量子力学第八章习题

量子力学第八章习题
量子力学第八章习题

第八章自旋

8-1 设电子处于β状态,求S

与Z 轴的夹角。 8-2 证明[]),,(,0?,?2z y x S S ==αα

8-3 α和β组成正交归一完全系,试将x

S ?的本征值分别为2/ =x S 和2/ -的本征函数用它们展开。

8-4 试证明α和β是2?x S 的本征函数,但不是x

S ?的本征函数。 8-5 试证明i z y x =σσσ

??? 。 8-6在“自旋”向下态β中,求x S 和y S 的涨落x S ?,y S ?以及x S ?y S ? 。

8-7 求y

S ?的本征值和本征函数(取z S 表象)。 8-8 (1)在x σ表象中求z y x σσσ??,?和 的归一化本征函数;(2)证明1?±=?=n n

σ

σ ,并求相应的本征函数;(3)在1=n σ态内,求1,11,1-==-==z z x x σσσσ及的几率。 8-9 设电子自旋Z 分量为2/ ,问沿着与Z 轴成θ角的'z 轴方向上,自旋取2/ 及2/ -的几率为多少?求此方向上自旋分量的平均值。 8-10 证明不存在和σ

? 的三个分量均反对易的非零二维矩阵。 8-11 测得一电子自旋Z 分量为2/ 。再测x S ,可能得何值,各值的几率为多少?平均值为何?

8-12 设λ为常数,证明λσ

λσλsin ?cos ?z i i e z += 8-13 设B A ?,? 为和σ

? 对易的任何矢量算符,证明)??(???)??(B A i B A A ??+?=?σσ 8-14 化简z z i i e e

σλασλσ???- ,y x ,=α ,λ为常数。 8-15 证明???

? ??=--θθθσi i i e e e z 00 8-16 定域电子受到均匀磁场B 的作用,B 指向x 轴方向,磁作用势为x c

eB H σμ?2? = ,设t=0

时,电子自旋“向上”,即2 =z S ,求t>0时电子自旋2

=z S 的几率和S 的平均值。

8-17 对于两个自旋为1/2 的粒子体系,以21??σσ 和表示粒子1和2的泡利算符,试求2

1??σσ ?的本征值和本征函数,并求2

?S 的本征值。 8-18 设体系有两个自旋为1/2的非全同粒子组成,粒子1处于2

1 =z S 态,粒子2处于2

2 =x S 态,(1)写出粒子1和粒子2以及体系的波函数,(2)求总自旋2?S 的可能测得值及相应的几率。

8-19 将两个自旋为1/2的粒子组成的体系置于均匀磁场中,设磁场沿Z 轴方向,体系哈密

顿量与自旋有关部分为2121?????σσσσ

?++=c b a H

z z ,试求体系能级。 8-20 两个自旋1/2的定域非全同粒子的哈密顿量为21???S S A H ?=,t=0时粒子1自旋“向上”(2

1 =

z S ),粒子2自旋“向下”(22z S =-),求t>0时(1)粒子1自旋“向上”的几率;(2)粒子1和2自旋均“向上”的几率;(3)总自旋S=1和0的几率;(4)1S 和2S 的平均值。

8-21 设氢原子的状态是?????

? ??-=),()(23),()(2110211121?θ?θψY r R Y r R (1)求z L 和z S 的平均值;(2)求总磁矩S m

e L m e M --=2的Z 分量平均值。 8-22 若电子处于d 态,试问它的总角动量可以取哪些值?这时轨道角动量矢量和自旋角动量矢量之间的夹角是多少?

8-23 对于三电子体系,求总自旋量子数的取值。

8-24 对于三个电子的自旋函数

???????++++--)

3()2()1((:))3()2()1()3()2()1()3()2()1((3:))3()2()1()3()2()1()3()2()1((3:)3()2()1(:42/13

2/121βββββαβαβαββααβαβαβαααααx x x x , ???-+-+--))

3()2()1(2)3()2()1()3()2()1((6:))3()2()1(2)3()2()1()3()2()1((6:2/162/15ββαβαβαββααβαβαβααx x

???----))

3()2()1()3()2()1((2:))3()2()1()3()2()1((2:2/182/17βαβαββαβαβααx x 求2321)(S S S ++和z z z S S S 321++的本征值。其中第一组构成四重态,对电子1,2和3的任意交换都是对称的,第三组对于电子2和3交换为反对称的。

8-25 讨论三电子体系的自旋函数:(1)证明)3()2()1(ααα是2?S 和z S 二者的本征函数,确

定相应的本征值。(2)运用阶梯算符)???(?321-

---++=S S S S 生成对于S=3/2的全部2S+1个本征函数。(3)确定S=1/2的三电子体系的本征函数。这样的函数必定有多少组?

量子力学作业习题

第一章量子力学作业习题 [1] 在宏观世界里,量子现象常常可以忽略.对下列诸情况,在数值上加以证明: ( l )长l=lm ,质量M=1kg 的单摆的零点振荡的振幅; ( 2 )质量M=5g ,以速度10cm/s 向一刚性障碍物(高5cm ,宽1cm )运动的子弹的透射率; ( 3 )质量M= 0.1kg ,以速度0.5m/s 运动的钢球被尺寸为1×1.5m2时的窗子所衍射. [2] 用h,e,c,m(电子质量), M (质子质量)表示下列每个量,给出粗略的数值估计: ( 1 )玻尔半径(cm ) ; ( 2 )氢原子结合能(eV ) ; ( 3 )玻尔磁子;( 4 )电子的康普顿波长(cm ) ; ( 5 ) 经典电子半径(cm ) ; ( 6 )电子静止能量(MeV ) ; ( 7 )质子静止能量( MeV ) ; ( 8 )精细结构常数;( 9 )典型的氢原子精细结构分裂 [3]导出、估计、猜测或背出下列数值,精确到一个数量级范围内, ( 1 )电子的汤姆逊截面;( 2 )氢原子的电离能;( 3 )氢原子中基态能级的超精细分裂能量;( 4 )37Li ( z=3 )核的磁偶极矩;( 5 )质子和中子质量差;( 6 )4He 核的束缚能;( 7 )最大稳定核的半径;( 8 )Π0 介子的寿命;( 9 )Π-介子的寿命;( 10 )自由中子的寿命. [4]指出下列实验中,哪些实验表明了辐射场的粒子性?哪些实验主要证明能量交换的量子性?哪些实验主要表明物质粒子的波动性?简述理由. ( 1 )光电效应;( 2 )黑体辐射谱;( 3 ) Franck – Hertz实验;( 4 ) Davisson -Ger - mer 实验;散射. [5]考虑如下实验:一束电子射向刻有A 、B 两缝的平板,板外是一装有检测器阵列的屏幕,利用检测器 能定出电子撞击屏幕的位置.在下列各种情形下,画出入射电子强度随屏幕位置变化的草图,给出简单解释. ( 1 ) A 缝开启,B缝关闭; ( 2 ) B 缝开启,A 缝关闭; ( 3 )两缝均开启. [6]验算三个系数数值:(1 2 ;(3)hc

量子力学习题集及解答

量子力学习题集及解答

目录 第一章量子理论基础 (1) 第二章波函数和薛定谔方程 (5) 第三章力学量的算符表示 (28) 第四章表象理论 (48) 第五章近似方法 (60) 第六章碰撞理论 (94) 第七章自旋和角动量 (102) 第八章多体问题 (116) 第九章相对论波动方程 (128)

第一章 量子理论基础 1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000 A (可见光),1 A (x 射线)以及0.001 A (γ射线)时,加速电子所需的电势差是多少? [解] 电子在电势差V 加速下,得到的能量是eV m =22 1 υ这个能量全部转化为一个光子的能量,即 λ νυhc h eV m ===221 ) (1024.1106.11031063.64 19834 A e hc V λλλ?=?????==∴--(伏) 当 A 50001=λ时, 48.21=V (伏) A 12=λ时 421024.1?=V (伏) A 001.03=λ时 731024.1?=V (伏) 2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。 [解] 普朗克公式为 1 8/33-?=kT hv v e dv c hv d πνρ 单位体积辐射的总能量为 ? ?∞∞-==0 0/331 3T hv v e dv v c h dv U κπρ 令kT hv y = ,则 4 40333418T T e dy y c h k U y σπ=? ??? ??-=?∞ (★) 其中 ?∞-=033341 8y e dy y c h k πσ (★★) (★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。这个公式就是斯忒蕃——玻耳兹曼公式。其中σ是比例常数,可求出如下: 因为 )1()1(1 121 +++=-=-------y y y y y y e e e e e e

量子力学-第四版-卷一-(曾谨言-著)习题答案第4章-2

4.29——6.1 4.29证明在z L ?的本征态下,0==y x L L 。(提示:利用x y z z y L i L L L L =-,求平均。) 证:设ψ是z L 的本征态,本征值为 m ,即ψψ m L z = [] x L i =-=y z z y z y L L L L L ,L ,[]y L i =-=z x x z x z L L L L L ,L , ( )( ) ( ) 011 1 =-=-=-= ∴ψψψψψψψψψψψψy y y z z y y z z y x L m L m i L L L L i L L L L i L 同理有:0=y L 。 附带指出,虽然x l ?,y l ?在x l ?本征态中平均值是零,但乘积x l ?y l ?的平均值不为零,能够证明:,2 1 2y x y x l l i m l l -== 说明y x l l ??不是厄密的。2?x l ,2?y l 的平均值见下题。 4.30 设粒子处于()?θ,lm Y 状态下,求()2 x L ?和() 2 y L ? 解:记本征态lm Y 为lm ,满足本征方程 ()lm l l lm L 221 +=,lm m lm L z =,lm m L lm z =, 利用基本对易式 L i L L =?, 可得算符关系 () ()x y z x z y x y z z y x x x L L L L L L L L L L L L L i L i -=-== 2 () x y z z x y y x y z y z x y L L L L L L L i L L L L i L L L -+=-+=2 将上式在lm 态下求平均, 使得后两项对平均值的贡献互相抵消,因此 2 2 y x L L = 又()[] 222 2 2 1 m l l L L L z y x -+=-=+ ()[] 222 2 12 1 m l l L L y x -+= = ∴ 上题已证 0==y x L L 。 ()() ()[] 222 2 2 2 2 12 1 m l l L L L L L L x x x x x x -+= =-=-=?∴

量子力学教程课后习题答案

量子力学习题及解答 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 1 833 -? =πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)()(5-?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλλ λρλρ ρ 这里的λρ的物理意义是黑体波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 ' =???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλ πρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=4.97,经过验证,此解正是所要求的,这样则有 xk hc T m =λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=h v , λ h P = 如果所考虑的粒子是非相对论性的电子(2c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 61051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

量子力学 第四版 卷一 (曾谨言 著) 科学出版社第7章

第七章:粒子在电磁场中的运动 P367——7.1,7.2 证明在磁场B 中,带电粒子的速度算符的各分量,满足下述的对易关系: [] z y x c q i v v B ?,2μ = (1) [] x z y c q i v v B ?,2μ = (2) []y x z c q i v v B ? ,2 μ = (3) [证明]根据正则方程组: x x p H x v ??== ? ,Φ+?? ? ??-=q A c q p H 2 21? μ ? ? ? ?? -=x x x A c q p v ??1?μ 同理 ? ? ? ? ?-=y y y A c q p v ??1?μ ()z y x p p p p ?,?,?? 是正则动量,不等于机械动量,将所得结果代入(1)的等号左方: [] ? ? ????--=y y x x y x A c q p A c q p v v ??,??1,2μ ] [] y x A A c q ?,?2 2 μ+ (4) [] 0?,?=y x p p 又A ? [] z x y y x B c y x i c v v 22 ,μμ = ??? ??-?? = (因A B ??=??) 其余二式依轮换对称写出。 P368证明在规范变换下 ψψρ* = (1) [ ]ψψμψψψψμ * * *- -=A c q p p j ??21 (2)

??? ? ?-=A c q p v ?μ (机械动量的平均值)都不变 (3) (证明)如课本证明,要规范变换下,若将体系的波函数作以下变换(P368 20式) ψψc iqf e → (4) 则薛定谔方程形式不变,将(4)代入(1)式等号右方,设变换后几率密度: ρ ρψ ψψψψψ ρ='=?=??? ? ? ???? ? ? ?='* * -* c iqf c iqf c iqf c iqf e e e e 又设变换后几率流密度是j ',将(4)代入(2)式右方,同时又代入 ()t r f A A , ?+→ ψψψψμc iqf c iqf c iqf c iqf e P e e p e j * - * -????? ?-='21 (5) 注意到算符的对易关系 推广到三维:() )(F )(F ,?r i r p ??=? 6) 令c iqf e r =)(F 则有: c iqf e p -=e p c iqf (7) =-e p c iqf (8) 将(7)(5)式成为: ()() j A c q p p f A c q f c q p e e f c q p e e j c iqf c iqf c iqf c iqf =--=?+-????????? ???--??? ???+=* ***-*-ψψμψψψψμψψμψψψψμ2121 (9) 在证明第3式时,设变换后的v 是v ' 。写出右方平均值的显式,用(4)的波数变换,和)4('的矢势的变换式:

量子力学第四版卷一曾谨言著习题答案第章

第五章: 对称性及守恒定律 P248设粒子的哈密顿量为 )(2??2r V p H +=μ 。 (1) 证明 V r p p r dt d ??-=? μ/)(2。 (2) 证明:对于定态 V r T ??=2 (证明)(1)z y x p z p y p x p r ??????++=? ,运用力学量平均值导数公式,以及对易算符的公配律: ]?,??[1)??(H p r i p r dt d ?=? )],,(?21,??????[]?,??[2z y x V p p z p y p x H p r z y x +++=?μ )],,()???(21 ,??????[222z y x V p p p p z p y p x z y x z y x +++++=μ )],,(,[21 ],??????[2 2 2 z y x V zp yp xp p p p p z p y p x z y x z y x z y x +++++++=μ (2) 分动量算符仅与一个座标有关,例如x i p x ?? = ,而不同座标的算符相对易,因此(2)式可简化成: ]?,??[21]?,??[21]?,??[21]?,??[222z z y y x x p p z p p y p p x H p r μ μμ++=? )],,(,??????[z y x V p z p y p x z y x +++ ],??[],??[],??[]?,??[21]?,??[21]?,??[21222 V p z V p y V p x p p z p p y p p x z y x z z y y x x +++++= μμμ (3) 前式是轮换对称式,其中对易算符可展开如下: x x x x p x p p x p p x ?????]?,??[23 2-= x x x x x x p x p p x p p x p p x ???????????22 23-+-= x x x x x p p x p p p x ?]?,?[??]?,?[2+= 222?2??x x x p i p i p i =+= (4) ],?[?????????????],??[V p x p V x V p x p x V V p x V p x x x x x x x =-=-=

量子力学第五章习题

第五章 微扰理论 5.1 如果类氢原子的核不是点电荷,而是半径为0r ,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。 解: 这种分布只对0r r <的区域有影响, 对0r r ≥的区域无影响. 根据题意知 ()()0 ?H U r U r '=- 其中()0U r 是不考虑这种效应的势能分布, 即 ()2004ze U r r πε=- ()U r 为考虑这种效应后的势能分布, 在0r r ≥的区域为 ()2 04ze U r r πε=- 在0r r <的区域, ()U r 可由下式 ()r U r e Edr ∞ =-? 其中电场为 () () 3023300000201 4,443434Ze Ze r r r r r r r E Ze r r r ππεπεππε?=≤?? =? ?>? ? 则有: ()()()() 2 2 3 2 000 22222 2200 033000000 1443848r r r r r r U r e Edr e Edr Ze Ze rdr dr r r Ze Ze Ze r r r r r r r r r πεπεπεπεπε∞ ∞ =--=- - =---=--≤??? ? 因此有微扰哈密顿量为 ()()()() 222 200300 031?220s s Ze r Ze r r r r r H U r U r r r ???--+ ≤? ?'=-=????>? 其中s e =类氢原子基态的一级波函数为 ()( 32 10010000032 02exp 2Zr a R Y Z a Zr a Z e a ψ-==-?=?? 按定态微扰论公式,基态的一级能量修正值为 ()()()0 0*0011 11 100100 3 2222222000000?1 31sin 4422Zr r a s s E H H d Z e Ze Z r d d e r dr a r r r ππψψτ?θθπ -''==??????=--+?? ? ????????? ? ???

量子力学(周世勋)课后答案-第七章

7.1.证明:i z y x =σσσ ??? 证:由对易关系 z x y y x i σσσσσ ?2????=- 及 反对易关系 0????=+x y y x σσσσ , 得 z y x i σσσ ???= 上式两边乘z σ ?,得 2????z z y x i σσσσ= ∵ 1?2=z σ ∴ i z y x =σσσ ??? 7.2 求在自旋态)(2 1z S χ中,x S ?和y S ?的测不准关系: ?)()(22=y x S S ?? 解:在z S ?表象中)(2 1z S χ、x S ?、y S ?的矩阵表示分别为 ???? ??=01)(21z S χ ???? ??=01102? x S ???? ??-=002?i i S y ∴ 在)(2 1z S χ态中 00101102)0 1(2121=??? ? ?????? ??==+ χχx x S S 4010110201102)0 1(?2 22 2 121 =???? ?????? ?????? ??==+ χχx x S S 4 )(22 22 =-=?x x x S S S 001002)0 1(?212 1=??? ? ?????? ??-==+i i S S y y χχ 401002002)0 1(?222 2 121 =??? ? ?????? ??-???? ??-==+ i i i i S S y y χχ 4 )(22 22 =-=?y y y S S S

16 )()(4 2 2 =??y x S S ① 讨论:由x S ?、y S ?的对易关系 [x S ?,y S ?]z S i ? = 要求 4 )()(2 2 2 2z y x S S S ≥?? 在)(2 1z S χ态中,2 = z S ∴ 16 )()(4 2 2 ≥y x S S ?? 可见①式符合上式的要求。 7.3.求??? ? ??--=???? ??=002?01102?i i S S y x 及的本征值和所属的本征函数。 解:x S ?的本征方程为01102a a b b λ??????= ??? ? ?????? 移项得: 20 2 a b λ λ? ? - ???= ? ? ???- ??? x S ?的久期方程为 02 2=--λ λ 可得 20)2(22 ±=?=-λλ ∴ x S ?的本征值为2 ±。 设对应于本征值2 的本征函数为 ???? ??=112/1b a χ 由本征方程 2 /12/12 ?χχ =x S ,得

量子力学习题集及答案

09光信息量子力学习题集 一、填空题 1. 设电子能量为4电子伏,其德布罗意波长为( 6.125ο A )。 2. 索末菲的量子化条件为=nh pdq ),应用这量子化条件求得一维谐振 子的能级=n E ( ηωn )。 3. 德布罗意假说的正确性,在1927年为戴维孙和革末所做的( 电 )子衍 射实验所证实,德布罗意关系(公式)为( ηω=E )和( k p ρηρ = )。 4. 三维空间自由粒子的归一化波函数为()r p ρ ρψ=( r p i e ρ ρη η?2 /3) 2(1π ), () ()=? +∞ ∞ -*'τψψd r r p p ρρρρ( )(p p ρ ρ-'δ )。 5. 动量算符的归一化本征态=)(r p ρ ρψ( r p i e ρ ρηη?2/3)2(1π ),=' ∞ ?τψψd r r p p )()(*ρρρρ( )(p p ρ ρ-'δ )。 6. t=0时体系的状态为()()()x x x 2020,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 522 0)(2)(--+ )。 7. 按照量子力学理论,微观粒子的几率密度w =2 ),几率流密度= ( () ** 2ψ?ψ-ψ?ψμ ηi )。 8. 设)(r ρψ描写粒子的状态,2)(r ρψ是( 粒子的几率密度 ),在)(r ρψ中F ?的平均值为F =( ??dx dx F ψψψψ* *? ) 。 9. 波函数ψ和ψc 是描写( 同一 )状态,δψi e 中的δi e 称为( 相因子 ), δi e 不影响波函数ψ1=δi )。 10. 定态是指( 能量具有确定值 )的状态,束缚态是指(无穷远处波函数为 零)的状态。 11. )i exp()()i exp()(),(2211t E x t E x t x η η-+-=ψψψ是定态的条件是 ( 21E E = ),这时几率密度和( 几率密度 )都与时间无关。 12. ( 粒子在能量小于势垒高度时仍能贯穿势垒的现象 )称为隧道效应。 13. ( 无穷远处波函数为零 )的状态称为束缚态,其能量一般为( 分立 )谱。 14. 3.t=0时体系的状态为()()()x x x 300,ψψψ+=,其中()x n ψ为一维线性谐振子的定态波函数,则()=t x ,ψ( t i t i e x e x ωωψψ2 732 0)()(--+ )。 15. 粒子处在a x ≤≤0的一维无限深势阱中,第一激发态的能量为

量子力学习题汇集

第一章习题 1.证明下列算符等式 [][][][][][][][][][][][][][][]0 ,,,,,,,,,,,,,,,=+++=+=+=+B A C A C B C B A B C A C B A C AB C B A C A B BC A C A B A C B A 2.设粒子波函数为),,(z y x ψ,求在()dx x x +, 范围内找到粒子的几率. 3.在球坐标中,粒子波函数为()??ψ,,r ,试求: 1)在球壳(r,r+dr)中找到粒子的几率; 2)在()??,方向的立体角Ωd 中找到粒子的几率. 4.已知力学量F 的本征方程为 n n n F ?λ?= 求在状态波函数 332211???ψc c c ++= 下测力学量F 的可能值,相应的几率及平均值(假设波函数ψ已归一或不归一的情况). 第二章习题 1.一粒子在二维势场

???∞=,,0),(y x V 其它b y a x <<<<0,0 中运动,求粒子的能级和波函数.能级是否简并 2.由哈密顿算符 () 2232 22221222 2z y x m m H ωωω+++?-=η 所描述的体系,称各向异性谐振子.求其本征态和本征值. 3.利用递推关系 ??? ? ??--=+-1121 2)(n n n n n x dx d ψψαψ 证明 ( ) 222 22)2)(1()12()1(2 +-++++--=n n n n n n n n n dx d ψψψαψ 并由此证明在n ψ态下 2 ,0n E T P = = 第 四 章 习 题 1. 证明 )cos sin (cos ???i A +=ψ 为2L 和y L 的共同本征态,并求相应的本征值。说明当体系处在此状态时, z L 没有确定值。

量子力学周世勋习题解答第五章范文

第五章习题解 5.1 如果类氢原子的核不是点电荷,而是半径为0r 、电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正。 解:这种分布只对0r r <的区域有影响,对0r r ≥的区域无影响。据题意知 )()(?0 r U r U H -=' 其中)(0r U 是不考虑这种效应的势能分布,即 r ze r U 02 4πε- =)( )(r U 为考虑这种效应后的势能分布,在0r r ≥区域, r Ze r U 02 4)(πε-= 在0r r <区域,)(r U 可由下式得出, ?∞ -=r Edr e r U )( ??? ????≥≤=??=)( 4 )( ,4344102 00300330420r r r Ze r r r r Ze r r Ze r E πεπεπππε ??∞ --=0 )(r r r Edr e Edr e r U ?? ∞ - - =00 20 2 3 002 144r r r dr r Ze rdr r Ze πεπε )3(84)(82 203 020*********r r r Ze r Ze r r r Ze --=---=πεπεπε )( 0r r ≤ ?? ???≥≤+--=-=')( 0 )( 4)3(8)()(?00022 2030020r r r r r Ze r r r Ze r U r U H πεπε 由于0r 很小,所以)(2??022)0(r U H H +?-=<<'μ ,可视为一种微扰,由它引起的一级修正为(基态r a Z e a Z 02/130 3) 0(1)(-=πψ)

第七章习题

第七章习题 1. 有一平凹氦氖激光器,腔长m 5.0,凹镜曲率半径为m 2,现欲用小孔光阑选出 00TEM 模,试求光阑放于紧靠平面镜和紧靠凹面镜处两种情况下小孔直径各为多少?(对于氦氖激光器,当小孔光阑的直径约等于基模半径的3.3倍时,可选出基横模。) 解:由R L g -=1,可计算出75.01=g ,0.12=g ,满足1021

量子力学知识点小结(良心出品必属精品)

第一章 ⒈玻尔的量子化条件,索末菲的量子化条件。 ⒉黑体:能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 ⒎普朗克量子假说: 表述1:对于一定频率ν的辐射,物体只能以hν为能量单位吸收或发射电磁辐射。 表述2:物体吸收或发射电磁辐射时,只能以量子的方式进行,每个量子的能量为:ε=hν。 表述3:物体吸收或发射电磁辐射时,只能以能量ε的整数倍来实现,即ε,2ε,3ε,…。 ⒏光电效应:光照射到金属上,有电子从金属上逸出的现象。这种电子称之为光电子。 ⒐光电效应有两个突出的特点: ①存在临界频率ν0:只有当光的频率大于一定值v0 时,才有光电子发射出来。若光频率小于该值时,则不论光强度多大,照射时间多长,都没有光电子产生。 ②光电子的能量只与光的频率有关,与光的强度无关。光的强度只决定光电子数目的多少。 ⒑爱因斯坦光量子假说: 光(电磁辐射)不仅在发射和吸收时以能量E= hν的微粒形式出

现,而且以这种形式在空间以光速 C 传播,这种粒子叫做光量子,或光子。爱因斯坦方程 ⒒光电效应机理: 当光射到金属表面上时,能量为 E= h ν 的光子立刻被电子所吸收,电子把这能量的一部分用来克服金属表面对它的吸引,另一部分就是电子离开金属表面后的动能。 ⒓解释光电效应的两个典型特点: ①存在临界频率v 0:由上式明显看出,当h ν- W 0 ≤0时,即ν≤ν0 = W 0 / h 时,电子不能脱出金属表面,从而没有光电子产生。 ②光电子动能只决定于光子的频率:上式表明光电子的能量只与光的频率ν有关,而与光的强度无关。 ⒔康普顿效应:高频率的X 射线被轻元素如白蜡、石墨中的电子散射后出现的效应。 ⒕康普顿效应的实验规律: ①散射光中,除了原来X 光的波长λ外,增加了一个新的波长为λ'的X 光,且λ' >λ; ②波长增量Δλ=λ-λ随散射角增大而增大。 ⒖量子现象凡是普朗克常数h 在其中起重要作用的现象 ⒗光具有微粒和波动的双重性质,这种性质称为光的波粒二象性 ⒘与运动粒子相联系的波称为德布罗意波或物质波。 ???? ? ???? ======n k h k n h P h E λππλων2 ,2

量子力学习题答案

量子力学习题答案 1.2 在0k 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解:由德布罗意波粒二象性的关系知: E h =ν; p h /=λ 由于所考虑的电子是非相对论的电子(26k e E (3eV)c (0.5110)-μ? ),故: 2e E P /(2)=μ 69 h /p h / hc / 1.2410/0.7110 m 0.71nm --λ====?=?=1.3氦原子的动能是E=1.5kT ,求T=1K 时,氦原子的德布罗意波长。 解:对于氦原子而言,当K 1=T 时,其能量为 J 10 2.07K 1K J 10 381.12 32 323 1 23 ---?=????= = kT E 于是有 一维谐振子处于2 2 /2 ()x x Ae α ψ-=状态中,其中α为实常数,求: 1.归一化系数; 2.动能平均值。 (22 x e dx /∞-α-∞ = α?) 解:1.由归一化条件可知: 22 * 2x 2 (x)(x)dx A e dx 1 A /1 ∞∞-α-∞ -∞ ψψ===α=? ? 取相因子为零,则归一化系数1/21/4A /=απ 2.

2222 2 2 22 2 2 22 22 22 22 2 * 2x /2 x /22 2 2 x /2 x /2 2 2 x /2 2x /2 2 222x 2x /2 2 2 24 2x 2T (x)T (x)dx A e (P /2)e dx d A e ()e dx 2dx d A e (xe )dx 2dx A {xe (xe )dx} 2A x e dx A 22∞∞-α-α-∞-∞ ∞-α-α-∞∞-α-α-∞ ∞ ∞-α-α-∞ -∞ ∞-α-∞ = ψψ=μ=- μ =- -αμ=- -α- -αμ = α = μμ ? ?? ? ? ? =(= = 22 2 2 2 2 4 x 22 24 x x 2 2 22 24 21()xd(e ) 21A (){xe e dx}221A ()2442∞-α-∞ ∞ ∞-α-α-∞ -∞ α- α =α- -- μααα- - μ α μ μ α ? ? 若αT 4 ω= 解法二:对于求力学量在某一体系能量本征态下的平均值问题,用F-H 定理是 非常方便的。 一维谐振子的哈密顿量为: 2 2 22 d 1H x 2dx 2 =- + μωμ 它的基态能量01E 2 = ω 选择 为参量,则: 0dE 1d 2 = ω ; 2 2 2 d H d 2d 2()T d dx 2dx =- = - = μμ d H 20 0T d = 由F-H 定理知: 0dE d H 210 T d d 2= ==ω 可得: 1T 4 = ω

量子力学课后习题答案

第一章 绪论 1.1.由黑体辐射公式导出维恩位移定律:C m b b T m 0 3109.2 ,??==-λ。 证明:由普朗克黑体辐射公式: ννπνρννd e c h d kT h 1 1 83 3 -= , 及λ νc = 、λλ νd c d 2 - =得 1 185 -= kT hc e hc λλλπρ, 令kT hc x λ= ,再由0=λρλd d ,得λ.所满足的超越方程为 1 5-=x x e xe 用图解法求得97.4=x ,即得 97.4=kT hc m λ,将数据代入求得C m 109.2 ,03??==-b b T m λ 1.2.在0K 附近,钠的价电子能量约为3eV,求de Broglie 波长. 解:010 A 7.09m 1009.72=?≈= =-mE h p h λ # 1.3. 氦原子的动能为kT E 2 3 = ,求K T 1=时氦原子的de Broglie 波长。 解:010 A 63.12m 1063.1232=?≈== =-mkT h mE h p h λ 其中kg 1066.1003.427-??=m ,1 23K J 1038.1--??=k # 1.4利用玻尔—索末菲量子化条件,求: (1)一维谐振子的能量。 (2)在均匀磁场中作圆周运动的电子的轨道半径。 已知外磁场T 10=B ,玻尔磁子123 T J 10 923.0--??=B μ,求动能的量子化间隔E ?,并与K 4=T 及 K 100=T 的热运动能量相比较。 解:(1)方法1:谐振子的能量2222 1 2q p E μωμ+= 可以化为 ( ) 1222 222 2=??? ? ??+ μωμE q E p 的平面运动,轨道为椭圆,两半轴分别为2 2,2μω μE b E a = =,相空间面积为 ,2,1,0,2=== = =?n nh E E ab pdq ν ω ππ 所以,能量 ,2,1,0,==n nh E ν 方法2:一维谐振子的运动方程为02 =+''q q ω,其解为 ()?ω+=t A q sin 速度为 ( )?ωω+='t A q c o s ,动量为()?ωμωμ+='=t A q p cos ,则相积分为

北京大学量子力学期末试题

量子力学习题(三年级用) 北京大学物理学院 二O O三年

第一章 绪论 1、计算下列情况的Broglie d e -波长,指出那种情况要用量子力学处理: (1)能量为eV .0250的慢中子 () 克2410671-?=μ .n ;被铀吸收; (2)能量为a MeV 的5粒子穿过原子克2410646-?=μ.a ; (3)飞行速度为100米/秒,质量为40克的子弹。 2、两个光子在一定条件下可以转化为正、负电子对,如果两光子的能量相等,问要实现这种转化,光子的波长最大是多少? 3、利用Broglie d e -关系,及园形轨道为各波长的整数倍,给出氢原子能量 可能值。

第二章 波函数与波动力学 1、设()() 为常数a Ae x x a 222 1 -= ? (1)求归一化常数 (2).?p ?,x x == 2、求ikr ikr e r e r -=?=?1121和的几率流密度。 3、若() ,Be e A kx kx -+=? 求其几率流密度,你从结果中能得到什么样的结 论?(其中k 为实数) 4、一维运动的粒子处于 ()? ? ?<>=?λ-0 00x x Axe x x 的状态,其中,0>λ求归一化系数A 和粒子动量的几率分布函数。 5、证明:从单粒子的薛定谔方程得出的粒子的速度场是非旋的,即求证 0=υ?? 其中ρ= υ/j 6、一维自由运动粒子,在0=t 时,波函数为 ()()x ,x δ=?0 求: ?)t ,x (=?2

第三章 一维定态问题 1、粒子处于位场 ()00 0000 ??? ?≥?=V x V x V 中,求:E >0V 时的透射系数和反射系数(粒子由右向左运动) 2、一粒子在一维势场 ?? ???>∞≤≤<∞=0 000x a x x V ) x ( 中运动。 (1)求粒子的能级和对应的波函数; (2)若粒子处于)x (n ?态,证明:,/a x 2= () .n a x x ?? ? ??π-=-2222 6112 3、若在x 轴的有限区域,有一位势,在区域外的波函数为 如 D S A S B D S A S C 22211211+=+= 这即“出射”波和“入射”波之间的关系,

量子力学 第四版 卷一 习题答案

第一章 量子力学的诞生 1、1设质量为m 的粒子在谐振子势222 1 )(x m x V ω=中运动,用量子化条件求粒子能量E 的可能取值。 提示:利用 )]([2,,2,1, x V E m p n nh x d p -===?? Λ )(x V 解:能量为E 的粒子在谐振子势中的活动范围为 a x ≤ (1) 其中a 由下式决定:222 1 )(a m x V E a x ω===。 a - 0 a x 由此得 2/2ωm E a = , (2) a x ±=即为粒子运动的转折点。有量子化条件 h n a m a m dx x a m dx x m E m dx p a a a a ==?=-=-=??? ?+-+-222222222)21(22πωπ ωωω 得ω ωπm n m nh a η22 = = (3) 代入(2),解出 Λη,3,2,1, ==n n E n ω (4) 积分公式: c a u a u a u du u a ++-=-? arcsin 2222 22 2 1、2设粒子限制在长、宽、高分别为c b a ,,的箱内运动,试用量子化条件求粒子能量的可能取值。 解:除了与箱壁碰撞外,粒子在箱内作自由运动。假设粒子与箱壁碰撞不引起内部激发,则碰撞为弹性碰撞。动量大小不改变,仅方向反向。选箱的长、宽、高三个方向为z y x ,,轴方向,把粒子沿z y x ,,轴三个方向的运动分开处理。利用量子化条件,对于x 方向,有 ()?==?Λ,3,2,1, x x x n h n dx p 即 h n a p x x =?2 (a 2:一来一回为一个周期) a h n p x x 2/=∴, 同理可得, b h n p y y 2/=, c h n p z z 2/=, Λ,3,2,1,,=z y x n n n 粒子能量

量子力学曾谨言习题解答第五章

第五章: 对称性及守恒定律 [1]证明力学量A ?(不显含t )的平均值对时间的二次微商为: ]?],?,?[[2 22 H H A A dt d -= (H ?是哈密顿量) (解)根据力学量平均值的时间导数公式,若力学量A ? 不显含t ,有 ]?,?[1H A i dt A d = (1) 将前式对时间求导,将等号右方看成为另一力学量 ]?,?[1H A i 的平均值,则有: ]?],?,?[[1]?],?,?[1 [ 1222 H H A H H A i i dt A d -== (2) 此式遍乘2 即得待证式。 [2]证明,在不连续谱的能量本征态(束缚定态)下,不显含t 的物理量对时间t 的导数的平均值等于零。 (证明)设A ?是个不含t 的物理量,ψ是能量H ?的公立的本征态之一,求A ?在ψ态中的平均值,有: ???= τ τψψ d A A ?* 将此平均值求时间导数,可得以下式(推导见课本§5.1) ???-≡= τ τψψd A H H A i H A i dt A d )????(*1]?,?[1 (1) 今ψ代表H ?的本征态,故ψ满足本征方程式 ψψE H =? (E 为本征值) (2) 又因为H ?是厄密算符,按定义有下式(ψ需要是束缚态,这样下述积公存在) τψψτψψτ d A H d A H ??????=)? (*)?()~ (?* (3) (题中说力学量导数的平均值,与平均值的导数指同一量) (2)(3)代入(1)得:

τψψτψψd A H i d H A i dt A d )? (*)?(1)?(?*1?????? -= ??? ???-= τψψ τψψd A i E d A i E ?**?* 因*E E =,而0=dt A d [3]设粒子的哈密顿量为 )(2??2r V p H +=μ 。 (1) 证明 V r p p r dt d ??-=? μ/)(2 。 (2) 证明:对于定态 V r T ??=2 (证明)(1)z y x p z p y p x p r ??????++=? ,运用力学量平均值导数公式,以及对易算符的公配律: ]?,??[1)??(H p r i p r d t d ?=? )],,(?21,??????[]?,??[2z y x V p p z p y p x H p r z y x +++=?μ )],,()???(21,??????[2 22z y x V p p p p z p y p x z y x z y x +++++=μ )],,(,[21],??????[2 2 2z y x V zp yp xp p p p p z p y p x z y x z y x z y x +++++++=μ (2) 分动量算符仅与一个座标有关,例如x i p x ?? = ,而不同座标的算符相对易,因此(2)式 可简化成: ]?,??[21]?,??[21]?,??[21]?,??[222z z y y x x p p z p p y p p x H p r μ μμ++=? )],,(,??????[z y x V p z p y p x z y x +++ ],??[],??[],??[]?,??[21]?,??[21]?,??[2122 2 V p z V p y V p x p p z p p y p p x z y x z z y y x x ++++ + = μ μ μ (3)

量子力学教程周世勋_课后答案

量子力学课后习题详解 第一章 量子理论基础 1.1 由黑体辐射公式导出维恩位移定律:能量密度极大值所对应的波长m λ与温度T 成反比,即 m λ T=b (常量); 并近似计算b 的数值,准确到二位有效数字。 解 根据普朗克的黑体辐射公式 dv e c hv d kT hv v v 1 183 3 -?=πρ, (1) 以及 c v =λ, (2) λρρd dv v v -=, (3) 有 ,1 18)() (5 -?=?=?? ? ??-=-=kT hc v v e hc c d c d d dv λλλ πλλρλ λλρλ ρ ρ 这里的λρ的物理意义是黑体内波长介于λ与λ+d λ之间的辐射能量密度。 本题关注的是λ取何值时,λρ取得极大值,因此,就得要求λρ 对λ的一阶导数为零,由此可求得相应的λ的值,记作m λ。但要注意的是,还需要验证λρ对λ的二阶导数在m λ处的取值是否小于零,如果小于零,那么前面求得的m λ就是要求的,具体如下: 011511 86 '=???? ? ?? -?+--?= -kT hc kT hc e kT hc e hc λλλλλπρ

? 0115=-?+ -- kT hc e kT hc λλ ? kT hc e kT hc λλ= -- )1(5 如果令x= kT hc λ ,则上述方程为 x e x =--)1(5 这是一个超越方程。首先,易知此方程有解:x=0,但经过验证,此解是平庸的;另外的一个解可以通过逐步近似法或者数值计算法获得:x=,经过验证,此解正是所要求的,这样则有 xk hc T m = λ 把x 以及三个物理常量代入到上式便知 K m T m ??=-3109.2λ 这便是维恩位移定律。据此,我们知识物体温度升高的话,辐射的能量分布的峰值向较短波长方面移动,这样便会根据热物体(如遥远星体)的发光颜色来判定温度的高低。 1.2 在0K 附近,钠的价电子能量约为3eV ,求其德布罗意波长。 解 根据德布罗意波粒二象性的关系,可知 E=hv , λ h P = 如果所考虑的粒子是非相对论性的电子(2 c E e μ<<动),那么 e p E μ22 = 如果我们考察的是相对性的光子,那么 E=pc 注意到本题所考虑的钠的价电子的动能仅为3eV ,远远小于电子的质量与光速平方的乘积,即eV 6 1051.0?,因此利用非相对论性的电子的能量——动量关系式,这样,便有 p h = λ

相关文档
最新文档