第八章弹性散射 量子力学

物理化学-高盘良155-158第八章物质运动状态的量子力学描述

第8 章 物质运动状态的量子力学描述 主要公式 自由平动子:能级 22222 22 ,(1,2,3,) 28 t n h n q n ma ma π ===??? h 简并度1 t ω= 刚性转子:能级 2 (1) 2 r J J I ε +h (I为转动惯量) 简并度21 r J ω=+(J=0,1,2,3,…) 三维各向同性谐振子:能级 3 ( 2 r x y z n n n ε=+++hv 简并度 (1)(2) ,() 2 v x y z n n n n n n v ω ++ ==++ = (f为力常数) 分子能量: t r v e n εεεεεε =++++ 分子简并度: t r v e n ωωωωωω = 例题分析 例8.1双原子分子12C16O,其中原子摩尔质量为m(16O )=15.99491g·mol-1,m(12C )=12.00000g·mol-1。 (1)T=298 K ,在a=1.000m范围内平动,请计算n=1及n=2能级的平动能及两能级之间的能量差,各相当于k B T的多少倍。 (2)当发生转动能级跃迁J=0?1,12C16O微波吸收光谱为115271.20MH z,请计算核间距 co r、 转动惯量I几转动能级能量 ,r t ε及 r ε?。

(3)振动激发时,从低分辨的红外吸收光谱,测得,求振动运动的力常数,振动频率,基态和第一激发态的振动能,能级差。 解析:这是从实验数据及量子力学原理去了解粒子的微观运动状态,这也是统计力学的基础。 说明A 代替ε) (2)根据量子力学原理,B 为转动常数 22,,2(1),28e r r C h B I B J B I μγωωπ==+?=61281 1 115271.2(10/1)(1/1)(10/1)2.997925103.84503Z r z z Z MH H MH s H m cm m s cm ω----= ????= 1/2(0)/2 1.92252r r B cm ωω-=?=-= 161216 122-23-123-1 26()()()() (15.9949112.00000)g mol (10kg/g) (15.9949112.00000)g mol 6.02204510mol 1.13851810kg mol m O m C m O m C μ--?=+???=+???=?? 根据 28c h I B π= [ 46 12 2.799310],(/)(/) e cm kg r m μ--?= 461/2 102.799310( ) 1.130910/e r m kg μ--?==? 222 28,12 7,0(1)128.26510J 22242.00910(0,0)r J B r J J h h I I I k T J εεππε--??+?====?=? ???=?==h (3)1/2 1/2 -1212 -1V 10/N m 5.308810cm 2πc /kg f f ωμμ--???? ?= ≥=? ? ? ? ?? ?? 2 26-1-1122142.61 1.13851810N m 1854.5N m 5.308810f --?? =???=? ? ??? 1/2 25V,0 011 3.2371610J 222h f hv επμ-??===? ??? 25,1119.7115102 v hvo J ε-?? =+=? ?? ?

量子力学导论第6章答案

第六章 中心力场 6.1) 利用6.1.3节中式(17)、(18),证明下列关系式 相对动量 ()21121p m p m M r p -==? μ (1) 总动量 1p p R M P +==? (2) 总轨迹角动量p r P R p r p r L L L ?+?=?+?=+=221121 (3) 总动能 μ 22222 22 221 21p M P m p m p T + =+= (4) 反之,有 ,11r m R r μ+ = r m R r 2 2μ-= (5) p P m p +=2 1μ ,p P m p -= 1 2μ (6) 以上各式中,()212121 ,m m m m m m M +=+=μ 证: 2 12 211m m r m r m R ++= , (17) 21r r r -=, (18) 相对动量 ()211221212 11p m p m M r r m m m m r p -=??? ? ??-+= =? ?? μ (1’) 总动量 ()212 1221121p p m m r m r m m m R M P +=+++==? ?? (2’) 总轨迹角动量 221121p r p r L L L ?+?=+= )5(2211p r m u R p r m u R ???? ? ??-+????? ?? += () () 2112 211p m p m M r p p R -? ++?= ) 2)(1(p r P R ?+?= 由(17)、(18)可解出21,r r ,即(5)式;由(1’)(2’)可解出(6)。 总动能()22 11 2 262221212222m p P m m p P m m p m p T ??? ? ??-+ ? ?? ? ??+=+= μμ 2 12 2 2 2 2 122 11 2 2 2 2 12 2222m m p P u m p P m m u m m p P u m p P m m u ?- + + ?+ + =

第1章 量子力学基础-习题与答案

一、是非题 1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。对否 解:不对 2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。试用测不准关系判断该模型是否合理。 解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。 二、选择题 1. 一组正交、归一的波函数123,,,ψψψ。正交性的数学表达式为 a ,归一性的 表达式为 b 。 () 0,() 1i i i i a d i j b ψψτψψ** =≠=?? 2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E ) (A) dx d (B) ?2 (C) 用常数乘 (D) (E) 积分 3. 下列算符哪些可以对易-------------------------------------------- (A, B, D ) (A) x ? 和 y ? (B) x ?? 和y ?? (C) ?x p 和x ? (D) ?x p 和y ? 4. 下列函数中 (A) cos kx (B) e -bx (C) e -ikx (D) 2 e kx - (1) 哪些是 dx d 的本征函数;-------------------------------- (B, C ) (2) 哪些是的22 dx d 本征函数;-------------------------------------- (A, B, C ) (3) 哪些是22dx d 和dx d 的共同本征函数。------------------------------ (B, C ) 5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D ) (A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大 6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

量子力学 第二版 第六章__散射 习题答案 周世勋

第六章 散射 1.粒子受到势能为 2 )(r a r U = 的场的散射,求S 分波的微分散射截面。 [解] 为了应用分波法,求微分散射截面,首先必须找出相角位移。注意到第l 个分波的相角位移l δ是表示在辏力场中的矢径波函数l R 和在没有散射势时的矢径波函数l j 在∞→r 时的位相差。因此要找出相角位移,必须从矢径的波动方程出发。 矢径的波动方程是: 0))1()((12 2 22=+--+??? ??l l R r l l r V k dr dR r dr d r 其中l R 是波函数的径向部分,而 E k r U r V 2 2 2 2),(2)( μμ= = 令 r r x R l l )(= ,不难把矢径波动方程化为 02)1(222 2=??? ??-+-+''l l x r r l l k x μα 再作变换 )(r f r x l =,得 0)(221)(1)(22 2 2 =???? ??? ? ?+??? ? ? +- +'+''r f r e k r f r r f μα 这是一个贝塞尔方程,它的解是 ) ()()(kr BN kr AJ r f p p += 其中 2 2 2 221 μα+??? ?? +=l p 注意到 ) (kr N p 在0→r 时发散,因而当0→r 时波函数 ∞ →= r N R p l ,不符合波函数的标准条件。所以必须有0=B 故 ) (1kr J r A R p l = 现在考虑波函数l R 在∞→r 处的渐近行为,以便和l j 在∞→r 时的渐近行为比较,而求

得相角位移l δ,由于: ) 2 sin(1)4 2 sin(1)(l l kr r p kr r r R δππ π+- = + - → ∞→ ????????????? ? ? +-+??? ?? +-=++-=∴ 2122122422 2l d l l p l μππ ππδ 当l δ很小时,即α较小时,把上式展开,略去高次项得到 ??????? ?? ?+ -=2122 l l μα πδ 又因 l i i e l δδ212=- 故 ∑∞ =-+= 2) (c o s )1)(12(21)(l l i P e l ik f l θθδ ∑∞ =?? ???? ??+-+=02) (cos 122)12(21l l P l i l ik θμαπ ∑∞ =- =0 2 ) (cos l l P k θπμα 注意到 ?????? ?≤???? ??≥???? ??=-+=∑∑∞=∞=02 121202 1121212 22112 )(cos 1)(cos 1cos 21 1 l l l l l l r r P r r r r r P r r r r r r r r 当当θθθ 如果取单位半径的球面上的两点来看 则 121==r r ,即有 ∑∞ == = -0 2sin 21)(cos ) cos 1(21l l P θθθ 故 2s i n 21)(2 θ πμα θ k f - = 微分散射截面为

第一章 量子力学基础和原子结构

第一章 量子力学基础和原子结构 一、填空题 1、若用波函数ψ来定义电子云,则电子云即为_________________。 2、氢原子s ψ1在 r =a 0和 r =2a 0处的比值为_____________。 3、有两个氢原子,第一个氢原子的电子处于主量子数 n =1 的轨道, 第二个氢原子的电子处于n =4 的轨道。 (1)原子势能较低的是______, (2) 原子的电离能较高的是____。 4、设氢原子中电子处在激发态 2s 轨道时能量为E 1, 氦原子处在第一激发态 1s 12s 1时的2s电子能量为E 2,氦离子He + 激发态一个电子处于 2s 轨道时能量为E 3, 请写出E 1,E 2,E 3的从大到小顺序。_____________。 5、对氢原子 1s 态: (1) 2ψ在 r 为_______________处有最高值 (2) 径向分布函数 224ψr π在 r 为____________处有极大值; (3) 电子由 1s 态跃迁至 3d 态所需能量为_____________。 6、H 原子(气态)的电离能为 13.6 eV, He +(气态)的电离能为 _______ eV。 二、选择题 1、波长为662.6pm 的光子和自由电子,光子的能量与自由电子的动能比为何值? (A )106:3663 (B )273:1 (C )1:C (D )546:1 2、一电子被1000V 的电场所加速.打在靶上,若电子的动能可转化

为光能,则相应的光波应落在什么区域? (A) X光区(约10-10m) (B)紫外区(约10-7m) (C)可见光区(约10-6m)(D)红外区(约10-5m 3、普通阴极管管径为10-2m数量级.所加电压可使电子获得105ms-1速度,此时电子速度的不确定量为十万分之一,可用经典力学处理.若以上其它条件保持不变则阴极管的管径在哪个数量级时必须用量子力学处理? (A)约10-7m (B)约10-5m (C)约10-4m (D)约10-2m 4、下列条件不是品优函数的必备条件的是 (A)连续(B)单值(C)归一(D)有限或平方可积 5、己知一维谐振子的势能表达式为V=kx2/2,则该体系的定态薛定谔方程应当为 6、粒子处于定态意味着 (A)粒子处于概率最大的状态 (B)粒子处于势能为0的状态 (C)粒子的力学量平均值及概率密度分布都与时间无关的状态

量子力学曾谨言第八章第九章习题详解

第八章:自旋 [1]在x σ ?表象中,求x σ?的本征态 (解) 设泡利算符2 σ,x σ,的共同本征函数组是: ()z s x 2 1 和()z s x 2 1 - (1) 或者简单地记作α和β,因为这两个波函数并不是x σ ?的本征函数,但它们构成一个完整系,所以任何自旋态都能用这两个本征函数的线性式表示(叠加原理),x σ ?的本征函数可表示: β αχ21c c += (2) 21,c c 待定常数,又设x σ ?的本征值λ,则x σ?的本征方程式是: λχχσ =x ? (3) 将(2)代入(3): ()()βαλβασ 2121?c c c c x +=+ (4) 根据本章问题6(P .264),x σ ?对z σ?表象基矢的运算法则是: βασ =x ? αβσ=x ? 此外又假设x σ?的本征矢(2)是归一花的,将(5)代入(4): βλαλαβ2111c c c c +=+ 比较βα,的系数(这二者线性不相关),再加的归一化条件,有: ) 6()6() 6(12221 1 221c b a c c c c c c ------------------------------------??? ??=+==λλ 前二式得12 =λ,即1=λ,或1-=λ 当时1=λ,代入(6a )得21c c =,再代入(6c),得: δi e c 2 11= δi e c 2 12=

δ 是任意的相位因子。 当时1-=λ,代入(6a )得 21c c -= 代入(6c),得: δi e c 2 11= δi e c 2 12- = 最后得x σ ?的本征函数: )(21βαδ+= i e x 对应本征值1 )(2 2βαδ-= i e x 对应本征值-1 以上是利用寻常的波函数表示法,但在2??σσ x 共同表象中,采用z s 作自变量时,既是坐标表象,同时又是角动量表象。可用矩阵表示算符和本征矢。 ??????=01α ?? ? ???=10β ??????=21c c χ (7) x σ ?的矩阵已证明是 ?? ????=0110?x σ 因此x σ ?的矩阵式本征方程式是: ?? ????=??? ??????? ??21211010c c c c λ (8) 其余步骤与坐标表象的方法相同,x σ?本征矢的矩阵形式是: ??????=1121δi e x ?? ? ???-=1122δi e x [2]在z σ表象中,求n ?σ的本征态,)cos ,sin sin ,cos (sin θ?θ?θn 是) ,(?θ方向的单位矢。 (解) 方法类似前题,设n ?σ算符的本征矢是: βα21c c x += (1)

第一章量子力学基础和原子轨道报告

第一章 量子力学基础与原子结构 一、单项选择题(每小题1分) 1.一维势箱解的量子化由来( ) ① 人为假定 ② 求解微分方程的结果 ③ 由势能函数决定的 ④ 由微分方程的边界条件决定的。 2.下列算符哪个是线性算符( ) ① exp ② ▽2 ③ sin ④ 3.指出下列哪个是合格的波函数(粒子的运动空间为 0+)( ) ① sinx ② e -x ③ 1/(x-1) ④ f(x) = e x ( 0 x 1); f(x) = 1 ( x 1) 4.基态氢原子径向分布函数D(r) ~ r 图表示( ) ① 几率随r 的变化 ② 几率密度随r 的变化 ③ 单位厚度球壳内电子出现的几率随r 的变化 ④ 表示在给定方向角度上,波函数随r 的变化 5.首先提出微观粒子的运动满足测不准原理的科学家是( ) ①薛定谔 ② 狄拉克 ③ 海森堡 ③波恩 6.立方势箱中22 810m a h E <时有多少种状态( ) ① 11 ② 3 ③ 7 ④ 2 7.立方势箱在22 812m a h E ≤的能量范围内,能级数和状态数为( ) ①5,20 ② 6,6 ③ 5,11 ④ 6,17 8.下列函数哪个是22 dx d 的本征函数( ) ① mx e ② sin 2x ③ x 2+y 2 ④ (a-x)e -x 9.立方势箱中22 87m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 10.立方势箱中22 89m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 11.已知x e 2是算符x P ?的本征函数,相应的本征值为( ) ① i h 2 ② i h 4 ③ 4ih ④ πi h

量子力学考试题

量子力学考试题 (共五题,每题20分) 1、扼要说明: (a )束缚定态的主要性质。 (b )单价原子自发能级跃迁过程的选择定则及其理论根据。 2、设力学量算符(厄米算符)∧ F ,∧ G 不对易,令∧K =i (∧F ∧G -∧G ∧ F ),试证明: (a )∧ K 的本征值是实数。 (b )对于∧ F 的任何本征态ψ,∧ K 的平均值为0。 (c )在任何态中2F +2 G ≥K 3、自旋 /2的定域电子(不考虑“轨道”运动)受到磁场作用,已知其能量算符为 S H ??ω= ∧ H =ω∧ z S +ν∧ x S (ω,ν>0,ω?ν) (a )求能级的精确值。 (b )视ν∧ x S 项为微扰,用微扰论公式求能级。 4、质量为m 的粒子在无限深势阱(0

间改变。 (b )(n l m m s )→(n’ l’ m’ m s ’) 选择定则:l ?=1±,m ?=0,1±,s m ?=0 根据:电矩m 矩阵元-e → r n’l’m’m s ’,n l m m s ≠0 2、(a )6分(b )7分(c )7分 (a )∧ K 是厄米算符,所以其本征值必为实数。 (b )∧ F ψ=λψ,ψ∧ F =λψ K =ψ∧ K ψ=i ψ∧F ∧ G -∧ G ∧F ψ =i λ{ ψ∧ G ψ-ψG ψ}=0 (c )(∧F +i ∧G )(∧F -i ∧G )=∧ F 2 +∧ G 2-∧ K ψ(∧F +i ∧G )(∧F -i ∧G )ψ=︱(∧ F -i ∧ G )ψ︱2≥0 ∴<∧ F 2 +∧ G 2 -∧ K >≥0,即2F +2 G ≥K 3、(a),(b)各10分 (a) ∧ H =ω∧ z S +ν∧ x S =2 ω[1001-]+2 ν[0110]=2 [ων ν ω -] ∧ H ψ=E ψ,ψ=[b a ],令E =2 λ,则 [λωννλω---][b a ]=0,︱λων ν λω---︱ =2λ-2ω-2ν=0 λ=±22νω+,E 1=-2 2 2νω+,E 2=2 22νω+ 当ω?ν,22νω+=ω(1+22ων)1/2≈ω(1+2 22ων)=ω+ων22 E 1≈-2 [ω+ων22],E 2 =2 [ω+ων22] (b )∧ H =ω∧z S +ν∧ x S =∧H 0+∧H ’ ,∧ H 0=ω∧ z S ,∧ H ’ =ν∧ x S ∧ H 0本征值为ω 21± ,取E 1(0)=-ω 21,E 2(0) =ω 21 相当本征函数(S z 表象)为ψ1(0)=[10],ψ2(0)=[01 ] 则∧ H ’之矩阵元(S z 表象)为 '11H =0,'22H =0,'12H =' 21H =ν 21

量子力学导论第8章答案

第八章 自旋 8.1) 在z σ表象中,求x σ的本征态。 解:在z σ表象中,x σ的矩阵表示为:x σ ??? ? ? ?=0110 设x σ的本征矢(在z σ表象中)为??? ? ??b a ,则有??? ? ??=???? ?????? ??b a b a λ0110 可得a b λ=及b a λ= 1,12±==∴λλ 。 ,1=λ 则; b a = ,1-=λ 则b a -= 利用归一化条件,可求出x σ的两个本征态为 ,1=λ ;1121???? ?? ,1-=λ ??? ? ??-1121 。 8.2) 在z σ表象中,求n ?σ的本征态,()??θ?θcos ,sin sin ,cos sin n 是()?θ,方向的单位矢. 解:在z δ表象中,δ的矩阵表示为 x σ ??? ? ? ?=0110, y σ??? ? ? ?-=00 i i , z σ??? ? ? ?-=1001 (1) 因此, z z y y x x n n n n n σσσσσ++=?= ??? ? ??-=???? ?? -+-=-θθθθ ?? cos sin sin cos i i z y x y x z e e n in n in n n (2) 设n σ的本征函数表示为Φ??? ? ??=b a ,本征值为λ,则本征方程为 ()0=-φλσn ,即 0cos sin sin cos =? ??? ?????? ??----b a e e i i λθθθλ θ? ? (3) 由(3)式的系数行列式0=,可解得1±=λ。 对于1=λ,代回(3)式,可得 x y x y x x i i n in n in n n e e b a --=++==-=--112sin 2cos cos 1sin ?? θθ θθ 归一化本征函数用()?θ,表示,通常取为 ()???? ? ?=? θθ ?θφi e 2sin 2cos ,1或??? ? ? ? ?-222sin 2cos ? ? θθi i e e (4)

第一章 量子力学基础

第一章 量子力学基础知识 一、概念题 1、几率波:空间一点上波的强度和粒子出现的几率成正比,即,微粒波的强度 反映粒子出现几率的大小,故称微观粒子波为几率波。 2、测不准关系:一个粒子不能同时具有确定的坐标和动量 3、若一个力学量A 的算符A ?作用于某一状态函数ψ后,等于某一常数a 乘以ψ,即,ψψa A =?,那么对ψ所描述的这个微观体系的状态,其力学量A 具有确定的数值a ,a 称为力学量算符A ?的本征值,ψ称为A ?的本征态或本征波函数,式ψψa A =?称为A ?的本征方程。 4、态叠加原理:若n ψψψψ,,,,321????为某一微观体系的可能状态,由它们线性组 合所得的ψ也是该体系可能存在的状态。其中: ∑=+??????+++=i i i n n c c c c c ψψψψψψ332211,式中n c c c c ,,,,321???为任意常 数。 5、Pauli 原理:在同一原子轨道或分子轨道上,至多只能容纳两个电子,这两个 电子的自旋状态必须相反。或者说两个自旋相同的电子不能占据相同的轨道。 6、零点能:按经典力学模型,箱中粒子能量最小值为0,但是按照量子力学箱中粒子能量的最小值大于0,最小的能量为228/ml h ,叫做零点能。 二、选择题 1、下列哪一项不是经典物理学的组成部分? ( ) a. 牛顿(Newton)力学 b. 麦克斯韦(Maxwell)的电磁场理论 c. 玻尔兹曼(Boltzmann)的统计物理学 d. 海森堡(Heisenberg)的测不准关系 2、下面哪种判断是错误的?( ) a. 只有当照射光的频率超过某个最小频率时,金属才能发身光电子

量子力学讲义第八章

第8章 自 旋 与 全 同 粒 子 Stern-Gerlach 实验中得到了直接证实。 1、Stern-Gerlach (斯特恩-革拉赫)实验 2、自旋的提出 (1)、每个电子具有自旋角动量s (电子本身固有的,而不是自转而产生的),它在空间任何方向上的投影只能取两个数值:2z s =± ; (2)、每个电子具有自旋磁矩s μ ,它和自旋角动量s 的关系是 s e s mc μ=- ,-e 是电子的电荷,m 是电子的质量 自旋磁矩s μ 在空间任意方向上的投影只能取两个数值: 2sz B e mc μμ=± =± 2B e mc μ= 为玻尔磁子 sz z e s mc μ=-,2lz z e l mc μ=- 电子 s l (1) 无经典对应量 有经典对应量 (2) 2 z s =± 22(1)l l l =+ ,z l m = (3) sz z e s mc μ=- 2lz z e l mc μ=- 回转磁比率 实验证明,除电子外,其他微观粒子也都具有自旋。如原子、中子、μ介子的自旋角动量和电子一样(但自旋磁矩不同),π介子、k 介子的自旋角动量为0(但自旋磁矩不为零),以下除有特殊说明外,我们所讲的自旋都是指电子自旋。 §8.1 电子自旋态与自旋算符 一、自旋算符 通常的力学量都可以表示为坐标和动量的函数 ????(,)F F r p = 而自旋角动量则与电子的坐标和动量无关,它是电子内部状态的表征,是描写电子状态的第四个自由度(第四个变量)。 与其他力学量一样,自旋角动量 也是用一个算符描写,记为s 它是角动量,满足同样的角动量对易关系???s s i s ?= 轨道角动量?l 自旋角动量s ???l l i l ?= ???s s i s ?= ???[,]x y z l l i l = ???[,]x y z s s i s = ???[,]y z x l l i l = ???[,]y z x s s i s = ???[,]z x y l l i l = ???[,]z x y s s i s = 2??[,]0i l l = 2??[,]0i s s = 由于自旋角动量s 在空间任意方向上的投影只能取 ±?/2 两个值, 所以

福师《结构化学》第一章 量子力学基础和原子结构 课堂笔记

福师《结构化学》第一章量子力学基础和原子结构课堂笔记 ◆主要知识点掌握程度 了解测不准关系,掌握和的物理意义;掌握一维势箱模型Schrodinger方程的求解以及该模型在共轭分子体系中的应用;理解量子数n,l,m的取值及物理意义;掌握波函数和电子云的径向分布图,原子轨道等值线图和原子轨道轮廓图;难点是薛定谔方程的求解。 ◆知识点整理 一、波粒二象性和薛定谔方程 1.物质波的证明 德布罗意假设:光和微观实物粒子(电子、原子、分子、中子、质子等)都具有波动性和微粒性两重性质,即波粒二象性,其基本公式为: 对于低速运动,质量为m的粒子: 其中能量E和动量P反映光和微粒的粒性,而频率ν和波长λ反映光和微粒的波性,它们之间通过Plank 常数h联系起来,普朗克常数焦尔·秒。 实物微粒运动时产生物质波波长λ可由粒子的质量m和运动度ν按如下公式计算。 λ=h/P=h/mν 量子化是指物质运动时,它的某些物理量数值的变化是不连续的,只能为某些特定的数值。如微观体系的能量和角动量等物理量就是量子化的,能量的改变为E=hν的整数倍。 2.测不准关系: 内容:海森保指出:具有波粒二象性的微观离子(如电子、中子、质子等),不能同时具有确定的坐标和动量,它们遵循“测不准关系”: (y、z方向上的分量也有同样关系式) ΔX是物质位置不确定度,ΔPx为动量不确定度。该关系是微观粒子波动性的必然结果,亦是宏观物体和微观物体的判别标准。对于可以把h看作O的体系,表示可同时具有确定的坐标和动量,是可用牛顿力学描述的宏观物体,对于h不能看作O的微观粒子,没有同时确定的坐标和动量,需要用量子力学来处理。 3.波函数的物理意义——几率波 实物微粒具有波动性,其运动状态可用一个坐标和时间的函数来描述,称为波函数或状态函数。 1926年波恩对波函数的物理意义提出了统计解释:由电子衍射实验证明,电子的波动性是和微粒的行为的统计性联系在一起的,波函数正是反映了微粒行为的统计规律。这规律表明:对大量电子而言,在衍射强度大 的地方,电子出现的数目多,强度小的地方电子出现的数目少,即波函数的模的平方与电子在空间分布的密度成正比。

量子力学曾谨言第六章第七章习题详解

第六章:中心力场 [1]质量分别为m, ,m 2的两个粒子组成的体系,质心座标R及相对座标r为: m" m zD “、 R = 一一⑴ m, m2 rr 二O -「1 ⑵ 试求总动量P = p,亠p2及总角动量L = h亠丨2在R,r表象中的 算符表示。 1.[解](a)合动量算符p = P1 ? P2。根据假设可以解出r i,r2 - - m2 令 m 三m ,亠口2: 「=R_ ----- r (3) m 1 m1 r2= R ? r (4) m2 设各个矢量的分量是r1(x1, y1, z1) , r2 (x2, y 2, z2), r(x, y,z)和R(X,Y,Z)。为了计算动量的变换式先求对x , X2等的偏导数: L、L、# L、r L、L、L、 X x m1 ' ' ' '' 1(5) :x1;:x1;:X ;:x1;:x m ;:X ;:x jx2cX cx2 L、rx x ;X ;x2 a m2 e jx m ;X :x (6) 关于 L、L、 d d-可以写出与( 5) (6) 类似的式子,因而-71 -7 2 .z1.z2 A A A A A d e P - (P1 ■P2)x 二P 1x p2x -( - -) i ;x1;x2 L、L、*-?.L、

m1m2 =_(」2): i m ;X :x m ;:X ;:x i ;X --h d P 二i ' i _:X r d j i ;: Y -h k —

A " ■ ■ /t ■ ■ (b)总角动量 L = l i ?丨2 =— (「1 ::甘 1 ?「2 ::詁 2) i L x — (「i J j J)x i m 2 -(Z -z)(- m cY ^(yi--z) i Z -(y 2- i :z 利用(3), (4), ( 5), (6): L x {(丫一匹 i m m-:: y)(- m cZ m —-—) :-y m 1 (Y -y)( m m 2 m ;Z -) m i _(Z ? — z)( m m E -—)} :-y -f Z i m ;Z c c )-(丫 一 -Z —) ;z .y m 1m 2 (y 「 z jz m 2 —(Y m -(Y - 'z -Z mm m 2 .L 、 ,l~. G C (y z ) :z :丫 (y — :z -z :)} :y h d =— c c -Z ) (y — Y 'z -z^)} -y h - = (—R I R i h _ ■ -r J)x i

量子力学第六章散射

第六章 散射 6.1 两体碰撞和散射截面 两个粒子的碰撞可以分为弹性散射,非弹性散射和反应三种类型。如果两个粒子的内部状态在碰撞前后都保持不变,则称为弹性散射。弹性散射也就是弹性碰撞,下面将只讨论弹性散射问题。如果粒子的内部状态在碰撞后有变化(例如激发或电离),则称为非弹性散射。如果碰撞后有新粒子出现,则称为反应。非弹性散射与反应有时并不能严格区分开来。单粒子的衰变也可属于反应。粒子之间的碰撞与能级跃迁中的频谱(能谱)一样对许多实际问题的研究具有很重要的意义。例如,贞瑟福(Rutherford )由对X 粒子被原子散射的研究中发现原子中心有一个重核。又如,电子与原子碰撞的夫兰克——赫兹(Franck-Herty )实验证明了原子中有定态。 两个粒子的碰撞可以在外场中进行,下面也只讨认没有外场的情况,这时,两个粒子体系 的势能仅由相互作用能()U r 决定。由§2.7“5”可知,两体问题可以化为一个具有折合质量为μ的粒子在一个固定于质心位置的势场()U r 中运动。这个静止不动的质心位置被称为散射中心,也称为 靶心。这时,两个粒子的散射便化为粒子被势场的散射。这个粒子的能量E 是连续谱,在弹性散射 中,能量E 在散射过程中保持不变。为了简单,设耙心质量比位于r 处的粒子质量大得多,则这个 具有折合质量的粒子便化为一个真实粒子,而相对运动能量E 便化为这个真实粒子的能量。 考虑一束粒子沿Z 轴正方向向散射中心C 射束,如下图: 在入射粒子未进入势场之前,即当入射粒子距离散射中心很远时,可近似地用平面波描写,所以穿过垂直于Z 轴平面的λ射粒子是均匀分布的。单位时间内穿过垂直于入射方向单位面积的粒子数N 称为入射粒子流强度。粒子被散射后的运动方向与入射方向之间的夹角称为散射角。设以C 点为球心以r 为半径的球面上的面积元ds 对C 点张开的立体角为d Ω,则单位时间内散射到d Ω内的粒子数dn 应与d Ω成正比,也与N 成正比: (,)dn q Nd θ?=Ω (6.1-1) 其中(,)q θ?为比例系数。(,)q θ?通常是,θ?的函数,它的值与入射粒子的能量E 以及势场 ()U r 有关,但应与N 无关。因2dS dn r =,则上式可化为: 2(,)dn q ds r θ?= (6.1-2)

物理化学第八章课后题答案

第八章 量子力学基础 8.1 同光子一样,实物粒子也具有波动性。与实物粒子相关联的波的波长,即德 布罗意波长给出。试计算下列波长。(1 eV=1.6021771910-? J ,电子质量9.1093110-?kg ,中子质量1.6742710-?kg ) (1) 具有动能1eV ,100 eV 的电子; (2) 具有动能1eV 的中子; (3) 速度为640m/s 、质量为15g 的弹头。 解:德布罗意波长可以表示为:p h m v h == λ,那么将上述的实物粒子的质量和动能带入公式即可得: (1)动能1eV 的电子的波长为 m m mE h p h k 9193134 10266.110602177.1110109.9210626.62----?=??????===λ 动能100eV 的电子 m m mE h p h k 10193134 10266.110602177.110010109.9210626.62----?=??????===λ (2)动能1eV 的中子的波长为 m m mE h p h k 11192734 10861.210602177.1110674.1210626.62----?=??????===λ (3)速度为640m/s 、质量为15g 的弹头的波长为 m m mv h 353 34 10902.6640 101510626.6---?=???==λ 8.2 在一维势箱问题求解中,假定在箱内()0V x C =≠(C 为常数),是否对其解 产生影响?怎样影响? 解:当()0V x C =≠时,一维势箱粒子的Schr?dinger 方程为 ()()() ()()()()()2 22 2 2 2222d 2d d d '2d 2d x C x E x m x x x E C x E x m x m x ψψψψψψψ-+=∴-=-?-= 边界条件不变,因此Schr?dinger 方程的解为

第一章 量子力学基础知识 (1)

第一章量子力学基础知识 1.填空题 (1) Ψ是描述的波函数(北京大学1993年考研试题) (2) 实物粒子波动性假设由首先提出来的,实物粒子的波是波。 (3) 德布罗意假设首先由戴维逊和革末用实验证实的。 (4) 在一维无限深势阱中,粒子的活动范围宽度增大,能引起体系的能量。 (5)Planck提出,标志着量子理论的诞生。(中山大学1998年考研试题) (6) 一维无限深势阱中的粒子,已知处于基态,在处概率密度最大。 (7) 边长为l的立方势箱中粒子的零点能为。(北京大学1993年考研试题) (8) 边长为l的一维势箱中粒子的零点能为。 (9) 有一质量为m的粒子在一维势箱中运动,其Schr?dinger方程为。(中山大学1998年考研试题) (10) 一维势箱的长度增加,其粒子量子效应(填增强、不变或减弱)。 2. 选择题 (1)粒子处于定态意味着:( ) A、粒子处于静止状态 B、粒子处于势能为0的状态 C、粒子处于概率最大的状态 D、粒子的力学量平均值及概率密度分布都与时间无关的状态 (2)波恩对波函数提出统计解释:在某一时刻t在空间某处发现粒子的概率与下面哪种形式的波函数成正比。( ) A、|Ψ| B、|Ψ |2 C、|Ψ |1..5 D、xy| Ψ| (3)指出下列条件,哪一个不是态函数的标准化条件?( ) A、单值 B、正交归一 C、有限 D、连续 (4)微观粒子的不确定关系式,如下哪种表述正确?( ) A、坐标和能量无确定值 B、坐标和能量不可能同时有确定值 C、若坐标准确量很小,则动量有确定值 D、动量值越不正确,坐标值也越不正确 (5)波长为662.6 pm 的光子和自由电子,光子的能量与自由电子的动能比为何值?( )

量子力学课件第八章

第八章 WKB 近似 WKB (Wenzel ,Kramers, Brillouin )1方法是得到一维定态Schr?dinger 方程的近似解的一种技术(它的基本思想同样可应用于许多其他形式的微分方程和三维Schr?dinger 方程的径向部分)。此法对计算束缚态能量和势垒穿透率都是非常有用的。 它的基本思想如下:假设能量为E 的粒子穿过势能V(x)的区域,其中V(x)为常量。当E>V 时,则波函数的形式为 ()ikx x Ae ψ±=,其中 ()2k m E V ≡- 正号表示粒子向右运动,而负号表示它向左运动(当然,通解是两项的线性组合)。波函数为振荡函数,具有固定的波长(λ=2π/k )和不变的振幅(A )。现在设想V(x)不是一个常量,但是变化相比λ非常缓慢,因此包含许多全波长的区域中的势能可以认为基本上是不变的。这样,除了波长和振幅随x 缓慢的变化外,可以合理地认为ψ实际上仍然保持正弦形式。这就是隐藏在WKB 近似后面的核心思想。它将依赖x 的问题有效地分为两种不同层次:快速振荡和由振幅和波长逐渐变化的调制。 同理,当E

量子力学第八章习题

第八章自旋 8-1 设电子处于β状态,求S 与Z 轴的夹角。 8-2 证明[]),,(,0?,?2z y x S S ==αα 8-3 α和β组成正交归一完全系,试将x S ?的本征值分别为2/ =x S 和2/ -的本征函数用它们展开。 8-4 试证明α和β是2?x S 的本征函数,但不是x S ?的本征函数。 8-5 试证明i z y x =σσσ ??? 。 8-6在“自旋”向下态β中,求x S 和y S 的涨落x S ?,y S ?以及x S ?y S ? 。 8-7 求y S ?的本征值和本征函数(取z S 表象)。 8-8 (1)在x σ表象中求z y x σσσ??,?和 的归一化本征函数;(2)证明1?±=?=n n σ σ ,并求相应的本征函数;(3)在1=n σ态内,求1,11,1-==-==z z x x σσσσ及的几率。 8-9 设电子自旋Z 分量为2/ ,问沿着与Z 轴成θ角的'z 轴方向上,自旋取2/ 及2/ -的几率为多少?求此方向上自旋分量的平均值。 8-10 证明不存在和σ ? 的三个分量均反对易的非零二维矩阵。 8-11 测得一电子自旋Z 分量为2/ 。再测x S ,可能得何值,各值的几率为多少?平均值为何? 8-12 设λ为常数,证明λσ λσλsin ?cos ?z i i e z += 8-13 设B A ?,? 为和σ ? 对易的任何矢量算符,证明)??(???)??(B A i B A A ??+?=?σσ 8-14 化简z z i i e e σλασλσ???- ,y x ,=α ,λ为常数。 8-15 证明??? ? ??=--θθθσi i i e e e z 00 8-16 定域电子受到均匀磁场B 的作用,B 指向x 轴方向,磁作用势为x c eB H σμ?2? = ,设t=0

相关文档
最新文档