随机数的产生和随机模拟计算

随机数生成器

随机数生成器 一、随机数 1.1随机数的概念 数学上是这样定义随机数的:在连续型随机变量的分布中,最简单而且最基本的分布是单位均匀分布。由该分布抽取的简单子样称为随机数序列,其中每一个体称为随机数。单位均匀分布即[0,1]上的均匀分布。由随机数序列的定义可知,ξ1,ξ2,…是相互独立且具有相同单位均匀分布的随机数序列。也就是说,独立性、均匀性是随机数必备的两个特点。 1.2随机数的分类 随机数一般分为伪随机数和真随机数。利用数学算法产生的随机数属于伪随机数。利用物理方法选取自然随机性产生的随机数可以看作真随机数。实用中是使用随机数所组成的序列,根据所产生的方式,随机数序列再可以分为两类: 1.伪随机数序列 伪随机数序列由数学公式计算所产生。实质上,伪随机数并不随机,序列本身也必然会重复,但由于它可以通过不同的设计产生满足不同要求的序列且可以复现(相同的种子数将产生相同的序列),因而得到广泛的应用。由伪随机数发生器所产生的伪随机数序列,只要它的周期足够长并能通过一系列检验,就可以在一定的范围内将它当作真随机数序列来使用。 2.真随机数序列 真随机数序列是不可预计的,因而也不可能出现周期性重复的真正的随机数序列。它只能由随机的物理过程所产生,如电路的热噪声、宇宙噪声、放射性衰变等。 按照不同的分类标准,随机数还可分为均匀随机数和非均匀随机数,例如正态随机数。 1.3随机数的衡量标准 在实际模拟过程中,我们一般只需要产生区间[0,1]上的均匀分布随机数,因为其他分布的随机数都是由均匀分布的随机数转化来的。 实用中的均匀随机数主要通过以下三个方面来衡量其随机性能的高低。 1.周期性 伪随机数序列是由具有周期性的数学公式计算产生,其本身也必然会表现出周期性,即序列中的一段子序列与另一段子序列相同。它的周期必须足够长,才能为应用提供足够多的可用数据。只有真随机数序列才能提供真正的、永不重复的随机数序列。 2.相关性 随机数发生器所产生的一个随机数序列中的各个随机数应该不相关,所产生的各个随机数序列中的随机数也应该不相关。真随机数序列自然地满足这种不相关性。对于伪随机数发生器,应该仔细地设计所用的数学公式,以尽量满足不相关的要求。 3.分布均匀性 包括蒙特卡洛计算在内的大多数应用都要求所采用的随机数序列服从均匀分布,即同一范围内的任一个数出现的概率相同。从均匀分布的随机数序列也很容易导出其它类型分布的

VHDL产生伪随机数

Library IEEE ; use IEEE.std_logic_1164.all ; use IEEE.std_logic_arith.all ; entity lfsr is generic (data_width : natural := 8 ); port ( clk : in std_logic ; reset : in std_logic ; data_out : out UNSIGNED(data_width - 1 downto 0) ); end lfsr ; architecture rtl of lfsr is signal feedback : std_logic ; signal lfsr_reg : UNSIGNED(data_width - 1 downto 0) ; begin feedback <= lfsr_reg(7) xor lfsr_reg(0) ; latch_it : process(clk,reset) begin if (reset = '1') then lfsr_reg <= (others => '0') ;

elsif (clk = '1' and clk'event) then lfsr_reg <= lfsr_reg(lfsr_reg'high - 1 downto 0) & feedback ; end if; end process ; data_out <= lfsr_reg ; end RTL ; Reference URL:https://www.360docs.net/doc/3e7923328.html,/eda/edasrc/6153.html

高中数学必修三《均匀随机数的产生》教学设计

3.3.2 均匀随机数的产生 教材分析 本节内容是数学必修三第三章 概率 3.3.2均匀随机数的产生, 本节课在学生已经掌握几何概型的基础上,来学习解决几何概型问题的又一方法,本节课的教学对全面系统地理解掌握概率知识,对于培养学生自觉动手、动脑的习惯,对于学生辩证思想的进一步形成,具有良好的作用. 通过对本节课例题的模拟试验,认识用计算机模拟试验解决概率问题的方法,体会到用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识。 课时分配 本节内容用1课时的时间完成,主要讲解利用计算器(计算机)产生均匀随机数的方法;利用均匀随机数解决具体的有关概率的问题。 教学目标 重 点: 掌握[0,1]上均匀随机数的产生及[a,b ]上均匀随机数的产生。学会采用适当的随机模拟法去估算几何概率。 难 点:利用计算器或计算机产生均匀随机数并运用到概率的实际应用中。 知识点:通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法。 能力点:利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用频率估计概率。 教育点:通过随机模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯,培养逻辑 思维能力和探索创新能力。 自主探究点:在信息技术环境下,通过算法解决大量重复模拟试验中的数据统计问题,得出问题的解的估计值,并由此进一步体会随机模拟方法、算法思想以及从特殊到一般的数学研究过程。 易错易混点:在计算器上用rand()产生(0,1)之间的随机数不是什么难事,但产生任意区间(a,b )上的 随机数涉及线性变换,这是学生不易处理的问题,容易出错。 教具准备 多媒体课件 一、引入新课 复习提问: (1)什么是几何概型?(2)几何概型的概率公式是怎样的?(3)几何概型的特点是什么?(4)列举几个简单的几何概型例子? 【师生活动】 (1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等. (3)几何概型的概率公式: P (A )=积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A (4)几何概型例子:长3米的绳子被剪刀随机剪一次,问两段长度都不小于1米的概率?在这个几何概型中,随机剪绳子可以抽象成数学模型:从区间(0,3)中随机取一个数,由此引出今天的学习的内容,均匀随机数。

matlab产生随机数的方法

matlab 产生随机数的方法 第一种方法是用 random 语句,其一般形式为 y = random (' 分布的英文名 ',A1,A2,A3,m,n ) , 表示生成m 行n 列的m x n 个参数为(A1 , A2 , A3 ) 的该分 布的随机数。 例如: (1) R = random ('Normal',0,1,2,4): 生成期 望为 0, 标准差为 1 的(2 行 4 列)2 x 4个正态随机数 (2) R = random ('Poisson',1:6,1,6): 依次 生成参数为 1 到 6 的(1 行 6 列 )6 个 Poisson 随机数 第二种方法是针对特殊的分布的语句: 一. 几何分布随机数 R = geornd(P) R = geornd(P,m) (下面的 P , m 都可以是矩阵) (生成参数为 P 的几何随机数) (生成参数为 P 的 x m 个几何随机数) 1 R = geornd (P,m,n ) (生成参数为 P 的 m 行 n 列的 m x n 个几何随 机数) 例如 ⑴ R = geornd (1./ 2八(1:6))(生成参数依次为 1/2,1/2A 2,至U 1/2A 6 的 6 个几 何随机数 ) ⑵ R = geornd (0.01,[1 5])( 生成参数为0.01的(1行5列)5个几何随 机数). 二. Beta 分布随机数 R = betarnd(A,B) R = betarnd(A,B,m) 生成 m 行 n 列的 m x n 个数为 A,B 的 Beta 随 三.正态随机数 R = normrnd (MU, SIGMA ) (生成均值为 MU,标准差为SIGMA 的正态随机数) R = normrnd (MU , SIGMA,m ) (生成 1x m 个正态随机数) R = normrnd(MU , SIGMA,m,n) (生成 m 行 n 列的 m x n 个正态随机数) 例如 (1) R = normrnd(0,1,[1 5]) 生成 5 个正态 (0,1) 随机数 (2) R = normrnd([1 2 3;4 5 6],0.1,2,3) 生成期望依次为 [1,2,3;4,5,6], 方 差为 0.1 的 2x 3 个正态随机数. 生成参数为 A,B 的 Beta (生成 x m 个数为 A,B 随机数) 的 Beta 随机数) R = betarnd(A,B,m,n) 机数) .

均匀随机数的产生 说课稿 教案 教学设计

均匀随机数的产生 教学目标: 1.通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念;掌握利用计算器(计算机)产生均匀随机数的方法;自觉养成动手、动脑的良好习惯. 2.会利用均匀随机数解决具体的有关概率的问题,理解随机模拟的基本思想是用频率估计概率.学习时养成勤学严谨的学习习惯,培养逻辑思维能力和探索创新能力. 教学重点: 掌握[0,1]上均匀随机数的产生及[a,b]上均匀随机数的产生.学会采用适当的随机模拟法去估算几何概率. 教学难点: 利用计算器或计算机产生均匀随机数并运用到概率的实际应用中. 教学方法: 讲授法 课时安排 1课时 教学过程: 一、导入新课 1、复习提问:(1)什么是几何概型?(2)几何概型的概率公式是怎样的?(3)几何概型的特点是什么? 2、在古典概型中我们可以利用(整数值)随机数来模拟古典概型的问题,那么在几何概型中我们能不能通过随机数来模拟试验呢?如果能够我们如何产生随机数?又如何利用随机数来模拟几何概型的试验呢?引出本节课题:均匀随机数的产生. 二、新课讲授: 提出问题 (1)请说出古典概型的概念、特点和概率的计算公式? (2)请说出几何概型的概念、特点和概率的计算公式? (3)给出一个古典概型的问题,我们除了用概率的计算公式计算概率外,还可用什么方法得到概率?对于几何概型我们是否也能有同样的处理方法呢? (4)请你根据整数值随机数的产生,用计算器模拟产生[0,1]上的均匀随机数. (5)请你根据整数值随机数的产生,用计算机模拟产生[0,1]上的均匀随机数. (6)[a,b]上均匀随机数的产生. 活动:学生回顾所学知识,相互交流,在教师的指导下,类比前面的试验,一一作出回答,教师及时提示引导. 讨论结果: (1)在一个试验中如果 a.试验中所有可能出现的基本事件只有有限个;(有限性) b.每个基本事件出现的可能性相等.(等可能性) 我们将具有这两个特点的概率模型称为古典概率模型(classical models of probability),简称古典概型. 古典概型计算任何事件的概率计算公式为:P(A)= 基本事件的总数数 所包含的基本事件的个 A . (2)对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,

高中数学:均匀随机数的产生 (28)

[核心必知] 1.预习教材,问题导入 根据以下提纲,预习教材P135~P136,回答下列问题. (1)教材问题中甲获胜的概率与什么因素有关? 提示:与两图中标注B的扇形区域的圆弧的长度有关. (2)教材问题中试验的结果有多少个?其发生的概率相等吗? 提示:试验结果有无穷个,但每个试验结果发生的概率相等. 2.归纳总结,核心必记 (1)几何概型的定义与特点 ①定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型. ②特点:(ⅰ)可能出现的结果有无限多个;(ⅱ)每个结果发生的可能性相等. (2)几何概型中事件A的概率的计算公式 P(A)= 构成事件A的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积) . [问题思考] (1)几何概型有何特点? 提示:几何概型的特点有: ①试验中所有可能出现的结果(基本事件)有无限多个; ②每个基本事件出现的可能性相等. (2)古典概型与几何概型有何区别? 提示:几何概型也是一种概率模型,它与古典概型的区别是:古典概型的试验结果是有限的,而几何概型的试验结果是无限的. [课前反思] 通过以上预习,必须掌握的几个知识点: (1)几何概型的定义:;

(2)几何概型的特点: ; (3)几何概型的计算公式: . 某班公交车到终点站的时间可能是11∶30-12∶00之间的任何一个时刻. 往方格中投一粒芝麻,芝麻可能落在方格中的任何一点上. [思考1] 这两个试验可能出现的结果是有限个,还是无限个? 提示:无限多个. [思考2] 古典概型和几何概型的异同是什么? 名师指津:古典概型和几何概型的异同 如表所示: 名称 古典概型 几何概型 相同点 基本事件发生的可能性相等 不同点 ①基本事件有限个 ①基本事件无限个 ②P (A )=0?A 为不可能事件 ②P (A )=0A 为不可能事件 ③P (B )=1?B 为必然事件 ③P (B )=1 B 为必然事件 讲一讲 1.取一根长为5 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于2 m 的概率有多大? [尝试解答] 如图所示. 记“剪得两段绳长都不小于2 m ”为事件A .把绳子五等分,当剪断位置处在中间一段上 时,事件A 发生.由于中间一段的长度等于绳长的15 , 所以事件A 发生的概率P (A )=15 . 求解与长度有关的几何概型的关键点 在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D ,这时区域D

随 机 数 生 成 器

使用python实现伪随机数生成器 在前两天学习了使用python实现伪随机数的方法,今天是时候来做一个总结了。 首先要说明的是什么是随机数,真正的随机数是使用物理现象产生的:比如掷钱币、骰子、转轮、使用电子元件的噪音、核裂变等等。产生这些随机数的方法有很多种,而这些产生随机数的方法就称为随机数生成器。像前面说的由物理现象所产生的随机数发生器叫做物理性随机数发生器,它们的缺点是技术要求比较高。 但是在我们的实际生活中广泛应用的是伪随机数生成器,所谓的“伪”就是假的的意思,也就是说并不是真正的随机数。那么这些随机数是怎么实现的呢?这些数字是由固定的算法实现的,是有规律可循的,并不能实现真正的“随机”,但是它们具有类似于随机数的统计特征。这样的发生器叫做伪随机数发生器。 实现伪随机数的方法有很多种,如:平方取中法,线性同余法等方法。 下面主要介绍的是线性同余法,如C的rand函数和JAVA的java.util.Random类就是使用该方法实现的,其公式为:rNew = (a*rOld + b) % (end-start) 其中, a称为乘数,b称为增量,(end-start)称为模数,它们均为常数。 然后设置rOld = rNew,一般要求用户指定种子数rOld(也称为

seed),当然也可以自由选择a和b,但是两个数如果选择不好,可能会影响数字的随机性,所以一般令: a=32310901 这样使得生成的随机数最均匀。下面我是用的将种子自定义设为999999999。代码如下: def myrandint( start,end,seed=999999999 ): a=32310901 #产生出的随机数最均匀 rOld=seed m=end-start while True: #每调用一次这个myrandint函数,才生成一次随机数所以要惰性求值 rNew = (a*rOld+b)%m yield rNew rOld=rNew #模拟使用20个不同的种子来生成随机数 for i in range(20): r = myrandint(1,10000, i) #每个种子生成10个随机数 print('种子',i,'生成随机数') for j in range(10): print( next(r),end=',' ) 运行结果是使用20个不同的种子生成的随机数。

人教版高中数学必修三练习 均匀随机数的产生

第三章 3.3 3.3.2 一、选择题 1.用随机模拟方法求得某几何概型的概率为m ,其实际概率的大小为n ,则( ) A .m >n B .m

A .y =-4x ,y =5-4 B .y =4x -4,y =4x +3 C .y =4x ,y =5x -4 D .y =4x ,y =4x +3 [答案] C 6.如图所示,在墙上挂着一块边长为16 cm 的正方形木块,上面画了小、中、大三个同心圆,半径分别为2 cm,4 cm,6 cm ,某人站在3 m 之外向此板投镖,设镖击中线上或没有投中木板时不算,可重投, 记事件A ={投中大圆内}, 事件B ={投中小圆与中圆形成的圆环内}, 事件C ={投中大圆之外}. (1)用计算机产生两组[0,1]内的均匀随机数,a 1=RAND ,b 1=RNAD. (2)经过伸缩和平移变换,a =16a 1-8,b =16b 1-8,得到两组[-8,8]内的均匀随机数. (3)统计投在大圆内的次数N 1(即满足a 2+b 2<36的点(a ,b )的个数),投中小圆与中圆形成的圆环次数N 2(即满足4

第3章 随机数的产生与模拟

第三章随机数的产生与模拟目录 ?随机数的产生与模拟 ?§3.1均匀随机数的产生 ? 3.1.1线性同余法(LCG)的递推公式 ? 3.1.2反馈位移寄存器法(FSR) ? 3.1.3组合发生器 ?§3.2非均匀随机数的产生 ?§3.3 Monte Carlo方法在解确定性问题中的应用 ? 3.3.1计算定积分 ? 3.3.1.1随机投点法 ? 3.3.1.2平均值估计法 ? 3.3.1.3重要抽样法 ? 3.3.1.4分层抽样法 ? 3.3.2 计算多重积分 ? 3.3.2.1 随机投点法 ? 3.3.2.2 平均值估计法 ? 3.3.3应用实例 ?§3.4 随机模拟方法在随机服务系统中的应用 ?§3.5 随机模拟方法在理论研究中的应用

随机数的产生与模拟 用随机模拟方法解决实际问题时,首先要解决的是随机数的产生方法,或称随机变量的抽样方法。

随机数的产生与模拟 伪随机数: 在计算机上用数学方法产生均匀随机数是指按照一定的计算方法而产生的数列,它们具有类似于均匀随机变量的独立抽样序列的性质,这些数既然是依照确定算法产生的,便不可能是真正的随机数,因此常把用数学方法产生的随机数称为伪随机数。

随机数的产生与模拟 均匀分布随机数: 定理:设)(x F是连续且严格单调上升的分布函数,它的反函数存在,且记为)(1x F-, 1、若随机变量ξ的分布函数为)(x F,则)1,0(~)(U Fξ; 2、若随机变量)1,0(~U F-的分布函数为)(x F R,则)(1R

随机数的产生与模拟 均匀分布随机数: 该定理说明了任意分布的随机数均可由均匀分布的随机数变换得到。常简称的随机数为均匀分布随机数。 )1,0(U )1,0(U

MATLAB伪随机数发生器

MATLAB伪随机数发生器.txt生活是过出来的,不是想出来的。放得下的是曾经,放不下的是记忆。无论我在哪里,我离你都只有一转身的距离。 均匀性较好的随机数生成 zz from https://www.360docs.net/doc/3e7923328.html,/lanmuyd.asp?id=3379 随机数生成算法[1]是一类重要的算法,广泛应用于仿真技术等场合。然而,目前的伪随机数生成器(Pseudo-random number generator, PRNG)[2]存在一个重要缺陷,即样本分布与真实分布不一致,这主要发生在以下两种情况:①抽样代价过高,样本数目较少;②空间维数较高[3]。 因此,有必要寻找一类新的随机数发生器。准随机数发生器(Quasi-random number generator,QRNG)[4]能够生成稳定、低差异性的(low-discrepancy)样本,而与样本数目或空间维数无关[5]。故针对蒙特卡罗积分结果不稳定的情况,提出一种基于QRNG的蒙特卡罗积分,发现比传统方法性能有所提升。 伪随机数介绍 伪随机数是由确定的算法生成的,其分布函数与相关性均能通过统计测试。与真实随机数的差别在于,它们是由算法产生的,而不是一个真实的随机过程。一般地,伪随机数的生成方法主要有以下3种[6]: (1)直接法(Direct Method),根据分布函数的物理意义生成。缺点是仅适用于某些具有特殊分布的随机数,如二项式分布、泊松分布。 (2)逆转法(Inversion Method),假设U服从[0,1]区间上的均匀分布,令X=F-1(U),则X的累计分布函数(CDF)为F。该方法原理简单、编程方便、适用性广。 (3)接受拒绝法(Acceptance-Rejection Method):假设希望生成的随机数的概率密度函数(PDF)为f,则首先找到一个PDF为g的随机数发生器与常数c,使得f(x)≤cg(x),然后根据接收拒绝算法求解。由于算法平均运算c次才能得到一个希望生成的随机数,因此c的取值必须尽可能小。显然,该算法的缺点是较难确定g与c。 因此,伪随机数生成器(PRNG)一般采用逆转法,其基础是均匀分布,均匀分布PRNG 的优劣决定了整个随机数体系的优劣[7]。下文研究均匀分布的PRNG。 伪随机数生成器的缺点 重复做N=10000次试验,每次产生S=20与S=100个随机分布的样本,同时采用Kolmogorov- Smirnov假设检验(hypothesis test)来确定样本是否满足均匀分布。规定: ① 0假设(null hypothesis)为样本服从均匀分布;② 1假设(alternative hypothesis)为样本不服从均匀分布。 采用P值(∈[0, 1])衡量,P值越趋近于0,表示越有理由拒绝0假设,即样本不服从均匀分布;P值越趋近于1,表示越有理由接受0假设,即样本服从均匀分布。 如图1与图2所示:随着P值下降,样本也越来越不服从均匀分布。实践中希望P值越大越好。然而统计学的结论显示,P值一定服从均匀分布,与N、S大小无关,这表明由于随机性,总会出现某次抽样得到的样本不服从、甚至远离均匀分布。另外,样本大小的不同,造成检验标准的不同,直观上看S=100对应的均匀分布普遍比S=20对应的更均匀。因此,小样本情况下均匀分布PRNG的差异性尤为严重。

新课标A版必修3导学案 均匀随机数的产生

编号:SX2-023 第1页 第2页 装 订 线 批阅时间 装 订 线 3.3.2 均匀随机数的产生 姓名 班级 组别 使用时间 【学习目标】 1. 通过模拟试验,感知应用数字解决问题的方法,了解均匀随机数的概念; 2. 掌握利用计算器(计算机)产生均匀随机数的方法;自觉养成动手、动脑的良好习惯. 学习重点:掌握[0,1]上均匀随机数的产生及[a,b ]上均匀随机数的产生.学会采用适当的随机模拟法去估算几何概率. 【知识链接】 1. 如果每个事件发生的概率只与构成该事件区域的 (面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.几何概型的基本特点: a.试验中所有可能出现的结果(基本事件)有 ; b.每个基本事件出现的可能性 . 几何概型的概率公式: 。 【自主学习】 如何用计算器能产生[0,1]之间的均匀随机数,怎样产生[2,10] 之间的均匀随机数呢? 我们常用的是[0,1]上的均匀随机数.可以利用计算器来产生0—1之间的均匀随机数(实数), 结果是区间[0,1]内的任何一个实数,而且出现任何一个实数是 ,因此,就可以用上面的方法产生的0—1之间的均匀随机数进行随机模拟. 【合作探究】 例1 假设你家订了一份报纸,送报人可能在早上6:30—7:30之间把报纸送到你家,你父亲离开家去工作的时间在早上7:00—8:00之间,问你父亲在离开家前能得到报纸(称为事件A )的概率是多少? 例2 在如下图的正方形中随机撒一把豆子,用计算机随机模拟的方法估算圆周率的值. 例 3 利用随机模拟方法计算下图中阴影部分(y=1和y=x 2所围成的部分)的面积. 【课堂小结】 均匀随机数在日常生活中有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数)有关,然后设计适当的试验,并通过这个试验的结果来确定这些量. 【当堂检测】 1.将【0,1】内的均匀随机数转化为【-3,4】内的均匀随机数,需要实施的变换是 ( ) 1.*7Aa a = 1.*73B a a =+ 1.*73C a a =- 1 .*4D a a = 2.在边长为2的正方形中,有一个封闭的曲线围成的阴影区域,在正方形中随机撒入100粒豆子落入阴影区域内,那么阴影区域的面积近似为( ) 5 12. A 56. B 53 .C D.无法计算 3.在线段AB 上任取三个点,,,321x x x 则位于1x 与3x 之间的概率是 。 4.某人对某台的电视节目作了长期的统计后得出结论:他任意时间打开电视看台节目,看不到广告的概率约为 10 9 ,那么该台每小时约有 分钟插播广告

随机数生成器功能:1,产生一个随机概率,.doc

随机数生成器功能:1,产生一个随机概率, 2产生一个a到b之间的随机整数 3,产生一个指定长度的随机数组,里面存放随机的布尔值,表示染色体 package edu.zsu.zouang.util;//java.util中的Random使用指定的伪随机原随即更改指定列表的序列 import java.util.Random;//import导入,导入random类,用于产生伪随机数流 public class Randomizer { private int lower; private int upper; private static Random random = new Random();//生成random实例 public Randomizer(int lower, int upper){ if(upper <= lower){ throw new IllegalStateException("Upper is smaller than lower!"); } this.lower = lower; this.upper = upper; } public Double nextDouble(){//返回概率 return Double. (upper - lower) * random.nextDouble()); }//Random中double nextDouble()返回下一个伪随机数,它是从伪随机数生成器的序列中取出的在0.0到1.0之间的double值 //double.valueof(str)说明把str转化成double类型的对象,相当于强制转换 public Integer nextInteger(){//返回整数lower到upper之间 return Integer.valueOf(lower +random.nextInt(upper - lower)); }//Random(int)返回0到int之间的整数随机值 public char[] nextBitArray(int length){//生成指定长度的字符数组,存放基因系列 if(length <= 0){ throw new IllegalStateException("Length is less than ZERO!"); } char[] temp = new char[length]; for(int i = 0; i < length ; i++){ temp[i] = random.nextBoolean() ? '1' : '0'; }//Random.nextBoolean()返回随机的bool值

《均匀随机数的产生》习题

《均匀随机数的产生》习题 1.用计算器或计算机产生20个[0,1]之间的随机数x ,但是基本事件都在区间[-1,3]上,则需要经过的线性变换是 ( ) A .y =3x -1 B .y =3x +1 C .y =4x +1 D .y =4x -1 2.与均匀随机数特点不符的是 ( ) A .它是[0,1]内的任何一个实数 B .它是一个随机数 C .出现的每一个实数都是等可能的 D .是随机数的平均数 3.质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间[0,1]上的概率为 ( ) A.14 B.13 C.12 D .以上都不对 4.一海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,海豚离岸边不超过2 m 的概率为(注:海豚所占区域忽略不计) ( ) A.1 150 B.2125 C.2375 D.1300 5.方程x 2+x +n =0 (n ∈(0,1))有实根的概率为________. 6.利用计算机产生0~1之间的均匀随机数a ,则事件“3a -1<0”发生的概率为________. 7. 已知右图所示的矩形,其长为12,宽为5.在矩形内随机地撒1 000颗黄豆,数得落在阴影部分的黄豆数为550颗,则可以估计出阴影部分的面积约为________. 8.取一根长度为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率?(用模拟的方法求解) 9.甲、乙两人约定6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离去,请用随机模拟法估算两人能会面的概率.

信息安全基础综合实验讲义(伪随机数产生器)-2012版

第二部分 伪随机数产生器实验 在密码技术中,建立单个数是“随机的”并没有意义。对随机性的要求总是基于数的序列而言。真正的随机数符合均匀分布且其生成不能重现。计算机通过算法产生的随机数并不是真正意义上的随机数序列,只能称为伪随机数序列。产生伪随机数序列的算法称为伪随机数产生器。产生高质量的伪随机数序列对信息的安全性具有十分重要的作用,比如密钥产生、数字签名、身份认证和众多的密码学协议等都要用到随机序列。 一、实验目的 熟悉常用的伪随机数产生器算法。运用高级程序设计语言实现一种伪随机数产生器算法的程序,加深对伪随机数产生器算法的理解。 二、实验原理 计算机产生的随机数是使用确定的算法计算出来的。一旦知道了随机数算法和初始种子,就能够知道随机序列中任何一个随机数的值,因此,计算机产生的随机数是一种伪随机数。伪随机数的生成算法称为伪随机数产生器。伪随机数有多种生成算法。 1. 线性同余算法 到目前为止,使用最为广泛的随机数产生技术是由Lehmer 首先提出的称为线性同余算法,即使用下面的线性递推关系产生一个伪随机数列x 1,x 2,x 3,… 这个算法有四个参数,分别是: a 乘数 0 ≤ a < m c 增量 0 ≤ c < m m 模数 m > 0 x 0 初始种子(秘密) 0 ≤ x 0 < m 伪随机数序列{ x n }通过下列迭代方程得到: 1()mod n n x ax c m +=+ 如果m 、a 、c 和x 0都是整数,那么通过这个迭代方程将产生一系列的整数,其中每个数都在0 ≤ x n < m 的范围内。数值m 、a 和c 的选择对于建立一个好的伪随机数产生器十分关键。为了形成一个很长的伪随机数序列,需要将m 设置为一个很大的数。一个常用准则是将m 选为几乎等于一个给定计算机所能表示的最大非负整数。因而,在一个32位计算机上,通常选择的m 值是一个接近或等于231的整数。此外,为了使得随机数列不易被重现,

FPGA产生基于LFSR的伪随机数

FPGA产生基于LFSR的伪随机数 1.概念 通过一定的算法对事先选定的随机种子(seed)做一定的运算可以得到一组人工生成的周期序列,在这组序列中以相同的概率选取其中一个数字,该数字称作伪随机数,由于所选数字并不具有完全的随机性,但是从实用的角度而言,其随机程度已足够了。这里的“伪”的含义是,由于该随机数是按照一定算法模拟产生的,其结果是确定的,是可见的,因此并不是真正的随机数。伪随机数的选择是从随机种子开始的,所以为了保证每次得到的伪随机数都足够地“随机”,随机种子的选择就显得非常重要,如果随机种子一样,那么同一个随机数发生器产生的随机数也会一样。 2.由LFSR引出的产生方法 产生伪随机数的方法最常见的是利用一种线性反馈移位寄存器(LFSR),它是由n个D触发器和若干个异或门组成的,如下图: 其中,gn为反馈系数,取值只能为0或1,取为0时表明不存在该反馈之路,取为1时表明存在该反馈之路;n个D触发器最多可以提供2^n-1个状态(不包括全0的状态),为了保证这些状态没有重复,gn的选择必须满足一定的条件。下面以n=3,g0=1,g1=1,g2=0,g3=1为例,说明LFSR的特性,具有该参数的LFSR 结构如下图:

假设在开始时,D2D1D0=111(seed),那么,当时钟到来时,有: D2=D1_OUT=1; D1=D0_OUT^D2_OUT=0; D0=D2_OUT=1; 即D2D1D0=101;同理,又一个时钟到来时,可得D2D1D0=001. ……………… 画出状态转移图如下: 从图可以看出,正好有2^3-1=7个状态,不包括全0; 如果您理解了上图,至少可以得到三条结论: 1)初始状态是由SEED提供的; 2)当反馈系数不同时,得到的状态转移图也不同;必须保证g n===1,否则哪来的反馈? 3)D触发器的个数越多,产生的状态就越多,也就越“随机”; 3.verilog实现

随 机 数 生 成 器

利用泊松分布实现随机数生成器 不多说,直接上代码,这是在华师大算法课上做的实验代码,C++可运行。 #includeiostream #includetime.h #includecmath using namespace std; class Random { Random(bool pseudo = true); double random_real(); int random_integer(int low, int high); int poisson(double mean); void randomByAvg(double avg,int num); private: int reseed(); -- Re-randomize the seed. int seed,multiplier,add_on; -- constants for use in arithmetic operations Random::Random(bool pseudo) Post: The values of seed, add_on, and multiplier are initialized. The seed is initialized randomly only if pseudo == false.

if (pseudo) seed = 1; else seed = time(NULL) % INT_MAX; multiplier = 2743; add_on = 5923; int Random::reseed() Post: The seed is replaced by a pseudorandom successor. seed = seed * multiplier + add_on; return seed; double Random::random_real() Post: A random real number between 0 and 1 is returned. double max = INT_MAX + 1.0; --INT_MAX = (2)31 -1 double temp = reseed(); if (temp 0) temp = temp + max; return temp - max; int Random::random_integer(int low, int high) Post: A random integer between low and high is returned. if (low high) return random_integer(high, low); else return ((int) ((high - low) * random_real())) + low; int Random::poisson(double mean) Post: A random integer, reflecting a Poisson distribution with parameter mean, is returned. double limit = exp(-mean);

均匀随机数的产生

3.3.2均匀随机数的产生 1.能用模拟方法估计事件的概率.(重点) 2.设计科学的试验来估计概率.(难点) [基础·初探] 教材整理均匀随机数的产生 阅读教材P137~P139的内容,完成下列问题. 1.[0,1]上均匀随机数的产生 利用计算器的RAND函数可以产生[0,1]上的均匀随机数,试验的结果是区间[0,1]内的任何一个实数,而且出现任何一个实数是等可能的,因此,可以用计算器产生的0到1之间的均匀随机数进行随机模拟. 2.随机模拟方法的基本思想是估计概率. 1.判断(正确的打“√”,错误的打“×”) (1)随机数只能用计算器或计算机产生.() (2)计算机或计算器只能产生[0,1]的均匀随机数,对于试验结果在[2,5]上的试验,无法用均匀随机数进行模拟估计试验.() (3)x是[0,1]上的均匀随机数,则利用变量代换y=(b-a)x+a可得[a,b]上的均匀随机数.() 【答案】(1)×(2)×(3)√

2.用随机模拟方法求得某几何概型的概率为m ,其实际概率的大小为n ,则( ) A .m >n B .m

18。3.3.1—3.3.2几何概型及均匀随机数的产生

3.3 几何概型 3.3.1—3.3.2几何概型及均匀随机数的产生 一、教学目标: 1、 知识与技能:(1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: P (A )=积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型; (4)了解均匀随机数的概念; (5)掌握利用计算器(计算机)产生均匀随机数的方法; (6)会利用均匀随机数解决具体的有关概率的问题. 2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。 3、 情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。 二、重点与难点: 1、几何概型的概念、公式及应用; 2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中. 三、学法与教学用具:1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学. 四、教学设想: 1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。 2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型; (2)几何概型的概率公式: P (A )=积) 的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等. 3、 例题分析: 课本例题略 例1 判下列试验中事件A 发生的概度是古典概型, 还是几何概型。

相关文档
最新文档