石墨烯简介

石墨烯简介
石墨烯简介

石墨烯简介

摘要:在碳材料中,石墨烯具有特殊的单层窝蜂状结构,由于特殊的分子结构,使得石墨烯具有优良的化学和物理性质,例如:超高的比表面积超高的比表面积(2630m2/g),导电性能(电导率106S/m),机械性能(杨氏模量有1TPa)等,在高科技领域中展现了巨大的潜力。同时,石墨烯在能源、生物技术、航天航空等领域都展现出宽广的应用前景。但是由于石墨烯片层之间存在范德华力,促使分子层之间易发生团聚,不利于石墨烯的分散,导致电阻率升高和片层厚度增加,无法大规模高质量的制备石墨烯。本文主要介绍石墨烯的结构,性质,制备方法,以及石墨烯在现阶段的应用。

关键词:石墨烯结构性质制备应用

目录

第一部分:石墨烯的结构

第二部分:石墨烯的性质

第三部分:石墨烯的制备方法

第四部分:石墨烯的应用及其前景第五部分:结语

第一部分:石墨烯的结构

严格意义上的石墨烯原子排列与单层石墨的相同,厚度仅有一个原子尺寸,即0.335nm,因此又被称为目前世界上已知的最薄的材料,每个碳原子附近有三个碳原子连接成键,碳.碳键长0.142nm,通过sp2杂化与邻近的三个碳原子成键形成正六边形,连接十分牢固,因此可是称为最坚硬的材料。然后每个正六边形在二维结构平面,不断无限延伸形成了一个巨大的平面多环芳烃[1],如图1-1所示。2007年,Meryer[2]根据自己的研究发现大多数的石墨烯片层呈现单原子厚度,同时表现出有序的结构,通过透射电镜发现,该片层并非完全平整,表现出粗糙的起伏。也正因为这种褶皱的存在,才使得二维晶体结构能够存在。

图1-1石墨烯的结构构型

第二部分:石墨烯的性质

石墨烯在力学、电学、光学、热学等方面具有优异特性。

力学特性石墨烯中,碳原子之间的连接处于非常柔韧的状态.当被施加外部机械

力时,碳原子面会弯曲变形.碳原子不必重新排列来适应外力,因此保持了结构稳定。石墨烯是人类已知强度最高的材料,比世界上强度最高的钢铁高100多倍。

电学特性石墨烯具有超高的电子迁移率,它的导电性远高于目前任何高温超导材

料。曼彻斯特大学的研究小组在室温下测量了单层石墨烯分子的电子迁移率,发现即使在含有杂质的石墨烯中,电荷的迁移率仍可达10000cm2/(v·s)。2008年,海姆研究小组又证明.电子在石墨烯中的迁移率可以达到前所未有的

200000cm2/(v·s)。不久之后,哥伦比亚大学的博洛京(K.Bolotin)将这个数值再次提高到250 000cm2/(v·s)。而目前晶体管的主要材料——单晶硅的电子迁移率只有1400cm2/(v·s),高纯度石墨烯的电子迁移率超过单晶硅150倍以上。此外,石墨烯的电子迁移率几乎不随温度变化而变化。

光学特性石墨烯几乎是完全透明的,只吸收大约2.3%的可见光,光透率高达97.7%。石墨烯层的光吸收与层数成比例.数层石墨烯(FLG)样品中的每一层都可以看做二维电子气,受临近层的扰动极小,其在光学上等效为几乎互不作用的单层石墨烯(SLG)的叠加。单层石墨烯在300~2500纳米间的吸收谱平坦,在紫

外区有吸收峰,这是由于石墨烯态密度中的激子移动呈现范霍夫奇异性。在数层石墨烯中,低能区有与带间跃迁相关的其他吸收特性。

热学特性石墨烯也是一种热稳定材料。石墨烯的热导率高达5300瓦/(米.开),是

铜的13倍。研究发现,单层石墨烯的导热率与片层宽带、缺陷密度和边缘粗糙度密切相关:石墨烯片层沿平面方向导热具有各向异性的特点;在室温以上,石墨

烯的热导率随着温度的增加而逐渐减小。

化学特性石墨烯的电学性能受到了广泛关注,然而它的化学特性却一直少人问津。

目前已知的化学特性有:石墨烯可以吸附和脱附各种原子和分子,如二氧化氮、氨、钾等吸附物作为给体或受体往往会导致载流子浓度发生变化:而氢离子、氢氧根离子等吸附物会产生导电性很差的衍生物,但这些都不是新的化合物。从表面化学的角度来看,石墨烯的性质类似石墨,因此可根据石墨来推测石墨烯的化学性质。石墨烯的化学性质研究将在今后数年内成为一个研究热点。[4]

第三部分:石墨烯的制备方法

Geim[5]采用类似日常的胶带为工具,重复粘撕热解石墨的简单方法,第一次制备出石墨烯。该方法虽然成本低廉,但是存在很大的偶然性,因此只适用于实验室的基础研究。随着石墨烯优良的性能被不断的挖掘出来,各种制备方法也相继被提出。目前来说各种制备方法各有优劣,科研人员对石墨烯的制备焦点也主要集中在如何获得面积大、层数少、成本低、工艺简单等几个目的上。[6]

微机械力剥离法以1毫米厚的高取向高温热石墨为原料,在石墨片上用于法氧等

离子体刻蚀出个5微米深的平台.平台表面涂有一层2微米的新鲜光刻胶,焙固后,平台面附着在光刻胶层上。用透明刻胶可重复地从石墨平台上剥离出石墨薄片。丙酮将光刻胶溶解.光刻胶中较薄的石墨薄片分散在丙酮中。将硅片浸泡在此丙酮中,再用大量的水和丙醇冲洗,墨薄片就附着在硅片上.然后将硅片在丙醇中进行超声处理,可除去较厚的石墨薄片,牢固地保留在二氧硅表面上的都是厚度小于10纳米的石墨薄片。

碳化硅热解外延生长法表面已经过氧化或氢气刻蚀后的碳化硅在超高真空的条

件下,通过电子轰击加热到1000摄氏度,可以去除表面的氧化物。当氧化物完全去除后,将样品升温至1250-1450摄氏度,并在恒温中保持1-20分钟,即可

得到石墨烯薄片,薄片的厚度由温度决定。采用碳化硅热解外延生长法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。

化学气相沉积法先高温分解碳源(甲烷等含碳化合物),后通过强制冷却的方式在

镍、铜等具有溶碳量的金属基体表面形成石墨烯。例如在铜基体上生长石墨烯.要求满足低压(50帕~5千帕)、高温(1000摄氏度以上)条件.基体为纯度大于99%的铜箔,载气为氢气。该方法制备石墨烯具有可控性好、铜箔价格低廉、易于转移和规模化制备等优点,有望在透明导电薄膜应用方面首先取得突破。

氧化石墨还原法该方法首先利用氧化反应将石墨氧化为氧化石墨,通过在石墨层

与层之间的碳原子上引入含氧官能团增大层间距.进而削弱层间的相互作用。常见的氧化法有布罗迪(Brodie)法、施陶登迈尔(Staudenmaier)法及赫默斯(Hummers)

法,这些方法均是先用强酸对石墨进行处理.然后加入强氧化剂进行氧化。氧化后的石墨通过超声剥离形成氧化石墨烯.然后加入还原剂,从而得到还原石墨烯。

机械剥离法是最初用于制备石墨烯的物理方法,但存在费时费力、难以精确控制、重复性较差、难以大规模制备的缺点。化学气相沉积法能够制备大面积、高质量的石墨烯薄膜,氧化石墨还原法能够制备大量的石墨烯,均有望实现石墨烯的工业化生产。[7]

第四部分:石墨烯的应用及前景

实际应用才是所有研究的根本目的, 石墨烯的用同样备受关注。基于石墨烯所具有的优良性能以其制备方法的日渐成熟, 石墨烯将有可能成为高速晶体管、高灵敏度传感器、超级电容器、复合材料、H2储存以及高效太阳能电池等器件的核心材料[8]。

晶体管受物理原理的制约, 硅晶体管的研究已基本达到极限, 所以寻找新的替代

材料势在必行。石墨烯远比硅高的载流子迁移率, 零禁带特性、仅0. 34nm 的极薄的厚度, 尤其是特有的超大比表面积使其对于制备大规模集成设备很有优势。基于石墨烯材料的晶体管比硅晶体管更快[9], 极具可能成为新一代晶体管理想的电极材料。

超级电容器石墨烯具有良好的导电性和超大的比表面积, 同时其片之间形成的

微孔结构利于电解液渗透和电子传输[10], 所以被认为是超级电容器的理想电极

材料。

传感器石墨烯的超大比表面积是制备传感器的一个重要因素, 且基于石墨烯材

料的传感器尺寸小、能耗低、耐久、可靠。但是其灵敏度、成本和批量化生产仍是石墨烯传感器有待解决的问题。。石墨烯气体传感器是基于其独特的电子结构使其吸附气体后能快速改变导电性机制制成的[11], 对周围环境非常敏感, 即便一个气体分子吸附或者释放都可以被检测到。

太阳能电池由于石墨烯在很宽的波长范围内具有很高的透过率和载流子迁移率,

结合优异的力学性能和稳定性, 因而被认为有望替代有毒、价格昂贵、对酸性和中性环境敏感、热稳定性较差、吸收光谱范围较小的氧化铟锡, 成为理想的透明电极材料, 应用于太阳能电池, 所以能量转换效率是其研究的关键所在。近年来, 研究人员通过对石墨烯材料进行各种掺杂处理, 来提高其能量转化率, 取得了很大的进展。

第五部分:结语

石墨烯特殊的结构和优良的性质使其成为科学研究的重点,虽然将其运用与实际生产还有一定的困难,但是我们可以预见,在不久的将来,石墨烯将作为一种优良的材料渗透到生活的各个方面。

参考文献

[1]Van Noorden R.Moving towards a graphene world[J].Nature,2006,442(7 1 00):228-229.

[2]Meyer J C,Geim A K,Katsnelson M I,et a1.The structure of suspended graphene sheets[J].Nature,2007,446(7 13 1):60-63.

[3]Nair R R,Wu H A,Jayaram P N,et a1.Unimpeded permeation of water through

helium-leak-tight grapheme-based membranes[J].Science,2012,335(6067):442-444.

[4],[7]邹鹏,黄德欢.石墨烯及其应用[J].Science,2014(1):29-32

[5]Novoselov K S,Geim A K,Morozov S V et al.Electric field effect in atomically thin carbonfilms[J].science,2004,306(5696):666-669.

[6]吕勇.石墨烯及石墨烯/碳纳米管的制备与储能应用[D].成都:西南交通大

学.2015

[8]朱振峰,程莎,董晓楠.石墨烯的制备和应用[J].功能材料,2013(21),3060-3064

[9]Wang Pu,Zhang Wei,Liang Owen,et al.Giant opticalresponse from graphene plasmonic system [ J] .ACSNano, 2012, 6( 7) : 6244 - 6249.

[10]Su C Y,Lu A,Wu C,et al.Direct formation of wafer scale graphene thin layers on insulating ubstrates bychemical vapor deposition[ J] . Nano Lett, 2011, 11

(9),3612-3616.

[11]Yavari F,Koratkar N.Graphene - based chemica[ J] .J Phys Chem Lett,2012, 3( 1 3) : 1746- 1753

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

石墨烯基材料做电极材料的机遇与挑战

石墨烯基材料做电极材料的机遇与挑战近年来,高性能电化学储能装置的需求量大幅上升,于是很多学者都开始投入到对更卓 越电极材料的开发和研究中。在这方面,石墨烯基材料吸引了大量目光。由于能提升现有设备性能,并使下一代设备更实用,石墨烯基材料被看作是前景深远的高性能电极材料。 碳材料广泛应用于不同的储能设备,并发挥着非常重要的作用。然而,由于多孔碳材料和纳米碳材料密度低,高碳含量电极的存储密度也总是很低,因而造成体积能量密度低。 尽管石墨烯也面临同样问题,甚至情况更严重,但经过石墨烯和电极结构设计的可控组合,还是可以得到高密度石墨烯基电极。此外,在许多情况下,组装的集成石墨烯基电极不含任何导电剂和粘结剂,因此能进一步帮助提升体积能量密度。

作为电化学储能装置的潜在电极材料,石墨烯具有许多其他传统碳材料和纳米碳材料所没有的优越性。石墨烯物理结构稳定、比表面积大、导电性良好,对大多数电化学储能装置来说,它几乎是一种完美材料。 此外,石墨烯的输出性能也取得了很多令人瞩目的进步:利用二维层状结构能构建出各种三维结构,还具备可调节的孔隙结构。我们在论文中综述了石墨烯基材料在液态锂离子电池、锂硫电池、锂氧电池、NIB和SC等方面的应用。我们研究发现,将石墨烯应用于这些装置,能大大提高其性能。 石墨烯的几个显著优势如下: 1.石墨烯在实际应用于非碳材料时,是一种有利的碳基材。它应用容易,比表面积大,使得在其表面实现其他活性成分的杂交和均匀散布更加容易,这也极大提高了这些成分的利用率。此外,利用石墨烯在两个活性粒子甚至是整个电极间构建互联的导电网络也是轻而易举。这样的网络有助于提高电极的循环稳定性。 2.通过在装置中使用石墨烯代替传统碳材料,能实现高体积能量密度。石墨烯为高体积能量密度装置的组装提供了潜在解决方案。 3.柔性石墨烯有望制造柔性储能装置。使用石墨烯及其组件可以制备出具有高度柔韧性的集流体,为我们提供了一种取代脆性金属集流体的方法。此外,利用石墨烯还能制备出集成柔性电极,有助于解决在反复弯曲过程中集流体活性材料分离的问题。 除了以上几点,石墨烯相较于传统碳材料还具有多种优越性能,可能有助于促进各种新型电池系统的实际应用。新近研究报告指出,高能室温钠硫电池通过碳/硫复合材料作为电极。我们可以预料,石墨烯可以进一步帮助提升这类电池的性能。还有研究发现,石墨烯基复合材料可作为锌空气电池的高效电催化剂。在种种结果之上,我们不难看出,石墨烯在未来能源储存装置应用中的巨大潜力。

碳纳米管;石墨烯;及碳纳米管-石墨烯复合材料

目录 摘要 ................................................................................................................................................... I Abstract ............................................................................................................................................. I I 1 石墨烯. (1) 1.1 石墨烯简介 (1) 1.2 石墨烯的结构和性质 (2) 1.2.1 石墨烯的结构 (2) 1.2.2 石墨烯的性质 (4) 1.3 石墨烯的表征 (5) 1.4 石墨烯的主要制备方法 (6) 2 碳纳米管 (8) 2.1 碳纳米管的发现及发展历程 (8) 2.2 碳纳米管的结构和分类 (9) 2.2.1碳纳米管的结构 (9) 2.2.2碳纳米管的分类 (11) 2.3 碳纳米管的生长机理 (12) 2.3.1 顶部生长机理 (12) 2.3.2 底部生长机理 (13) 2.4 碳纳米管的性能 (14) 2.4.1 碳纳米管的力学性能 (14) 2.4.2 热学性能 (14) 2.4.3 碳纳米管的电学性能 (15) 2.4.4 光学性能 (16) 2.5碳纳米管的制备 (16) 2.5.1 电弧放电法 (16) 2.5.2 激光蒸发法 (17) 2.5.3 化学气相沉积法 (18) 2.6.碳纳米管的预处理 (19) 2.6.1 碳纳米管的纯化 (19) 2.6.2 碳纳米管的分散 (19) 2.6.3碳纳米管的活化 (20) 2.7碳纳米管的应用 (20) 2.7.1 在电磁学与器件方面 (20) 2.7.2 在信息科学方面 (21) 2.7.3 储氢方面 (21) 2.7.4 制造纳米材料方面 (21) 2.7.5 催化方面 (22) 2.8 存在问题及发展方向 (22) 3碳纳米管/石墨烯复合材料 (22) 3.1 从碳纳米管、石墨稀到碳纳米管/石墨稀复合材料发展历程 (22) 3.2 碳纳米管/石墨烯复合材料结构 (23)

石墨烯基础知识简介

1.石墨烯(Graphene)的结构 石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。C原子外层3个电子通过sp2杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp2杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。 如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。每个碳原子通过sp2杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。 图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。 图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。前两类具有

相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。 单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。 双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛,AA堆垛,AA‘堆垛等)堆垛构成的一种二维碳材料。 少层石墨烯(Few-layer or multi-layer graphene):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC 堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。 石墨烯(Graphenes):是一种二维碳材料,是单层石墨烯、双层石墨烯和少层石墨烯的统称。 由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱,蒙特卡洛模拟和透射电子显微镜都证明了这一点。这种微观褶皱在横向上的尺度在8~10nm 范围内,纵向尺度大概为 0.7~1.0nm。这种三维的变化可引起静电的产生,所以使石墨单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。 图1.3 单层石墨烯的典型构象 除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。 2.石墨烯的性质 2.1 力学特性

石墨烯材料研究进展

石墨烯材料研究进展 化学工程与工艺 0909403068 王月 摘要:石墨烯具有非凡的物理及电学性质,如高比表面积、高导电性、高机械强度、易于修饰及大规模生产等。2004年石墨烯的成功剥离,使石墨烯成为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,其产品研发和应用目前正在全球范围内急剧增加。本文通过对石墨烯的特性、制备和应用现状几方面进行了综述。 关键词:石墨烯制备应用进展 石墨烯是碳 原子紧密堆 积成单层二 维蜂窝状晶 格结构的一 种碳质新材 料,是构筑 零维富勒 烯、一维碳 纳米管、三 维体相石墨等sp2杂化碳(即碳以双键相连或连接其他原子)的基本结构单元,如图1所示。石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈〃海姆和康斯坦丁〃诺沃肖洛夫,

利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨 烯晶体,并发现了石墨烯载流子的相对论粒子特性,才引发石墨烯研 究热。这以后,制备石墨烯的新方法层出不穷,人们发现,将石墨烯 引入工业化生产的领域已为时不远了[1]。 1石墨烯的特性 石墨烯是零带隙半导体,有着独特的载流子特性,为相对论力学 现象的研 究提供了一条重要 途径;电子在石墨 烯中传输的阻力很 小,在亚微米距离 移动时没有散射,具 有很好的电子传输 性质;石墨烯韧性 好,它们每100nm 距离上承受的最大 压力可达2.9N [2],是迄今为止发现的力学性能最好的材料之一。石墨烯特有的 能带结构使空穴和电子相互分离,导致了新电子传导现象的产生,如 量子干涉效应、不规则量子霍尔效应。Novoselov 等观察到石墨烯具 有室温量子霍耳效应,使原有的温度范围扩大了10倍。石墨烯在很 多方面具备超越现有材料的特性,具体如图 2 [3]所示,日本企业的 一名技术人员形容单层石墨碳材料“石墨烯”是“神仙创造的材料”。 图2 石墨烯的特点

石墨烯性能简介

第一章石墨烯性能及相关概念 1 石墨烯概念 石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。石墨烯具有优异的导热性能(3×103W/(m?K))和力学性能(1.06×103 GPa)。此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。 石墨烯结构图

2 石墨烯结构 石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。石墨烯中碳 -碳键长约为 0.142nm。每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。 形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。 石墨烯的结构非常稳定,碳原子之间连接及其柔韧。受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。 石墨烯是有限结构,能够以纳米级条带形式存在。纳米条带中电荷横向移动时会在中性点附近产生一个能量势垒,势垒随条带宽度的减小而增大。因此,通过控制石墨烯条带的宽度便可以进一步得到需要的势垒。这一特性是开发以石墨烯为基础的电子器件的基础。

石墨烯材料

石墨烯材料 1.4石墨烯材料 纯净、完美的石墨烯是一种疏水材料,并且在大多数有机溶剂中也难于溶解。不过,对石墨烯进行复合和改性,如通过修饰,共价或非共价的方法将功能基团引入石墨烯平面,能使其溶解度显著提高H¨”。在没有分散剂的作用下,直接将疏永的石墨烯片分散在水中是很困难的。通过氨水调节pH值为10左右,用水合肼还原氧化石墨烯(GO)的办法,可以得到还原的石墨烯(rG0)。由于这利-石墨烯还含有少量的含氧基团,因而可在水溶液中分散。但这种分散能力依然是有限的,不超过O 5 mg/mL。除了水,一些有机溶剂,如乙醇、丙酮、二甲基亚砜和四氢呋喃也可以用来分散rGO。金属离子和功能基团同样可以用来修饰rGO片层。在KOH溶液中,用肼还原氧化石墨可得到钾离子修饰的石墨烯(hKlvlG),其能在水溶液中均匀分散。另外,将苯磺酸基团引入GO,还原后可得少量磺化的石墨烯,这种石墨烯在pH处于3-10的范围内时,浓度可达2mg/mL。 共价修饰石墨烯指的是用含有功能基团的分子与石墨烯表面的含氧基团的反应,如羧基、环氧基、羟基,包括平面内的碳碳双键。例如,分散在四氢呋喃,四氯化碳,1,2-二氯乙烷(EDC)qb的rGO,发现把其边缘的羧基修饰上十八胺时后,其稳定性增加[48-50。用异氰酸酯处理石墨烯时,表面的羟基和边缘的羧基会形成酰胺和氨基甲酸酯。氧化石墨烯的羧基与聚乙烯醇(P、後)的羟基酯化也实现了合成GO与聚合物的复合片层。另一方面,石墨烯表面的环氧基团可以接受亲核试剂(如离子液体1-(3-aminopropyl)-3-methylimidazolium bromide或APTS) 的进攻而发生开环反应。同样,rGO可以用重氮盐(如SDBS)共价功能化,使之在多种极性有机溶剂中具有很好的分散性。此外,由环加成反应将氮烯体系和碳碳双键连接,使苯基丙氨酸和迭氮三甲基硅烷等许多有机官能团引入石墨烯表面。与共价功能化相比,非共价功能化是基于rGO与稳定剂间的范德华力或相互作用。这种修饰不仅对石墨烯的结构破坏更小,而且为调控其溶解度和电子性质提供了便利。在氧化石墨烯的氨水溶液中,加入聚苯乙烯磺酸钠(PSS)后,再用水合肼还原,人们第一次制得了非共价修饰的可分散石墨烯。在这项工作中,PSS的疏水端与rGO发生吸附,阻碍了rGO的团聚。并且PSS 的另一端是亲水性的,这就使1<30.PSS在水中可以稳定分散。此外,通过与生物分子的

石墨烯、碳纳米管总结

第四、五章总结 石墨烯、碳纳米管的化学生物传感 一、石墨烯和碳纳米管 1、石墨烯是由碳原子以sp2杂化连接的单原子层构成的,其基本结构单元为有机材料中最稳定的苯六元环,其理论厚度仅为0.35 nm,是目前所发现的最薄的二维材料。石墨烯是构成其它石墨材料的基本单元,可以翘曲变成零维的富勒烯, 卷曲形成一维的CNTs或者堆垛成三维的石墨。 2、碳纳米管是由碳六元环构成的类石墨平面卷曲而成的纳米级中空管,其中每个碳原子通过sp 2杂化与周围3个碳原子发生完全键合。 由于石墨烯和碳纳米管独有的结构和奇特的物理、化学特性,迅速成为备受瞩目的国际前沿和研究热点。 二、石墨烯和碳纳米管的制备 1、石墨烯的制备 (1)机械剥离法(机械剥离法就是利用机械力,将石墨烯片从具有高度定向热解石墨表面剥离开来。是制备石墨烯最为直接的方法。但低产率和尺寸不易控制等缺点使该方法仅适用于实验室的基础研究。) (2)氧化石墨-还原法(利用KClO 和HNO 可以使石墨层深度氧化,获得氧化石墨(GO),GO与石墨烯具有类似的平面结构,以其为前体采用适当的还原方法可以使其表面的功能团消除,获得石墨烯材料。) (3)化学气相沉积法(采用一定化学配比的气体为反应物,在特定激活条件下,通过气相化学反应可在不同的基片表面生成石墨烯膜层。优点一、获得单层石墨烯比例大,二、结晶完整度高。缺点:成本高产量低。) 2、碳纳米管的制备方法 自发现CNTs以来人们尝试了多种方法进行制备研究,取得了一定的进展。如电弧法、激光蒸发法、催化裂解法等。在以上许多的制备方法中,有一个共同的特点,即产生小的碳(Cn)组分以使CNTs生长,从这一点来看,各种合成方法的区别在于产生碳组分的方法不同。电弧法和激光蒸发是由电极或靶蒸发产生的碳蒸气;催化裂解法是由碳氢化合物与催化剂相互作用产生的碳蒸气。 三、石墨烯和碳纳米管的功能化 所谓功能化就是利用石墨烯和CNTs在制备过程中表面产生的缺陷和基团通过共价、非共价或掺杂等方法,使石墨烯或CNTs表面的某些性质发生改变,更易于研究和应用。由于石墨烯和CNTs具有类似的结构,而且表面都含有羧基、羰基等含氧基团,因此对两者表面进行功能化的方法可以一致,即共价键合功能化和非共价键合功能化 四、石墨烯和碳纳米管在化学生物传感技术中的应用 1、石墨烯的应用 (1)基于其荧光效应LuCH等通过标记荧光染料的单链DNA吸附于氧化石墨烯上制备出一种复合物,进而用于目标单链DNA的检测。 (2)基于其载体作用Zhang Y等发展了一种制备Fe3O4纳米粒子-氧化石墨烯复合材料的新方法,该复合材料可以实现磁靶向纳米药物输运等用途。 (3)基于其拉曼效应M.Manikandan等分别用原位合成和混合超声的方式

石墨烯及其材料综述

关于石墨烯和石墨烯复合材料的综述 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。自从2004年发现以来,研究者对这种材料在未来技术革命方面提出了大量的建设性创意,石墨烯被认为是未来能够取代硅的一种新型电子材料。石墨烯是只有一个原子厚的结晶体,具有超薄、超坚固和超强导电性等特性,其优异的电学、热学和力学性能,在纳米电子器件、储能材料、光电材料等方面的潜在应用价值引起了科学界新一轮的“碳”热潮。 它不仅是已知材料中最薄的一种,还非常牢固坚硬,仅仅是一个原子的厚度,并形成了高质量的晶体格栅,石墨烯的结构,是由碳原子六角结构紧密排列构成的二维单层石墨,是构造其他维度碳质材料的基本单元。它可以包裹形成0维富勒烯,也可以卷起来形成一维的碳纳米管,同样,它也可以层层堆叠构成三维的石墨。 石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。 这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。 大量制备尺寸、厚度可控的石墨烯材料对石墨烯基材料的应用具有重要的意义。制备石墨烯可以归结为两个基本的思路:一是以石墨为原料,通过削弱以及破坏石墨层间的范德华力来剥开石墨层从而得到石墨烯:二是基于活性碳原子的定向组装,“限制”碳原子沿平面方向生长。基于上述思想,化学剥离法、SiC 表面石墨化法和金属表面外延法等一些新的方法相继被报道。本人通过大量的归纳总结,共总结出以下七种方法。 机械剥离法就是利用机械力,将石墨烯片从具有高度定向热解石墨(Highly

石墨烯材料简介

石墨烯材料简介 在构成纳米材料的众多元素中,碳元素值得我们格外重视。作为自然界中性质最为奇特的元素,碳(C)在原子周期表中的序号为六,属于第Ⅳ族。碳原子一般是四价的,最外层有4个电子,可与四个原子成键。但是其基态只有两个单电子,所以成键时总是要进行杂化。由于较低的原子序数,碳原子对外层电子的结合力强,表现出较高的键能,容易形成共价键,故自然界中碳元素形成的化合物形式丰富多彩。 关于碳与碳原子之间或碳与其它原子间以共价键相结合,有杂化轨道和分子轨道的理论。在形成共价键过程中,由于原子间的相互影响,同一个原子中参与成键的几个能量相近的原子轨道可以重新组合,重新分配能量和空间方向,组成数目相等的,成键能力更强的新的原子轨道,称为杂化轨道。在有机化合物中,碳原子的杂化形式有三种:sp3、sp2和sp杂化轨道。以甲烷分子(CH4)为例,碳原子在基态时的电子构型为1S22S22Px12Py12Pz0按理只有2px和2py可以形成共价键,键角为90°。但实际在甲烷分子中,是四个完全等同的键,键角均为109°28′。这是因为在成键过程中,碳的2s轨道有一个电子激发到2Pz轨道,3个p轨道与一个s轨道重新组合杂化,形成4个完全相同的sp3杂化轨道。每个轨道是由s/4与3P/4轨道杂化组成。这四个sp3轨道的方向都指向正四面体的四个顶点,轨道间的夹角是109°28′。得益于碳原子丰富多样的键合方式和强大的键合能力,氧、氢、氮等各种元素被有机的组合在一起,形成碳的化合物,最终构成了令人惊叹的生命体。 碳元素广泛存在于自然界,其独特的物性和多样的形态随着人类文明的进步而逐渐被发现。由于碳原子之间不同的杂化方式,能形成结构和性质迥异的多种同素异型体,其中最为人知的存在形式是金刚石和石墨。当每个碳原子与四个近邻碳原子以共价键结合(sp3杂化)时,形成各向同性的金刚石。此时,四个价电子平均分布在四个轨道中,形成稳定的σ键,而且没有孤电子对的排斥,非常稳定。因此金刚石是自然界中坚硬的材料。而当碳原子表现为sp2杂化时,碳原子在同一平面内与三个近邻原子以共价键结合;第四个价电子成为共有化电子:未经杂化的p轨道垂直于杂化轨道,与邻原子的p轨道成π键。当出现多个双键时,垂直于分子平面的所有p轨道就有可能互相重叠形成共轭体系,柔软的石墨和某些烷烃中的碳原子即以此形式存在。

石墨烯碳纳米管散热涂料技术

石墨烯碳纳米管散热涂料技术 (1)项目背景 碳材料是目前人类认知的材料中功能最全、性能最优越、形式最多样的材料,是目前所有已知划时代材料所有不能比拟的,继硅时代之后21世纪甚至有望成为碳材料时代。尤其是纳米碳材料丰富的形态,涵盖从零维、一维到二维结构, 每一次纳米碳材料的出现都引领了纳米科技的快速发展。其中,碳纳米管可看成是一种石墨片卷曲结构,超强的C-C键使碳纳米管具有超强的力学性能和热传 导性能,理论计算和实际测量表明,单壁碳纳米管拉伸强度可达150 GPa,弹性模量1TPa,是钢铁的100倍,密度却只有其1/6,被誉为终极碳纤维。同时单壁碳纳米管室温导热系数高达6000W/m.K,多壁碳纳米管的室温导热系数也达3000W/m.K,是热导率最高的材料。同时,碳纳米管比表面积大,被誉为世界上 最黑的物质,这种物质对光线的折射率只有0.045%,吸收率高达99.5%以上,辐射系数接近绝对黑体的 1.0。另外还具有优异的导电性能和超高的载流子输送 密度,导电率接近金属,载流能力超过金属铜。众多优异综合性能使碳纳米管自发现以来受到极大关注,是纳米材料和纳米技术的最典型代表,是散热涂料和复合材料最理想的功能填料。 碳纳米管在功能涂料领域主要发挥以下主要作用: (1)导电填料:碳纳米管的导电阈值低至0.1wt%,而传统炭黑却高达15wt%以上,碳纳米管可以在极少量添加的情况下即达到目前炭黑型导电涂料的 性能,避免大量无机炭黑添加对涂料工艺性的负面影响。因此,碳纳米管在抗静电涂料、电磁屏蔽涂料、重防腐涂料等领域具有显著优势。同时还能利用其电致发热的作用,开发新型的节能加温、保温涂料,在家居地暖加温、仪器设备保温等新型市场具有极大的商业前景。 (2)散热填料:碳纳米管不仅具有超高的热导率,同时还具有接近理论黑体的辐射率,以此加强其红外辐射散热功能,因此新型散热涂料将有望改变目 前散热模式,大大提高热交换能力。 (3)力学增强填料:充分发挥碳纳米管一维结构的优势,在涂层内部形成增强网络,将使涂料力学性能大大提高,尤其是耐磨性、硬度等,甚至可形成

石墨烯介绍

获奖者2010年10月5日,2010年诺贝尔物理学奖被授予英国曼彻斯特大学的安德烈·海姆和康斯坦丁·诺沃肖洛夫,以表彰他们在石墨烯材料方面的研究。 PPT1安德烈·海姆,1958年10月出生于俄罗斯,拥有荷兰国籍,父母为德国人。1987 年在俄罗斯科学院固体物理学研究院获得博士学位。他于2001年加入曼彻斯特大学,现任物理学 教授和纳米科技中心主任。之前拥有此荣誉头衔的人包括卢瑟福爵士,卢瑟福于1907-1919年在曼 彻斯特大学工作。 他至今发表了超过150篇的文章,其中有发表在自然和科学杂志上的。他获得的奖项包括2007 年的Mott Prize和2008年的Europhysics Prize。2010年成为皇家学会350周年纪念荣誉研究教授。 在2000年他还获得“搞笑诺贝尔奖”——通过磁性克服重力,让一只青蛙悬浮在半空中。10年 后的2010年他获得诺贝尔物理学奖。 2010年医学奖:荷兰的两位科学家发现哮喘症可用过山车治疗。 和平奖:英国研究人员证实诅咒可以减轻疼痛。 PPT2康斯坦丁·诺沃肖洛夫,1974年出生于俄罗斯,具有英国和俄罗斯双重国籍。2004年在荷兰奈梅亨大学获得博士学位。是安德烈·海姆的博士生。 曼彻斯特大学目前任教的诺贝尔奖得主人数增加到4名,获得诺贝尔奖的历史总人数为25位。发现 石墨属于混晶,为片层结构,层内由共价键相连,层间由分子间作用力相连。共价键是比较牢固的,但分子间作用力(范德华力)小得多。因此,石墨的单层是牢固的,而层间作用力很小,极易脱落。 2004年,他们发现了一种简单易行的新途径。他们强行将石墨分离成较小的碎片,从碎片中剥离出较薄的石墨薄片,然后用一种特殊的塑料胶带粘住薄片的两侧,撕开胶带,薄片也随之一分为二。不断重复这一过程,就可以得到越来越薄的石墨薄片,而其中部分样品仅由一层碳原子构成——他们制得了石墨烯。 结构

新能源材料 石墨烯电池

2017春季学期 新能源材料--课程论文 院(系)材料科学与工程 专业材料科学与工程 学生曾波 学号1141900225 班号1419002

石墨烯电池应用与展望 曾波 材料科学与工程1141900225 摘要石墨烯作为近年来炙手可热的新材料,凭借其独特微纳米尺度的二维平面结构和良好的导电导热特性在锂离子电池电极材料中也有着可观的的应用前景。本文介绍了石墨烯电池的概念提出和工作原理,调研了市场最新的石墨烯电池信息和商用情况,分析了特点和潜在问题以及根据现状的合理展望。 关键词石墨烯锂离子电池能量密度石墨烯电极材料 1 引言 在现已有广泛应用基础的新能源材料中,锂电池作为二次电池中的佼佼者具有开路电压高"能量密度大"使用寿命长"无记忆效应"无污染以及自放电率小等优点。如图一所示,锂离子电池工作原理,正负电极由两种不同的锂离子嵌入化合物组成,正极主要是磷酸铁锂,钴镍锰酸锂(三元材料)等负极主要是碳棒和石墨。充电时Li+从正极脱出经过电解质嵌入负极,负极处于富锂态,正极处于贫锂态,同时电子的补偿电荷从外电路供给到负极,保证负极的电荷平衡;放电时则相反。由于Li的原子序数很小,故Li+的质量很轻,单位重量的电极材料就可以储存较多的Li+,所以通常锂离子电池具有较高的能量密度。然而,受限于电极材料的结构与电解质的性能,锂离子电池的功率性能相对较弱,针对动力锂离子电池,这一点表现得尤为突出。故如何增加锂电池的功率密度是当务之急。 要攻破这一难关,需要制备具有高效储能特性的负极材料。碳材料的储锂机理复杂,因此尽管计算化学论证了石墨烯的高储锂容量,但目前制备的石墨烯的可逆容量接近甚至超过理论容量的储锂机理还需进一步分析证明。石墨烯电池是 指用石墨烯掺杂改性的复合材料替 代传统锂电池的电极材料,其他碳、 石墨材料比容量较小,每6个碳原子 与一个锂离子形成LiC6结构存储锂 离子,理论比容量为372mAh/g而石 墨烯是以单片层单原子厚度的碳原 子无序松散聚集形成,这种结构有利 于锂离子的插入,在片层双面都能储 存锂离子,理论容量明显提高。并且 锂离子在石墨烯表面和电极之间快 速大量穿梭运动的特性也将加快充 放电速度。石墨烯电池有望解决现在 锂电池不稳定、充电慢、容量低的难 题。 2 石墨烯电池介绍 2.1石墨烯 石墨烯是是由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,厚度仅为0.34纳米,单层厚度相当于头发丝直径的十五万分之一。是目前世界上已知的最轻薄、

简述碳纳米管和石墨烯的成建构成

1、简述碳纳米管和石墨烯的成建构成? 碳纳米管,又名巴基管,是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约0.34nm,直径一般为2~20 nm。并且根据碳六边形沿轴向的不同取向可以将其分成锯齿形、扶手椅型和螺旋型三种。其中螺旋型的碳纳米管具有手性,而锯齿形和扶手椅型碳纳米管没有手性。 碳纳米管(carbon nanotubes,CNTs)作为碳的第四种同素异形体,由于其准一维的管状纳米结构,以及独特的机械、电子传导、气体吸附等性质,越来越被人们所关注和研究,并已在多种领域得到广泛的应用。 2、碳纳米管的性能由直径D和手性角θ来确定。已知碳纳米管单胞的手性矢量为C=na1+ma2 ,试推导碳纳米管直径D和手性角θ表达式。当(n,m)为(8,0),(8,4),(8,3)时判断碳纳米管类型。 CNTs的性能由它们的直径和手性角θ来确定,而这两个参数又取决于两个整数n和m值,Ch=na1+ma2,a1和a2为CNTs一个单胞的单位矢量。手性矢量形成了纳米管圆形横截面的圆周,不同的m和n值导致了不同的纳米管结构1,5。 碳纳米管依其结构特征可以分为三种类型:扶手椅形纳米管(armchair form),锯齿形纳米管(zigzag form)和手性纳米管(chiral form)。碳纳米管的手性指数(n,m)与其螺旋度和电学性能等有直接关系,习惯上n>=m。当n=m时,碳纳米管称为扶手椅形纳米管,手性角(螺旋角)为30o;当n>m=0时,碳纳米管称为锯齿形纳米管,手性角(螺旋角)为0o;当n>m≠0时,将其称为手性碳纳米管。 根据碳纳米管的导电性质可以将其分为金属型碳纳米管和半导体型碳纳米管:当n-m=3k(k为整数)时,碳纳米管为金属型;当n-m=3k±1,碳纳米管为半导体型。

基于石墨烯的超材料电磁诱导透明现象的调控研究

目录上海师范大学 目录 摘要.........................................................................................................................I Abstract..................................................................................................................II 目录......................................................................................................................IV 第一章绪论 (1) 1.1超材料的简介 (1) 1.1.1金属超材料 (1) 1.1.2表面等离激元材料 (4) 1.2金属超材料电磁诱导透明的研究进展综述 (9) 1.3电磁透明透明所面临的问题以及解决方案 (13) 1.4本论文主要研究思路和内容 (14) 第二章超材料电磁诱导透明的人工调控研究 (17) 2.1引言 (17) 2.2基于石墨烯的超材料电磁诱导透明研究 (18) 2.2.1石墨烯对金属超材料EIT现象的调控机制研究 (18) 2.2.2石墨烯与金属超材料的耦合机制研究 (21) 2.2.3金属超材料EIT透明窗口的设计 (25) 2.2.4石墨烯对金属超材料透明窗口的调节及结果分析 (29) 2.2.5石墨烯对金属超材料EIT的相位与群速度的调节与分析 (32) 2.2.6理论分析及讨论 (34) 第三章总结与展望 (42) 3.1总结 (42) 3.2展望 (42) 参考文献 (43) 致谢 (47) 攻读硕士期间的研究成果 (48) 论文独创性声明 (49) 论文使用授权声明 (49) 万方数据

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

碳纳米管的性质与应用

碳纳米管的性质与应用 【摘要】 本文主要介绍了碳纳米管的结构特点,制备方法,特殊性质,由于碳纳米管独特性质而产生的广泛应用,并对其前景进行展望。 【关键词】 碳纳米管场发射复合材料优良性能 【前言】 自日本NEC科学家Lijima发现碳纳米管以来,碳纳米管研究一直是国际新材料领域研究的热点。由于碳纳米管具有特殊的导电性能、力学性质及物理化学性质等,故其在许多领域具有其广阔的应用前景,自问世以来即引起广泛关注。目前,国内外有许多科学家对碳纳米管进行研究,科研成果颇丰,尤其是碳纳米管在复合材料、储氢及催化等领域的应用。 【正文】 一、碳纳米管的结构 碳纳米管中碳原子以sp2杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3杂化键,即形成的化学键同时具有sp2和sp3混合杂化状态,而这些p 轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π 键,碳纳米管外表面的大π 键是碳纳米管与一些具有共轭性能的大分子以非共价键复合的化学基础[1]。 对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面基团,如羧基等。以变角X 光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳

德国碳纳米管及石墨烯的发展概况

德国碳纳米管及石墨烯的发展概况 碳纳米管和石墨烯是世界材料行业飞速发展的产物,因为它们代表着更高的性能,更轻的质量,更可靠的环保责任。德国在该领域的研究虽然起步较晚,但随着其后续大量的投入,已经让它成为世界上相关产品研发的领跑者。碳纳米管和石墨的发展前景虽被看好,但高昂的制备成本和较低的产量却严重遏制其大规模应用。 图为:单壁碳纳米管(左),多壁碳纳米管(右) 随着行业对于材料性能的要求越来越高,传统材料的发展占空间逐渐走向萎缩,而高新科技材料将会取而代之成为行业选择的未来之路。众所周知,碳纳米管(CNTs)和石墨烯(graphene)及其复合材料因其卓越的电气及机械特性,已经在诸多领域,如光电,传感器,半导体器件,显示器,指挥,智能

纺织品和能量转换装置(例如,燃料电池,收割机和电池)等,显示出巨大的应用潜能。 从化学结构看,碳纳米管(CNTs)可以用作有机或无机半导体的替代物,但高昂的成本是目前限制其广泛用的最大难题。然而,碳纳米管作为一种新型材料有望在不久的将来实现成本低廉化大规模生产。 在电子学应用领域(电磁屏蔽除外),碳纳米管最大的用途是导体。它不仅具有高电导率,其材料还能呈现透明状,使用起来非常灵活便于拉伸。因此可以取代ITO,用于制作显示器,触摸屏,光电与显示母线和其他产品。经实验证明,碳纳米管的迁移率高于硅,这就意味着碳纳米管可以用于制造快速转换晶体管。此外,碳纳米管能够用于制备高性能的大面积加工设备,如印刷设备,从而帮助提高生产工艺,并显著降低生产成本。碳纳米管还适用于制造超级电容器,其原理是通过利用电容和晶体管的功率密度来平衡电池的能量密度,从而达到弥合电池和电容器的差距的目的。 从目前发展程度来看,碳纳米管的最大挑战是材料纯度,设备制造,以及对其他设备材料(如适当的电介质)的需要。但毋庸置疑的是其无法超越的性能优点(比如高性能,灵活

石墨烯简介

石墨烯简介 摘要:在碳材料中,石墨烯具有特殊的单层窝蜂状结构,由于特殊的分子结构,使得石墨烯具有优良的化学和物理性质,例如:超高的比表面积超高的比表面积(2630m2/g),导电性能(电导率106S/m),机械性能(杨氏模量有1TPa)等,在高科技领域中展现了巨大的潜力。同时,石墨烯在能源、生物技术、航天航空等领域都展现出宽广的应用前景。但是由于石墨烯片层之间存在范德华力,促使分子层之间易发生团聚,不利于石墨烯的分散,导致电阻率升高和片层厚度增加,无法大规模高质量的制备石墨烯。本文主要介绍石墨烯的结构,性质,制备方法,以及石墨烯在现阶段的应用。 关键词:石墨烯结构性质制备应用 目录 第一部分:石墨烯的结构 第二部分:石墨烯的性质 第三部分:石墨烯的制备方法 第四部分:石墨烯的应用及其前景第五部分:结语

第一部分:石墨烯的结构 严格意义上的石墨烯原子排列与单层石墨的相同,厚度仅有一个原子尺寸,即0.335nm,因此又被称为目前世界上已知的最薄的材料,每个碳原子附近有三个碳原子连接成键,碳.碳键长0.142nm,通过sp2杂化与邻近的三个碳原子成键形成正六边形,连接十分牢固,因此可是称为最坚硬的材料。然后每个正六边形在二维结构平面,不断无限延伸形成了一个巨大的平面多环芳烃[1],如图1-1所示。2007年,Meryer[2]根据自己的研究发现大多数的石墨烯片层呈现单原子厚度,同时表现出有序的结构,通过透射电镜发现,该片层并非完全平整,表现出粗糙的起伏。也正因为这种褶皱的存在,才使得二维晶体结构能够存在。 图1-1石墨烯的结构构型 第二部分:石墨烯的性质 石墨烯在力学、电学、光学、热学等方面具有优异特性。 力学特性石墨烯中,碳原子之间的连接处于非常柔韧的状态.当被施加外部机械 力时,碳原子面会弯曲变形.碳原子不必重新排列来适应外力,因此保持了结构稳定。石墨烯是人类已知强度最高的材料,比世界上强度最高的钢铁高100多倍。 电学特性石墨烯具有超高的电子迁移率,它的导电性远高于目前任何高温超导材 料。曼彻斯特大学的研究小组在室温下测量了单层石墨烯分子的电子迁移率,发现即使在含有杂质的石墨烯中,电荷的迁移率仍可达10000cm2/(v·s)。2008年,海姆研究小组又证明.电子在石墨烯中的迁移率可以达到前所未有的 200000cm2/(v·s)。不久之后,哥伦比亚大学的博洛京(K.Bolotin)将这个数值再次提高到250 000cm2/(v·s)。而目前晶体管的主要材料——单晶硅的电子迁移率只有1400cm2/(v·s),高纯度石墨烯的电子迁移率超过单晶硅150倍以上。此外,石墨烯的电子迁移率几乎不随温度变化而变化。 光学特性石墨烯几乎是完全透明的,只吸收大约2.3%的可见光,光透率高达97.7%。石墨烯层的光吸收与层数成比例.数层石墨烯(FLG)样品中的每一层都可以看做二维电子气,受临近层的扰动极小,其在光学上等效为几乎互不作用的单层石墨烯(SLG)的叠加。单层石墨烯在300~2500纳米间的吸收谱平坦,在紫

相关文档
最新文档