目前为止,它也是机车中使用最多的一种空气压缩机。当环境温度小于30 0C时,它能够连续稳定运转。前面也介绍了,它主要用于铁路机车的制动系统,还包括其它的气源部件,如鸣笛等。NPT5是三缸,立式,风冷,两级压缩的活塞式空气压缩机。其结构图如图1所示。 图1空压机的结构图 NPT5主要由运动部件,空气压缩系统,润滑系统和冷却系统组成,下面分别对各个部分作简单的介绍。 1)运动部件 曲轴是空压缩机中很重要的一个部件。原动机经由曲轴带动,使电机的旋转运动转换成活塞的上下来回运动。在曲轴的一端装有油泵的联轴器带动油泵旋转。连杆是受力部件。活塞环是个密封部件,主要负责布油和导热。 2)空气压缩系统 曲轴由原动机带动作规律的旋转,通过连杆使活塞作规律的往复运动。在活塞不断运动的过程中,气缸内工作容积也在随之不断变化。因为气阀的原因,空气也会按照一定规律在运动,从而形成对空气的压缩作用。 3)润滑系统 对于空压机的运行,润滑系统是一个必不可少也非常关键的系统分。NPT5空压机主要是采用压力润滑的解决办法。 4)冷却系统 压缩机的冷却系统是非常有必要的,不然超过了它的运行温度,会导致空压机不能正常的工作。空压机的冷去系统主要包括对压缩空气的冷却和受热机件的冷却。本压缩机采用了强迫通风的冷却装置,结构很简单,主要部件为风扇和冷却器。 ( 2) NPT5空压机的工作原理 电动机通过联轴器将动力输入,然后带动空压机的曲轴按指定的方向作旋转运动。由于

连杆的作用,然后带动装在连杆小端的活塞在气缸内做活塞运动。在活塞的不停运动中,活塞的顶部与气缸之间形成进气和排气的空气压缩过程。气阀的工作原理如图2所示。 图2气阀的工作原理 1.2 NPT5 空压机的主要参数 表1为NPT5 的主要参数 表1 NPT5 的主要参数

风机性能试验

风机性能试验 一、测量参数及测点布置 1、风机静压测量:(测点位置参考西安院在成都轴流风机所做试验报告) 引、送风机的进口静压测点均布置于各风机进风箱进口法兰略上的矩形直管段上,每个侧壁面中心线处各设一个静压测点,每台风机共设置4个进口静压测点。 引、送风机的出口静压测点布置于各风机扩压筒出口法兰略前的圆形管段上,每台风机沿圆周方向均匀布置3个静压测点。 一次风机进口静压测点布置于进口风门下部, 每个侧壁面中心线处各设一个静压测点,共设置4个进口静压测点。出口静压测点可利用现有标定孔测量。 附图1 1、1压力测孔内径d=2~3mm,最大不超过5mm,外部短导管内径为2~2.5d。见附图1。 1、2介质温度测点采用流量测量截面的测点。 2、流量测量 2、1测量截面布置:(测点位置参考西安院在成都轴流风机所做试验报告) 引风机的流量测量截面布置于引风机进气箱略前的收敛管段上,每台风机设置10个流量测孔。 送风机的流量测量截面布置于送风机进气箱略前的收敛管段上,每台风机设置8个流量测孔。我厂靠背管加长杆接头外径为32 φmm,引风机处测孔孔径应取不小于50 φmm。管座加工见附图。

一次风机流量测量可利用现有标定孔测量 附图2:点1和点2处分别为风机入口平面与出口平面。 2、2流量测量项目及公式 2、2、1风机流量ρ νd A p 2q ? = q V =为测量截面处流量,m 3/s ,A=截面面积m 2,ρ=流量测量截面处介质密度kg/m 3, P d =流量测量截面处平均动压,Pa 。 或风机流量q V =A ×ν q V =测量截面处流量m 3/s ,ν=测量截面处气流平均速度,m 3/s ,A=测量截面面积m 2 式中101325 273273 293.1s a p p t +?+? =ρ Pa=当地大气压Pa ,Ps=测量截面处静压Pa ,t 为流量测量截面处介质温度℃。 2、2、2风机全压()??? ? ? ?-+-=222 1122212νρνρs s p p P 式中P =风机全压Pa ,1s p =点1处静压Pa ,2s p =点2处静压Pa ,1ν=点1处气流速度,点2处气流速度2ν= 2 2ρA q m m/s 。m q =1A 1d 2ρP kg/s 2、2、3风机功率K/1000P ×q ?=νt P KW K=气体可压缩系数约为0.96,P =风机全压Pa,νq =风机容积流量m 3/s 2、2、4风机轴功率tr P P η0a = a P =风机轴功率,mot UI P ?ηcos 30=,tr η=传输效率%,直连时tr η=1。 0P =电动机输出功率,?cos =电动机功率因数,mot η=电动机效率。

制冷压缩机性能实验指导书

制冷装置与系统 制冷压缩机性能实验指导书 一、实验目的: 1、通过本实验,熟悉和了解制冷压缩机的测试工况和测试方法,增强对制冷压缩机的认识; 2、学习本实验中所涉及的各种参数的测量方法,掌握制冷压缩机性能的热力计算; 3、熟悉对制冷压缩机性能实验系统软件的操作。 二、实验装置: 测定压缩机制冷系统制冷量的实验台,如图1所示,由电量热器、制冷系统、水系统三部分组成。 图1 测定压缩机制冷系统制冷量的实验台

图2 电量热器原理图 电量热器法是间接测量压缩机制冷量的一种装置。它的基本原理是利用电量热器发出的热量来抵消压缩机的制冷量,从而达到平衡。电量热器是一个密闭容器,如图2所示。电量热器的顶部装有蒸发器盘管,底部装有电加热器,浸没于一种容易挥发的第二制冷剂(常用的R11、R12 ,该装置采用R11)中,实验时,接通电加热器,加热第二制冷剂,使之蒸发。第二制冷剂饱和蒸气在顶部蒸发盘管被冷凝,又重新回到底部,而蒸发盘管中的低压液态制冷剂被第二制冷剂蒸气加热而汽化,返回制冷压缩机。实验仪器在实验工况下达到稳定运行时,供给电加热器的电功率正好抵消制冷量,从而使第二制冷剂的压力保持不变。 为了控制第二制冷剂的液面,在电量热器的中间部位装有观察玻璃孔。电量热器上装有压力控制器,它与电加热器的控制电路相连接,防止压缩机停机后加热器继续加热,使量热器内压力升高到危险程度。 三、实验原理 (1)压缩机制冷量 P Q =0×57/7/2 i i i i -- ×/1 1νν (W ) (1) 式中 p — 供给电量热器的功率,W; 2/i — 在规定吸气温度、吸气压力下制冷剂蒸气的焓值,kJ / kg ; /7i —在规定过冷温度下、节流阀前液体制冷剂的焓值, kJ / kg ; 7i —在实验条件下,离开蒸发器的制冷剂蒸气的焓值,kJ / kg ; 5i —在实验条件下,节流阀前液态制冷剂的焓值,kJ / kg ; 1ν —在压缩机实际吸气温度、吸气压力下制冷剂蒸气的比容,m 3/ kg ; /1ν—在压缩机规定吸气温度、吸气压力下制冷剂蒸气的比容,m 3 / kg 。 (2)冷凝器的热负荷计算

实验实训12 空调压缩机的性能测试实验

实验实训12 空调压缩机的性能测试实验 一、测试原理 压缩机制冷量定义为试验直接测得的流经压缩机的制冷剂流量乘以压缩机吸气口的制冷剂气体比焓与排气口压力对应的膨胀阀前制冷剂液体比焓的差值。本压缩机性能测试系统采用第二制冷剂量热器法对压缩机的制冷量进行测试,其构造为蒸发器盘管悬置在一压力容器上部,下面是第二制冷剂液体,电加热器安装在第二制冷剂液面下,用电加热量平衡压缩机制冷量,用电加热量去计算出流经压缩机的流量。 二、设备概述 本测试系统由水冷冷凝器、储液器、膨胀阀、过冷器、量热器(第二制冷为环保制冷剂R123)、控制系统、测量系统。 1. 控制系统需控制五个参数,分别为压缩机吸气温度、压缩机吸气压力、过冷温度、压缩 2. 测量系统由五个压力变送器、四支PT100铂电阻及数据记录仪DA100及测试程序组成,各传感器及DA100配置如下表: 三、测试软件使用说明 压缩机测试平台软件是整个测试平台的终端软件,用来采集、处理、保存测试数据,以及

生成测试报告。 1.界面功能介绍 整个界面可以分为菜单、状态栏、调节器控制显示、实时数据图形显示、计算数据显示、功能选择按钮、页面显示选择和通讯状态指示栏,共8个部分。 菜单包括所有功能选择按钮的功能,同时包括高级控制功能和不常使用的功能; 状态栏用来指示当前系统的工作状态,用于提示; 调节器控制显示用于显示调节器当前的工作状态,和设定调节器的输出值; 实时数据图形显示用来显示实时数据和整个过程的数据变化状况; 计算数据显示用来显示瞬态计算数据; 功能选择按钮用来选择不通的功能,控制测试平台的工作以及查看设定相关数据; 页面显示用来选择实时数据的显示方式; 通讯状态指示栏用来显示上位机(PC)和下位机(数据采集仪DA100、调节器UT350、可编程控制器PLC、压缩机电量采集仪8902F、量热器电量采集仪8905F)的通讯状态; 2.菜单 菜单包括系统、系统设置、数据处理和帮助四个一级菜单,每个菜单都有相应的子菜单。 2.1 系统菜单 系统菜单主要用于管理系统用户和控制测试开始、停止和退出,如下图所示: 高级用户登陆用于系统权限管理,高级用户登陆后可以使用用 户管理、硬件配置等高级功能。如右图所示,在未登陆前,用户 无权限进行用户管理,同时也无权限对硬件进行配置(系统设置菜 单内容),快捷键(Ctrl+L)。 用户管理用来管理使用该平台用户的权限,快捷键(Ctrl+M)。 注销用户用来退出当前使用者的权限设置功能。 开始测试用来启动、停止测试功能,和开始测试按钮具有完全相同的功能,快捷键(Ctrl+R)。退出菜单用来退出整个测试平台,快捷键(Ctrl+Q)。 2.2 系统配置菜单 注:本菜单只有在设备更换或测量不正常时使用,在设备正常使用时切无操作,不然可能会引起错误。 系统设置菜单包括工况设置、铭牌设置和硬件初始化设置(权限设置,有效登陆后激活)。 工况设定(Ctrl+T)用来设定工况控制的目 标值,自动更新调节器的设定值,和按钮工 况设定功能完全相同; 铭牌设定(Ctrl+N)用来设置压缩机铭牌,和 铭牌设定按钮功能完全相同; 硬件初始化菜单在测试进行过程中无效; 通讯端口配置(Ctrl+O)用来设置下位机设 备的通信端口; 冷凝温度(排气压力)调节器初始化、蒸发温 度(吸气压力)调节器初始化、过冷温度调节器初始化、吸气温度调节器初始化、环境温度调节器分别用来初始化相应的调节器; 电量表8902F初始化用来初始化压缩机电量采集仪; 电量表8905F初始化用来初始化量热器电量采集仪; 数据采集仪初始化用来初始化DA100数据采集仪,并恢复数据采集输入类型为系统默认值;

往复活塞式压缩机性能测定实验汇总

一、目的要求 1.了解往复活塞式压缩机的结构特点; 2.了解温度、压差等参数的测定方法,计算机数据采集与处理;3.掌握压缩机排气量的测定原理及方法; 4.掌握压缩机示功图的测试原理、测量方法和测量过程; 5.了解脉冲计数法测量转速的方法; 6.掌握测试过程中,计算机的使用和测量。 单作用压缩机工作原理图

二、实验仪器、设备、工具和材料

往复活塞式压缩机性能测定实验验装置简图 1-消音器2-喷嘴3-压力传感器4-温度传感器5-减压箱6-调节阀7-压力表8-安全阀9-稳压罐10-单向阀11-温度传感器12-压力传感器13-温度传感器14-吸入阀15-控制柜16-计算机17-接近开关18-冷却水排空阀19-进水阀20-排水管 注:图中虚线为信号传输线 三、实验原理和设计要求 活塞式压缩机原理示意简图 1.活塞压缩机排气量的测定实验的实验原理

用喷嘴法测量活塞式压缩机的排气量是目前广泛采用的一种方法。它是利用流体流经排气管道的喷嘴时,在喷嘴出口处形成局部收缩,从而使流速增加,经压力降低,并在喷嘴的前后产生压力差,流体的流量越大,在喷嘴前后产生的压力差就越大,两者具有一定的关系。因此测出喷嘴前后的压力差值,就可以间接地测量气体的流量。排气量的计算公式如下: 式中: q V:压缩机的排气量,m3/min, C:喷嘴系数,根据喷嘴前后的压力差,喷嘴前气体的绝对温度,在喷嘴系数表中查取,见本实验教材; D:喷嘴直径,D=19.05mm: H:喷嘴前后的压力差,mmH20; p0:吸入气体的绝对压力,Pa; T0:压缩机吸入气体的绝对温度,K; T1:压缩机排出气体的绝对温度,K。 通过测量装置,计算机采集吸入气体温度T0、排出气体温度T1、喷嘴压差H,并由计算机已存储的喷嘴系数表,计算出喷嘴系数,用上述公式计算出排气量q V。 2.传感器的布置和安装 排气量的测试需要测量出喷嘴前后的压力差、环境温度、排气温度三个参数,因此需要安装测量这三个参数的传感器。它们的布置如图1-2所示。

离心风机性能试验

离心风机性能试验 一.试验目的 风机性能试验的目的在于掌握离心式风机性能测试的方法,求得离心式风机在给定转速下标准进气状态时的空气动力性能,并给出其特性曲线,从而提供风机合理的工作范围。 二.实验内容 采用计算机自动测试的方法获取离心式风机性能曲线。 三.试验装置和仪器 图1 进出气联合试验装置简图 系统由风机试验台、传感器、数据采集器、PC机和打印机组成。 风机进出口静压测量采用FG300 A 06 BIN M5智能压力变送器,动压测量采用FG700 DP 3 S J1 B M3智能差压变送器,输出为4~20mA电流信号。电机功率测量采用三相交流有功功率变送器,输出为0~+5V电压信号。风机转速测量采用红外光电转速传感器,输出为脉冲信号。数据采集器的任务是将传感器输出的电流、电压以及脉冲信号进行整形、滤波、放大,然后在8051单片机控制下进行A/D变换,所得的结果经RS232标准通讯接口传送给PC机,进行数据的分析、计算及显示,并可将计算结果存于硬盘或打印输出。 四.操作方法及实验步骤 1.按规定要求连接传感器、数据采集器的电源线及信号线,然后开启电源。 2.在PC机上运行测试软件,从下拉式菜单上选择“数据采集”选项,此时屏幕显示风机的全压、静压、轴功率及效率坐标图,各坐标图上均有一红点,分别表示当前风机的全压、静压、轴功率及效率随流量的变化关系,当风机的工况改变时,红点亦会随之移动。 3.关闭风机出口节流锥,开启电机电源,缓慢开启节流锥,逐渐增大风机流量,同时

观察计算机屏幕上四个坐标图中红点的位置,在需要采集数据的工况点,按“回车”键,此时屏幕上的红点变成白点,表示计算机已采集了该工况点处的数据。按此方法,在0~最大流量范围内采集7~10个工况点的数据,数据采集工作即告结束。 4. 从计算机下拉式菜单上选择“特性曲线”选项,计算机立即将屏幕上全部的工况点 拟合成特性曲线。 5. 通过打印机可打印出测试系统图,风机的全压、静压、轴功率及效率曲线,也可打 印出原始的测试数据。若系统未连接打印机,则需手工记录原始数据。 五.实验数据处理 根据泵与风机性能曲线的定义,所有作图数据必须是同一转速下的数据,而测试所得的数据是在不同转速下测得的,所以首先必须应用比例定律将全部数据修正到同一转速下。本实验要求将全部数据都修正到2950r/min 下。最后作出风机的全压曲线、静压曲线、功率曲线和效率曲线。 全压曲线 v q p 0 静压曲线 v q st p 0功率曲线 v q P 0 效率曲线 v q η

制冷系统性能测试试验台设计毕业论文

制冷系统性能测试试验台设计毕业 论文 目录 摘要.....................................................................................................第一章绪论.............................................................................. (x) 1.1蒸发温度和蒸发压力的运行调整与节能 (x) 1.2冷凝温度和冷凝压力的运行调整与节能 (x) 第二章制冷系统主要部件的设计 (x) 2.1 制冷剂的选用................................................................... (x) 2.2 热力循环计算...................................................................... (x) 2.3 蒸发器的设计计算................................................................ (x) 2.4 冷凝器的设计计算................................................................ (x) 2.5 膨胀阀的选型计算................................................................ (x) 2.6 压缩机的选型计算................................................................ (x) 第三章制冷系统辅助部件的选型…………………………………………… ..x 3.1截止阀的选型......................................................................... (x)

Ⅱ型压缩机性能测定实验指导书

活塞式压缩机性能测定 实验指导书 V3.0 北京化工大学

活塞式压缩机性能测定实验 一、实验目的 1.活塞式压缩机性能曲线测试 压力比—排气量曲线(ε— Q ) 压力比—轴功率曲线(ε— Ne ) 压力比—效率曲线(ε—η) 2.活塞式压缩机闭式示功图 3.实验数据、实验曲线的显示存储和打印。 二、实验设备 1.实验装置如图1所示。 2.压缩机性能参数: 1)型号:TA-80型一级三缸风冷移动式空气压缩机; 2) 气缸直径:D=80毫米×3个 3) 活塞行程:S=60毫米 =0.5立方米/分(额定工况下) 4) 排气量:Q 5) 轴功率:Nz<4千瓦(额定工况下) 6) 回转速:n=875 rpm =0.8 Mpa(表) 7) 额定排气压力:P 2 3.三相交流异步电动机型号:Y112M-2FSY 1) 额定功率 4 kW 2) 转速 875 rpm 3) 额定电压 V=380V 4) 额定电流 I=8.2A 5) 频率 50Hz 6) 电机效率η=0.882 7) 功率因数 cosφ=0.88 =97% 8) 皮带传动效率η C 4.辅助装置 1) 控制箱和操作台 2) 储罐:容积V=0.17米3;直径D=400毫米长度L=1.7米 3) 低压箱及喷嘴喷嘴直径d=9.52 mm 4) 导管及调节阀 5.主要测量仪器及仪表 1)喷嘴流量测量装置

2)差压变送器 3)压力变送器 4)温度变送器 5)磁电式齿轮转速传感器 图1 空气压缩机性能实验装置简图 1.喷嘴 2.差压变送器 3.温度变送器 4.出口调节阀 5.压力变送器 6.压力变送器 7.气缸 8.电动机 9.电气控制箱 10.储气罐 三、实验步骤 1.方法:本实验用调节压缩机储罐出口调节阀来改变压力比ε大小,以得到不同的排气量、功率、效率; 根据GB3853-83《一般用容积式空气压缩机性能试验方法》标准规定,采用喷嘴测量压缩机的排气流量,标准喷嘴系数为C。 2.步骤: 1) 启动测量装置:启动计算机,运行“压缩机试验”程序,点击“试验”按钮进入试验条件输入画面,输入实验条件。点击“确认”按钮进入试验画面; 2) 压缩机启动:a.盘车——用手转动皮带轮一周以上;b.将储气罐出口调节阀完全打开;c.转动压缩机控制箱旋钮——启动压缩机; 3)点击“清空数据”按钮, 4)调储气罐出口调节阀,改变排气压力(间隔0.05Mpa),等试验系统稳定后,记录各项数据。(运转中,如发现有不正常现象应及时停车); 5)停车:转动压缩机控制箱旋钮——关闭压缩机(注意:此时不得转动储气罐出口调节阀)。 四、压缩机参数计算 1.实测排气量计算

风机性能试验台

风机性能试验台 一、产品说明 本试验台能对各种不同类型的风机性能进行测定,能进行定风量和定风压试验,并能对试验参数进行曲线拟合,得出风机的性能曲线。试验台符合标准ASHRAE 51-75的要求。 二、测试项目 1. 定风量定电压试验 2. 定风压定电压试验 3. 定风量定转速试验 4. 定风压定转速试验 三、技术指标 1. 风量范围:110~7000m3/h 2. 重复性精度:±1% 3. 试验台规格:吸风式风机性能台,吹风式风机性能台(可按用户需要进行特殊设计)。 根据GB1236-2000的要求 -技术指标 1. 被测风机风量范围: ·吹风式:1000-20.000m3/h,转速0-6000RPM; 2. 测定精度:重复性精度:±2% 3. 环境:温度:20±15℃;湿度:65±20%(用户保证) 4. 风机尺寸:1000mm以内,宽350 mm(根据客户要求) 一.控制方案 本试验台采用吹风式风洞测试风机性能,具体方案如下:

图1 风室出气试验示意图(用多喷嘴流量计测流量) 图2 风室进气试验示意图(用多喷嘴流量计测流量) 三、风机性能测试台,风机风量台,性能测试台控制参数(在全自动控制方案中为控制参数,在其他方案中为测量参数) 1.风管静压(定静压) u 差压变送器:微压变送器,-500Pa~500Pa/1~5V (精度0.075%) u 控制:PID u 数据记录:通过数据采集器采集到计算机

2.两内空板的压差(定风量) u 差压变送器:微压变送器,,量程0~1000Pa /1~5V(精度0.075%)u 控制:PID:输出控制电动风阀的开启度! u 数据记录:通过数据采集器采集到计算机(国产) 3.被测风机电压 u 电压范围:0~380V DC 二.测量参数 1.被测风机电流 u 测量范围:0 ~50A(测量精度0.01V) u 电流变换器:带分流器, 0~50A / 1~5V DC 。精度0.1% u 数据记录:通过数据采集器采集到计算机 2.风洞温度 u 测量范围:相对温度0~100℃ u 测量精度:±0.2℃ u 信号变换器:0~100℃/ 1~5V DC u 数据记录:通过数据采集器采集到计算机 3.风洞湿度 u 测量范围:相对湿度0~100%RH u 测量精度:相对湿度±3% RH

汽车空调压缩机性能测试台

汽车空调压缩机性能测试台 林穗斌(广州电器科学研究所,广州市 5l0300) l 前言 衡量汽车空调压缩机性能的好坏,检验产品性能是否达到设计要求,汽车空调系统与压缩机的匹配,都必须准确知道压缩机的性能参数,即压缩机的制冷量、输入功率、COP 值和不同转速下其性能参数的变化。为满足产品检测的需要,我们研制出汽车空调压缩机性能测试台。 2 基本结构及工作原理 图l 结构框图 该测试台由动力系统、制冷系统、电气测 控系统、数据采集处理及计算机系统组成。 如图l 所示。2.l 动力系统 该测试台适用于依靠汽车发动机提供动力的非独立式汽车空调压缩机,与其它制冷压缩机不同之处在于它必须依靠外加动力来带动压缩机工作,在测试台中必须具备一套动力装置带动压缩机工作。动力系统由电动机、变频调速器、转矩测试仪组成。电动机提供压缩机所需要的动力,通过离合器带动压缩机工作,变频调速器通过调频来实现对电动机线性调速,从而改变压缩机的旋转速度,以适应检测不同转速下压缩机的性能参数的目的。通过转矩测试仪测量电动机的扭矩和转速,从而求出压缩机的输入功率。 ?2l ?200l 年第l 期 《电机电器技术》# ######################################################?测试技术?

2.2 制冷系统 本测试台采用第二制冷剂电量热器法作为主测,其原理是利用量热器内充注的与被测压缩机制冷系统相隔离的第二制冷剂作为热交换介质,将制冷系统产生的冷量与电加热器产生的热量相互交换,达到平衡时,通过测量加热电量而得出制冷量的一种间接试验方法;同时采用液体质量流量计法作为辅测,其原理是通过测量制冷系统单位时间内所流过的液态制冷剂的质量,计算出它在规定工况条件下转换成气态所必须吸收的热量,即制冷量。计算公式如下: O 0= l 3.6m f (1gl -1fl )V l /V gl O 0———制冷量;W m f ———制冷剂质量流量;kg /11gl — ——规定工况下压缩机吸入的制冷剂气体比焓;kJ /kg 1fl ———规定工况下对应于排气压力的膨胀阀前制冷剂液体比焓;kJ /kg V l ———压缩机吸气口制冷剂气体实际比容;m 3/kg V gl ———规定工况下压缩机吸入的制冷剂气体比容;m 3/kg 单级蒸气压缩式制冷循环的压焓图如图2所示。本测试台的制冷系统图如图3 所示。 图2 制冷循环压焓图 图3制冷系统图 压缩机吸入蒸发器内产生的过热低温低压制冷蒸气(l ’),经被测压缩机压缩成高温高压蒸汽排入冷凝器(l ’-2’ ),被冷却介质等压冷却,放出热量,凝结成液态(2’-3) ,液态制冷剂经过冷器进一步冷却成过冷液体(3-3’ ),高压制冷剂液体流过流量计后,经过? 3l ??测试技术?《电机电器技术》200l 年第l ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!期

压缩机性能测试实验.doc

制冷压缩机性能测试实验 一、实验目的 通过制冷压缩机实际运行测试实验,使学生了解并掌握以下内容: 1、制冷压缩机制冷量的测试方法; 2、蒸发温度、冷凝温度与制冷量的关系; 3、制冷系统主要运行参数及其相互之间的影响; 4、有关测试仪器、仪表的使用方法; 5、测试数据处理及误差分析方法。 二、实验原理 1、制冷压缩机的性能随蒸发温度和冷凝温度的变化而变化,因此需要在国家标准规定的工况下进行制冷压缩机的性能测试。 2、压缩机的性能可由其工作工况的性能系数COP 来衡量: Q COP W = 式中,0Q 为压缩机的制冷量; W 为压缩机输入功率。 3、在一个确定的工况下,蒸发温度、冷凝温度、吸气温度以及过冷度都是已知的。这样,对于单级蒸气压缩式制冷机来说,其循环p-h 图如图3 所示。 图3 图中,1点为压缩机吸气状态;4-5为过冷段。 在特定工况下,压缩机的单位质量制冷量是确定的,即:015q h h =- 。这样只要测得流经压缩机的制冷剂质量流量m G ,就可计算出压缩机的制冷量,即 0015()m m Q G q G h h =?=?- 4、压缩机的输入功率:开启式压缩机为输入压缩机的轴功率,封闭式(包括半封闭式和全封闭式)压缩机为电动机输入功率。 三、实验设备

整个实验装置由制冷系统及换热系统、参数测量采集和控制系统共三部分组成: 1、制冷系统采用全封闭涡旋式制冷压缩机,蒸发器为板式换热器,冷凝器为壳管式换热器,节流装置为电子膨胀阀。 1.1冷却水换热系统由冷却水泵、冷却水塔、调节冷凝器进水温度的恒温器和水流量调节阀门及管路组成; 1.2冷媒水换热系统由冷媒水泵、调节蒸发器进水温度的恒温器、调节水流量的阀门组成; 2、六个绝对压力变送器、十个PT100温度传感器、两个涡轮流量变送器分别对应原理图位置及安捷伦34970型数据采集仪和压缩机性能测试软件; 3、控制系统:通过三块山武SCD36数字调节器分别根据设定值与实测值的差值来调节冷却水、冷媒水的加热量和电子膨胀阀的开度,将机组运行控制在设定工况允许的范围内。 图4 四、实验方法 制冷工况由两个主要参数来决定,即蒸发温度和冷凝温度,制冷压缩机性能测试的国家工况名称 蒸发温度 ℃ 冷凝温度 ℃ 吸气温度 ℃ 标准工况 -15 +30 +15±3 最大压差工况 -30 +50 最大轴功率工况 +10 +50 空调工况(水冷) +5 +35 空调工况(风冷) +5 +55 试验工况的稳定与否,是关系到测试数据是否准确的关键问题,工况稳定的标志是主要的测试参数都不随时间变化。调节时需要特别地耐心、细致。 实际试验中是根据吸气压力来确定蒸发温度,冷凝温度是根据排气压力来确定。如果吸气温度也达到稳定,表明制冷量也达到稳定。本装置是通过: 1、调整冷却水流量和温度来稳定压缩机的排气压力; 2、调整冷媒水流量和温度来稳定压缩机的吸气温度;

主扇风机性能测试安全技术措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.主扇风机性能测试安全技术措施正式版

主扇风机性能测试安全技术措施正式 版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 主扇是为井下排出废气输入新鲜空气的主要通风设备,一旦出现问题将会直接影响全矿井下的工作。为了保证通风机的正常运行,我矿现对两台主要通风机的安全运行状况和各种技术参数进行性能测试。为此特制定以下主扇性能测试安全技术措施: 一、成立领导组 组长:郭三虎 副组长:杨宏伟申启祥 解利亚许春兔李连生尤耀军郝连跃

成员:武有福乔德兴王天仓张建良 王文耀原保清杜国平柴青海 指挥部设在调度室(电话: 3437950 )。 二、测试前的准备工作 1、测试时所使用的材料(十三块木板)由供应科负责。 2、测试时所需要的仪器由测试单位自行提供,不得使用不合格的仪器。 3、外维队要积极配合好测试工作,确保测试的圆满完成。 4、外维队在测试前检查通风机、电动机各零部件是否齐全,装配是否紧固,运

行是否正常。 5、监控室负责监控系统、分站、传感器运行是否正常。 6、通风科负责检查全矿井通风设施、各地点瓦斯浓度变化情况。 7、调度室负责井下人员的撤离,以及主扇性能测试所需人员的通知调配。 三、安全技术措施 1、风机停止运行前,所有井下人员必须全部撤出,到达地面安全地点。 2、风机开停必须由风机房值班人员严格按照操作规程进行,任何人不得随意停开风机,并挂有“有人工作,禁止合闸”标志牌。 3、风机停止运行后,人工将防爆盖加

压缩机检测方法和参数

压缩机检测方法和参数—压缩机性能测试 一、前言 制冷压缩机是制冷装置中最主要的设备,是制冷系统的动力装置和主机,相当于制冷机的心脏。它使制冷剂在系统的管路中循环,把来自蒸发器的低温低压制冷剂蒸汽压缩成高温高压的制冷剂蒸汽再排入冷凝器。 压缩机的作用可总结为: 1)从蒸发器中吸出蒸汽,以保证蒸发汽内一定的蒸发压力。 2)提高压力(压缩)以创造在较高温度下冷凝的条件。 3) 输送制冷剂,使制冷剂完成制冷循环。 压缩机性能的好坏直接影响到整机的制冷效果。而且,压缩机与制冷系统的匹配是否合理,不但涉及到整个装置的成本,而且对使用寿命和能耗均有影响,所以对压缩机的性能及有关参数的测试是非常有必要的。 对 压缩机性能的测试主要是测定压缩机运行时相关温度、压力、液位、转速、功率、振动、噪声、制冷剂流量、制冷量,其中制冷剂流量、制冷量及规定工况下的制冷 量是测试的重点。压缩机测试完后,需要对测试数据参照国家标准进行判断分析,以找出压缩机结构设计中问题,或者判断该压缩机是否运行良好。 本文将先对压缩机的测试原理、方法和相关规定做一个简单介绍,然后对测试过程进行描述,并对测试后数据进行分析、评价。以此对压缩机检测与分析的全过程进行描述和分析,不到之处,请大家批评指正。 二、压缩机测试的相关规定 为保证测试的统一性和结果的可靠性,国家规定了压缩机测试的相关标准,而该标准也即国际标准ISO 917-1974 中的《制冷压缩机的试验标准》。 2.1 一般规定 2.1.1 排除试验系统内的不凝性气体.确认没有制冷剂的泄漏. 2.1.2 系统内应有足够的符合有关标准规定的制冷剂.压缩机内保持正常运转用润滑油量. 2.1.3 循环的制冷剂液体内含油量应不超过2%(以质量计). 2.1.4 压缩机吸、排气口的压力一温度在同一部位测量,该测点应在吸、排气截止阀外(不带阀的封闭 压缩机为距机壳体)0.3m的直管段处。 2.1.5 排气管道上应设置有效的油分离器. 2.1.6试验系统装置的周围不应有异常的空气流动。 2.1.7 试验装置环境温度为30±5℃。 2.1.8 提供测量含油量而抽取制冷剂??—油混合物样品的设备。 2.2 试验规定 2.2.1 压缩机性能试验包括主要试验和校核试验,二者应同时进行测量。 2.2.2 校核试验和主要试验的试验结果之间的偏差应在±4% 以内,并以主要试验的测量结果为计算依 据。 2.2.3 压 缩机试验时,系统应建立热平衡状态,试验时间一般不少于1.5h。测量数据的记录应在试验 工况稳定半小时后,每隔20min测量一次,直至连续四次的测量 数据符合规定为止。第一次测量到第四次测量记录的时间称为试验周期,在该周期内允许对压力、温度、流量和液面作微小的调节。 2.2.4 主要试验方法 a. 第二制冷剂量热器法 b. 满液式制冷剂量热器法 c. 干式制冷剂量热器法 d. 制冷剂气体流量计法 2.2.5 校核试验方法 a. 水冷冷凝器量热器法 b. 制冷剂液体流量计法 c. 压缩机排气管道量热器法 2.3 测量仪表和精度的规定 2.3.1 一般规定 2.3.1.1 试验用仪表的类型,可采用一种或数种进行测量。 2.3.1.2 试验用仪表应在有效使用期内,并应有近期经国家计量部门或有关部门校正的合格证明。 2.3.2 温度测量仪表和精度 2.3.2.1 仪表:玻璃水银温度计、热电偶、电阻温度计、半导体温度计和温差计。 2.3.2.2 精度: a. 量热器的加热或冷却介质和制冷剂的进、出口温度:准确度±0.1℃; b. 冷凝器用于校核试验时的冷却水温度:准确度±0.1℃; c. 压缩机吸气温度、流量节流装置前温度:准确度±0.1℃; d. 其它温度:准确度±0.2℃; 2.3.2.3 温度测量的规定:

相关文档
最新文档