数值分析实验(5)

数值分析实验(5)
数值分析实验(5)

实验五 非线性方程与方程组的数值解法

专业班级:信计131班 姓名:段雨博 学号:2013014907

一、实验目的

1、熟悉matlab 编程。

2、学习非线性方程求根的方法及程序设计算法。

二、实验题目

1、迭代函数对收敛性的影响

用迭代方法求方程()3

210f x x x =--=的根 方案(1):化方程为等价方程:

()x x ?== 取初值00x =,迭代10次。

方案(2):化方程()3

210f x x x =--=为等价方程: ()3

021x x x ?=-= 取初值00x =,迭代10次,观察其计算值,并加以分析。

2、初值的选取对迭代法的影响

用牛顿法求方程310x x --=在0 1.5x =附近的根。

方案(1):使用牛顿法并取0 1.5x =,由()()

1k k k k f x x x f x +=-'得: 312131

k k k k k x x x x x +--=--,迭代10次。 方案(2):取00x =,并利用相同的公式:312131

k k k k k x x x x x +--=--,迭代10次,观察比 较并分析原因。

3、收敛性和收敛速度的比较。

求方程()3

sin 121f x x x x =--+的全部实根,其中误差限610ε-= 方案(1):用牛顿法求解;

方案(2):用简单迭代法求解。

取相同的迭代初值,比较各方法的收敛速度。

三、实验原理与理论基础

1、牛顿法:

设已知方程()0f x =有近似根k x (假定()0k f x '≠),将函数()f x 在点k x 展开,有 ()()()()k k k f x f x f x x x '≈+-,于是方程()0f x =可近似地表示为

()()()0k k k f x f x x x '+-=

这是个线性方程,记其根为1k x +,则1k x +的计算公式为:

()()1,0,1...,k k k k f x x x k f x +=-

=' 这就是牛顿法。

2、迭代法原理

将非线性方程()0f x =化为一个同解方程()x x ?=,并且假设()x ?为连续函数,任取一个初值0x ,代入()x x ?=的右端,得()10x x ?=,继续()21x x ?=,……,则()1k k x x ?+=,0,1,2k = ,称()1k k x x ?+=式为求解非线性方程()x x ?=的简单迭代法。

3、收敛性与收敛阶

设迭代过程()1k k x x ?+=收敛于方程()x x ?=的根x *,如果当k →∞时迭代误差k e x x **=-满足渐进关系式1k p

k e C e +→常数0C ≠,则称该迭代过程是p 阶收敛的。特别地,()11p C =<时称为线性收,1p >时称为超线性收敛,2p =时称为平方收敛。

定理4:对于迭代过程()1k k x x ?+=及正整数p ,如果()p x ?在所求根x *的临近连续,并

且()()()()10,p x x x ???-***'''==== ()()0p x ?*≠,则该迭代过程在点x *

附近是p 阶收敛的。

四、实验内容

第一题:1、编写一般迭代法的M 文件程序。

2、分别调用两个程序得出结果。

第二题:1、编写牛顿迭代法的M 文件。

2、对等价方程分别取不同的初值0x ,调用牛顿迭代法求解。

第三题:1、分别调用简单迭代法和牛顿迭代法求解。

第一题:一般迭代法的M 文件:

function [x_star,it] =iterate(~,~,~,~)

%%求方程根的一般迭代法,调用方法为

%%[x_star,it]=iterate(phi,x,ep,it_max);

%%其中philosophy(x)为迭代函数;x为初始点;

%%ep为精度要求,缺省值为1e-5;

%%it_max为最大迭代次数,缺省值为100,x_star为得到的解;%%it为所需的迭代次数.

ifnargin<4;

it_max=100;

end

ifnargin<3

ep=1e-5;

end

k=1;

whilek<=it_max

x1=feval(phi,x);

if abs(x1-x)

end

x=x1;k=k+1;

end

x_star=x1;it=k;

方案一:

>> phi=@(x)(((x+1)/2)^(1/3))

phi =

@(x)(((x+1)/2)^(1/3))

>> [x_star,it]=iterate(phi,0)

x_star =

1.0000

it =

8

方案二:

>> phi=@(x)(2*x^3-1)

phi =

@(x)(2*x^3-1)

>> [x_star,it]=iterate(phi,0)

x_star =

-Inf

it =

101

第二题:牛顿迭代法的M文件:

function [x_star,it] =Newton(fun,x,ep,it_max)

%%求方程根的Newton法,调用方法为

%%[x_star,it]=Newton(fun,x,ep,it_max),

%%其中fun(x)为迭代函数,提供函数值和导数值;x为初始点;%%ep为精度要求,缺省值1e-5;

%%it_max为最大迭代次数,缺省值为100;

%%x_star为得到的解;it为求解所需的迭代次数.

ifnargin<4

it_max=100;

end

ifnargin<3

ep=1e-5;

end

k=1;

whilek<=it_max

[f,dotf]=feval(fun,x);

if abs(dotf)<1e-10

error('%求根失败,求根函数的导数为0.');

end

x1=x-f/dotf;

if abs(x1-x)

end

x=x1;k=k+1;

end

x_star=x1;it=k;

外部函数:

function[f,dotf]=fun(x)

f=x^3-x-1;

dotf=3*x^2-1;

x=1.5

方案一:取

>> [x_star,it]=Newton(@fun,1.5)

x_star =

1.3247

it =

4

x=0

方案二:取

>> [x_star,it]=Newton(@fun,0)

x_star =

1.3247

it =

21

第三题:牛顿法:

外部函数:

function[f,dotf]=fun(x)

f=x^3-sin(x)-12*x+1;

dotf=3*x^2-cos(x)-12;

(1)调用牛顿迭代公式:

>> [x_star,it]=Newton(@fun,0)

x_star =

0.0770

it =

3

(2)简单迭代法:

>> [x_star,it]=iterate(phi,0)

x_star =

NaN

it =

101

五、实验结果

1、方案一:

>> phi=@(x)(((x+1)/2)^(1/3)) phi =

@(x)(((x+1)/2)^(1/3))

>> [x_star,it]=iterate(phi,0)

x_star =

1.0000

it =

8

方案二:

>> phi=@(x)(2*x^3-1)

phi =

@(x)(2*x^3-1)

>> [x_star,it]=iterate(phi,0)

x_star =

-Inf

it =

101

x=1.5

2、方案一:取

>> [x_star,it]=Newton(@fun,1.5) x_star =

1.3247

it =

4

x=0

方案二:取

>> [x_star,it]=Newton(@fun,0) x_star =

1.3247

it =

21

3、(1)调用牛顿迭代公式:

>> [x_star,it]=Newton(@fun,0)

x_star =

0.0770

it =

3

(2)简单迭代法:

>> [x_star,it]=iterate(phi,0)

x_star =

NaN

it =

101

六、实验结果分析与小结

1、通过这次实习,让我对非线性方程求解的各种迭代法有了更深的了解,之前在复习迭代法时对牛顿迭代法不是很清楚,当自己编程去解决问题时就会有不一样的感受和理解,比如初值对牛顿迭代法的影响,上课只是知道会有很大影响,但看到实验结果才看出来原来引起的误差确实很大。不过牛顿迭代法的思想不太难,迭代的方法比较简单易懂,这次在编写程序又用到了外部函数,外部函数和内部函数不是很清楚,经过查资料,看别人写的程序,明白了好多。

2、这次实习虽然方法简单,但是编写程序不是很会,很多编程时用的函数之前从来没见过,所以自己没办法解决,查了别人是如何写的,然后自己模仿人家写下来,编写函数程序还是挺难的,很多函数很少用到,接触也不多,不是很清楚怎么来编写,如何调用函数来运行,程序编写出来有问题也不知道问题出在哪里,有调用不出来的。希望通过以后的学习,包括借鉴人家写的,自己学会去编写程序,了解更多。

Matlab作业3(数值分析)答案

Matlab作业3(数值分析) 机电工程学院(院、系)专业班组 学号姓名实验日期教师评定 1.计算多项式乘法(x2+2x+2)(x2+5x+4)。 答: 2. (1)将(x-6)(x-3)(x-8)展开为系数多项式的形式。(2)求解在x=8时多项 式(x-1)(x-2) (x-3)(x-4)的值。 答:(1) (2)

3. y=sin(x),x从0到2π,?x=0.02π,求y的最大值、最小值、均值和标准差。 4.设x=[0.00.30.8 1.1 1.6 2.3]',y=[0.500.82 1.14 1.25 1.35 1.40]',试求二次多项式拟合系数,并据此计算x1=[0.9 1.2]时对应的y1。解:x=[0.0 0.3 0.8 1.1 1.6 2.3]'; %输入变量数据x y=[0.50 0.82 1.14 1.25 1.35 1.40]'; %输入变量数据y p=polyfit(x,y,2) %对x,y用二次多项式拟合,得到系数p x1=[0.9 1.2]; %输入点x1 y1=polyval(p,x1) %估计x1处对应的y1 p = -0.2387 0.9191 0.5318 y1 = a) 1.2909

5.实验数据处理:已知某压力传感器的测试数据如下表 p为压力值,u为电压值,试用多项式 d cp bp ap p u+ + + =2 3 ) ( 来拟 合其特性函数,求出a,b,c,d,并把拟合曲线和各个测试数据点画在同一幅图上。解: >> p=[0.0,1.1,2.1,2.8,4.2,5.0,6.1,6.9,8.1,9.0,9.9]; u=[10,11,13,14,17,18,22,24,29,34,39]; x=polyfit(p,u,3) %得多项式系数 t=linspace(0,10,100); y=polyval(x,t); %求多项式得值 plot(p,u,'*',t,y,'r') %画拟和曲线 x = 0.0195 -0.0412 1.4469 9.8267

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

数值分析实验报告176453

实验报告 插值法 数学实验室 数值逼近 算法设计 级 ____________________________ 号 ____________________________ 名 _____________________________ 实验项目名称 实验室 所属课程名称 实验类型 实验日期

实验概述: 【实验目的及要求】 本次实验的目的是熟练《数值分析》第二章“插值法”的相关内容,掌握三种插 多项式插值,三次样条插值,拉格朗日插值,并比较三种插值方法的 优劣。 本次试验要求编写牛顿多项式插值,三次样条插值,拉格朗日插值的程序编码,并 去实现。 【实验原理】 《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值, 拉格朗日 插值的相应算法和相关性质。 【实验环境】(使用的软硬件) 软件: MATLAB 2012a 硬件: 电脑型号:联想 Lenovo 昭阳E46A 笔记本电脑 操作系统: Win dows 8专业版 处理器:In tel ( R Core ( TM i3 CPU M 350 @2.27GHz 2.27GHz 实验内容: 【实验方案设计】 第一步,将书上关于三种插值方法的内容转化成程序语言,用 MATLA B 现; 第二步,分别用牛顿多项式插值,三次样条插值,拉格朗日插值求解不同的问题。 【实验过程】(实验步骤、记录、数据、分析) 实验的主要步骤是:首先分析问题,根据分析设计 MATLA 程序,利用程序算出 问题答案,分析所得答案结果,再得出最后结论。 实验一: 已知函数在下列各点的值为 试用4次牛顿插值多项式 P 4( x )及三次样条函数 S ( x )(自然边界条件)对数据进行插值。 用图给出{( X i , y i ), X i =0.2+0.08i , i=0 , 1, 11, 10 } , P 4 ( x )及 S ( x )。 值方法:牛顿 在MATLAB 件中

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

数值分析实验指导2012

数值分析实验指导 2012年8月

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个MATLAB 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 p o l y (v b = 的输出b 是一个n+1维向量,它是以n 维向量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ) )20:1((; )2();21,1(;000000001.0ve poly roots ess ve zeros ve ess +=== 上述简单的MATLAB 程序便得到(1.2)的全部根,程序中的“ess ”即是(1.2)中的ε。

数值分析实验题

实验2.1 多项式插值的振荡现象 问题提出:考虑在一个固定的区间上用插值逼近一个函数。显然Lagrange 插值中的使用节点越多,插值多项式的次数就越高.我们自然就关心插值多项式的次数增加时,()n L x 是否也更加靠近被逼近的函数.Runge 给出的一个例子就是极著名并富有启发性的.设区间[-1,1]上的函数 ()2 1 125f x x = +. 实验内容:考虑区间[-1,1]的一个等距划分,分点为 21,0,1,2,,,i i x i n n =-+ = 则拉格朗日插值多项式为 ()()201 125n n i i i L x l x x ==+∑ . 其中,(),0,1,2,,i l x i n =是n 次Lagrange 插值基函数. 实验要求: (1) 选择不断增大的分点数目2,3, n =,画出原函数()f x 及插值多项式()n L x 在 [-1,1]上的图像,并比较分析实验结果. (2) 选择其他的函数,例如定义在区间[-5,5]上的函数 ()()4 ,arctan ,1x h x g x x x = =+ 重复上面的实验看结果如何. 解:matlab 程序代码

实验结果: f(x)结果如下

h(x)结果如下 g(x)结果如下

结果分析:适当提高插值多项式的次数,可以提高逼近的精度,但次数太高反而会产生不良效果。主要是次数越高,计算工作量大,积累的误差也大;在整个区间上做高次多项式,但局部插值节点处的值有微笑偏差时,可能会影响整个区间上函数值的很大变化,使计算很不稳定。从上图可以看出,高次插值不准确。 实验3.1 编制以函数{} n k k x =为基的多项式最小拟合程序,并对表3.11中的数据作3次多项式最小二 乘拟合. 表3.11 取权数1i w ≡,求拟合曲线0 n k k k x ?α * *== ∑中的参数{}k α、平方误差2δ,并作离散数据 {},i i x y 的拟合函数()y x ?*=的图形. 解:matlab 程序代码 实验结果:

数值分析实验报告

数值分析实验报告 姓名:周茹 学号: 912113850115 专业:数学与应用数学 指导老师:李建良

线性方程组的数值实验 一、课题名字:求解双对角线性方程组 二、问题描述 考虑一种特殊的对角线元素不为零的双对角线性方程组(以n=7为例) ?????????? ?????? ? ???? ?d a d a d a d a d a d a d 766 55 44 3 32 211??????????????????????x x x x x x x 7654321=?????????? ? ???????????b b b b b b b 7654321 写出一般的n (奇数)阶方程组程序(不要用消元法,因为不用它可以十分方便的解出这个方程组) 。 三、摘要 本文提出解三对角矩阵的一种十分简便的方法——追赶法,该算法适用于任意三对角方程组的求解。 四、引言 对于一般给定的d Ax =,我们可以用高斯消去法求解。但是高斯消去法过程复杂繁琐。对于特殊的三对角矩阵,如果A 是不可约的弱对角占优矩阵,可以将A 分解为UL ,再运用追赶法求解。

五、计算公式(数学模型) 对于形如????? ?? ????? ??? ?---b a c b a c b a c b n n n n n 111 2 2 2 11... ... ...的三对角矩阵UL A =,容易验证U 、L 具有如下形式: ??????? ????? ??? ?=u a u a u a u n n U ...... 3 3 22 1 , ?? ????? ? ?? ??????=1 (1) 1132 1l l l L 比较UL A =两边元素,可以得到 ? ?? ??-== = l a b u u c l b u i i i i i i 111 i=2, 3, ... ,n 考虑三对角线系数矩阵的线性方程组 f Ax = 这里()T n x x x x ... 2 1 = ,()T n f f f f ... 2 1 = 令y Lx =,则有 f Uy = 于是有 ()?????-== --u y a f y u f y i i i i i 1 1 11 1 * i=2, 3, ... ,n 再根据y Lx =可得到

数值分析试验一

数值分析第一次实验报告 姓名: 学号: 实验1: 1. 实验项目的性质和任务 通过上机实验,使学生对病态问题、线性方程组求解和函数的数值逼近方法有一个初步理解。 2.教学内容和要求 1)对高阶多多项式 20 1()(1)(2)(20)()k p x x x x x k ==---=-∏ 编程求下面方程的解 19()0p x x ε+= 并绘图演示方程的解与扰动量ε的关系。(实验) 2)对2~20n =,生成对应的Hilbert 矩阵,计算矩阵的条件数;通过先确定解获得常向量b 的方法,确定方程组 n H x b = 最后,用矩阵分解方法求解方程组,并分析计算结果。(第三章,实验题4) 3)对函数 2 1()[1,1]125f x x x =∈-+ 的Chebyshev 点 (21)cos( ) 1,2,...,12(1) k k x k n n π -==++ 编程进行Lagrange 插值,并分析插值结果。(第四章 实验1)

项目涉及核心知识点 病态方程求解、矩阵分解和方程组求解、Lagrange插值。 重点与难点 算法设计和matlab编程。 1)a.实验方案: 先创建一个20*50的零矩阵X,然后利用Matlab中的roots()和poly()函数将50个不同的ess扰动值所产生的50个解向量分别存入X矩阵中。然后再将ess向量分别和X的20个行向量绘图。即可直观的看出充分小的扰动值会产生非常大的偏差。即证明了这个问题的病态性。 b.编写程序: >> X=zeros(20,50); >> ve=zeros(1,21); >> ess=linspace(0,,50);k=1; >> while k<=50 ve(2)=ess(k); X(1:20,k)=roots(poly(1:20)+ve); k=k+1; end >> m=1; >> while m<=20 figure(m),plot(ess,X(m,:));

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值分析实验题目及解答

内容包括: 实验题目1:算法的数值稳定性实验 实验题目2:LU分解实验 实验题目3:三次样条插值外推样条实验 实验题目4:第二类Fredholm 积分方程实验实验题目5:M级显式R_K法

实验题目:算法的数值稳定性实验 实验内容:计算积分()1 0()d 1515n x I n x a x ==+? (n=1,2,…,20) 易得到下面递推公式 ()()1 1I n aI n n =--+ 并有估计式 ()() ()() 1 1 111I n a n a n << +++ 计算方法: 算法一:采用下面递推公式计算: ()()1 1I n aI n n =--+ ()1,2,,20 n = 取初值()116 0ln ln 15a I a +== 算法二: 采用下面递推公式计算: ()()111I n I n a n ??-= -+???? ()20,19,,1 n =

结果分析:(分析哪个好哪个不好,原因是什么) 我觉得算法二比较好, 原因一:根据式 ()() ()() 1 1 111I n a n a n << +++得知,I(n)不可能小于 零,而算法一的计算结果有部分结果小于零。原因二:对算法一记初始误差 ε0=/I 0-I(0)/>0; 则εn =/I n -I(n)/=a/I n-1-I(n-1)/=a n *ε0 由此可知,当n=20时, ε20把ε0放大了a 20倍,其结果造成严重的。 而对于算法二^ ^ 11n n a εε-= ,…, ^ ^ 01 n n a εε=,尽管有初始误差^ 20ε,但随着计算的进程,这个误差的影响不断减小。 附:源程序:(把源程序附上) 算法一程序: >> format long >> a=15;I=log(16/15); for n=1:20 n I=-a*I+1/n end 算法二程序: >> format long >> a=15;I=31/10080; >> for n=20:-1:1 n I I=1/a*(-I+1/n); End

数值分析实验报告

学生实验报告实验课程名称 开课实验室 学院年级专业班 学生姓名学号 开课时间至学年学期

if(A(m,k)~=0) if(m~=k) A([k m],:)=A([m k],:); %换行 end A(k+1:n, k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c); %消去end end x=zeros(length(b),1); %回代求解 x(n)=A(n,c)/A(n,n); for k=n-1:-1:1 x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k); end y=x; format short;%设置为默认格式显示,显示5位 (2)建立MATLAB界面 利用MA TLAB的GUI建立如下界面求解线性方程组: 详见程序。 五、计算实例、数据、结果、分析 下面我们对以上的结果进行测试,求解:

? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - 7 2 5 10 13 9 14 4 4 3 2 1 13 12 4 3 3 10 2 4 3 2 1 x x x x 输入数据后点击和,得到如下结果: 更改以上数据进行测试,求解如下方程组: 1 2 3 4 43211 34321 23431 12341 x x x x ?? ???? ?? ???? ?? ???? = ?? ???? - ?? ???? - ???? ?? 得到如下结果:

数值分析实验报告

实验一、误差分析 一、实验目的 1.通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; 2.通过上机计算,了解误差、绝对误差、误差界、相对误差界的有关概念; 3.通过上机计算,了解舍入误差所引起的数值不稳定性。 二.实验原理 误差问题是数值分析的基础,又是数值分析中一个困难的课题。在实际计算中,如果选用了不同的算法,由于舍入误差的影响,将会得到截然不同的结果。因此,选取算法时注重分析舍入误差的影响,在实际计算中是十分重要的。同时,由于在数值求解过程中用有限的过程代替无限的过程会产生截断误差,因此算法的好坏会影响到数值结果的精度。 三.实验内容 对20,,2,1,0 =n ,计算定积分 ?+=10 5dx x x y n n . 算法1:利用递推公式 151--=n n y n y , 20,,2,1 =n , 取 ?≈-=+=1 00182322.05ln 6ln 51dx x y . 算法2:利用递推公式 n n y n y 51511-= - 1,,19,20 =n . 注意到 ???=≤+≤=10 10202010201051515611261dx x dx x x dx x , 取 008730.0)12611051(20120≈+≈y .: 四.实验程序及运行结果 程序一: t=log(6)-log(5);

n=1; y(1)=t; for k=2:1:20 y(k)=1/k-5*y(k-1); n=n+1; end y y =0.0884 y =0.0581 y =0.0431 y =0.0346 y =0.0271 y =0.0313 y =-0.0134 y =0.1920 y =-0.8487 y =4.3436 y =-21.6268 y =108.2176 y =-541.0110 y =2.7051e+003 y =-1.3526e+004 y =6.7628e+004 y =-3.3814e+005 y =1.6907e+006 y =-8.4535e+006 y =4.2267e+007 程序2: y=zeros(20,1); n=1; y1=(1/105+1/126)/2;y(20)=y1; for k=20:-1:2 y(k-1)=1/(5*k)-(1/5)*y(k); n=n+1; end 运行结果:y = 0.0884 0.0580 0.0431 0.0343 0.0285 0.0212 0.0188 0.0169

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

数值分析2016上机实验报告

序言 数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。是科学与工程计算(科学计算)的理论支持。许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。目前,试验、理论、计算已成为人类进行科学活动的三大方法。 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。 MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 本实验报告使用了MATLAB软件。对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录 序言 (1) 问题一非线性方程数值解法 (3) 1.1 计算题目 (3) 1.2 迭代法分析 (3) 1.3计算结果分析及结论 (4) 问题二追赶法解三对角矩阵 (5) 2.1 问题 (5) 2.2 问题分析(追赶法) (6) 2.3 计算结果 (7) 问题三函数拟合 (7) 3.1 计算题目 (7) 3.2 题目分析 (7) 3.3 结果比较 (12) 问题四欧拉法解微分方程 (14) 4.1 计算题目 (14) 4.2.1 方程的准确解 (14) 4.2.2 Euler方法求解 (14) 4.2.3改进欧拉方法 (16) 问题五四阶龙格-库塔计算常微分方程初值问题 (17) 5.1 计算题目 (17) 5.2 四阶龙格-库塔方法分析 (18) 5.3 程序流程图 (18) 5.4 标准四阶Runge-Kutta法Matlab实现 (19) 5.5 计算结果及比较 (20) 问题六舍入误差观察 (22) 6.1 计算题目 (22) 6.2 计算结果 (22) 6.3 结论 (23) 7 总结 (24) 附录

数值分析实验报告

实验报告 实验项目名称 估计水塔的水流量 实验项目类型 验证 演示 综合 设计 其他 指导教师 成绩 一、实验目的 (1)学会对实际问题的分析方法 (2)学会利用所学的知识解决实际问题 (3)设计出相应的算法,编制相应的应用程序 二、实验内容 某居民区,其自来水是有一个圆柱形水塔提供,水塔高12.2m ,塔的直径为17.4m ,水塔是由水泵根据水塔中的水位自动加水,一般水泵每天工作两次。按照设计,当水塔中的水位降低至最低水位,约8.2m 时,水泵自动启动加水。当水位升至最高水位,约10.8m 时,水泵停止工作。 下表给出了某一天的测量记录,测量了28个时刻的数据,但由于水泵正向水塔供水,由3个时刻无法测量到水位(表中为—)。 试建立数学模型,计算居民的用水速度和日总用水量。 三、实验原理、方法(算法)、步骤 时刻 0 0.921 1.843 2.949 3.871 4.978 5.900 水位 9.677 9.479 9.308 9.125 8.982 8.814. 8.686 时刻 7.006 7.928 8.967 9.981 10.925 10.945 12.032 水位 8.525 8.388 8.220 — — 10.820 10.500 时刻 12.954 13.875 14.982 15.903 1 6.826 1 7.931 19.037 水位 10.210 9.936 9.653 9.409 9.180 8.921 8.662 时刻 1 9.959 20.839 22.015 22.958 23.880 24.986 25.908 水位 8.433 8.220 — 10.820 10.591 10.354 10.180

数值分析实验(2)word版本

数值分析实验(2)

实验二 插值法 P50 专业班级:信计131班 姓名:段雨博 学号:2013014907 一、实验目的 1、熟悉MATLAB 编程; 2、学习插值方法及程序设计算法。 二、实验题目 1、已知函数在下列各点的值为 试用4次牛顿插值多项式()4P x 及三次样条函数()S x (自然边界条件)对数据进行插值用图给出(){},,0.20.08,0,1,11,10i i i x y x i i =+=,()4P x 及()S x 。 2、在区间[]1,1-上分别取10,20n =用两组等距节点对龙格函数()2 1125f x x = +作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 3、下列数据点的插值 可以得到平方根函数的近似,在区间[]0,64上作图 (1)用这9个点作8次多项式插值()8L x (2)用三次样条(第一边界条件)程序求()S x 从得到结果看在[]0,64上,哪个插值更精确;在区间[]0,1上,两种插值哪个更精确? 三、实验原理与理论基础

1、拉格朗日差值公式 )()(111k k k k k k x x x x y y y x L ---+ =++ 点斜式 k k k k k k k k x x x x y x x x x y x L --+--=++++11111)( 两点式 2、n 次插值基函数 ....,2,1,0,)()(0n j y x l y x L i j n k k k j n ===∑= n k x x x x x x x x x x x x x l n k n k k k k k ,...,1,0,) () (... ) () (... ) () ()(1100=------= -- 3、牛顿插值多项式 ...))(](,,[)](,[)()(102100100+--+++=x x x x x x x f x x x x f x f x P n ))...(](,...,[100---+n n x x x x x x f )(],...,,[)()()(10x x x x f x P x f x R n n n n +=-=ω 4、三次样条函数 若函数],,[)(2b a C x S ∈且在每个小区间],[1+j j x x 上是三次多项式,其中, b x x x a n =<<<=...10是给定节点,则称)(x S 是节点n x x x ,...,,10上的三次样条函数。若在节点j x 上给定函数值),,...,2,1,0)((n j x f y j i ==并成立,,...,2,1,0,)(n j y x S i j ==则称)(x S 为三次样条插值函数。 5、三次样条函数的边界条件 (1)0)()(''''''00''====n n f x S f x S (2)'''00')(,)(n n f x S f x S == 四、实验内容 1、M 文件: function [p]=Newton_Polyfit(X,Y) format long g r=size(X); n=r(2); M=ones(n,n); M(:,1)=Y'; for i=2:n

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

学习数值分析的经验

数值分析实验的经验、感受、收获、建议班级:计算131 学号:2012014302 姓名:曾欢欢数值分析实验主要就是学习MATLAB的使用以及对数值分析类容的应用,可以使学生更加理解和记忆数值分析学得类容,也巩固了MATLAB的学习,有利于以后这个软件我们的使用。在做实验中,我们需要具备较好的编程能力、明白MATLAB软件的使用以及掌握数值分析的思想,才能让我们独立自主的完成该作业,如果是上述能力有限的同学,需要借助MATLAB的书以及网络来完成实验。 数值分析实验对于我来说还是有一定难度,所以我课下先复习了MATLAB的使用方法以及编写程序的基本类容,借助互联网和同学老师资源完成了数值分析得实验的内容。在实验书写中,我复习了各种知识,所以我认为这门课程是有必要且是有用处的,特别是需要处理大量实验数据的人员,很有必要深入了解学习它,这样在以后的工作学习里面就减少了很多计算问题也提高了实验结果的精确度。 学习数值分析的经验、感受、收获、建议 数值分析的内容包括插值与逼近,数值微分与数值积分,非线性方程与线性方程组的数值解法,矩阵的特征值与特征向量计算,常微分方程数值解等。 首先我们必须明白数值分析的用途。通常所学的其他数学类学科都是由公式定理开始,从研究他们的定义,性质再到证明与应用。但实际上,尤其是工程,物理,化学等其它具体的学科。往往我们拿到

手的只是通过实验得到的数据。如果是验证性试验,需要代回到公式进行分析,验证。但往往更多面对的是研究性或试探性试验,无具体公式定理可代。那就必须通过插值,拟合等计算方法进行数据处理以得到一个相对可用的一般公式。还有许多计算公式理论上非常复杂,在工程中不实用,所以必须根据实际情况把它转化成多项式近似表示。学习数值分析,不应盲目记公式,因为公事通常很长且很乏味。 其次,应从公式所面临的问题以及用途出发。比如插值方法,就是就是把实验所得的数据看成是公式的解,由这些解反推出一个近似公式,可以具有局部一般性。再比如说拟合,在插值的基础上考虑实验误差,通过拟合能将误差尽可能缩小,之后目的也是得到一个具有一定条件下的一般性的公式。。 建议学习本门课程要结合知识与实际,比如在物理实验里面很多地方有用到线性拟合的知识,这样我们可以对数值分析得类容加以巩固,在学习中不能死记硬背,应该理解记忆,以及结合列题加以记忆和应用,只能在题里面我们才能去应用它。对于本学期的期末考试,由于本人注重了理论知识的记忆和应用,但是在复习过程中自己没有亲自去导致计算能力较弱,在考试过程中一道大题的计算耗费了大量的时间且错了,虽然解答题目的步骤和思想应该是没有问题的,所以同学们除了掌握基本的理论知识以外,得加强计算能力的锻炼,避免不必要的浪费时间以及精力,导致不愉快的结果。

数值分析作业答案

第2章 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange 插值基底。 (3)用Newton 基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为:2 210)(x a x a a x P ++=, 所以:64 211111 1111122 2 211 200 -=-==x x x x x x A 所以f(x)的二次插值多项式为: 2 6 52337)(x x x P ++-= (2)用Lagrange 插值基底 Lagrange 插值多项式为: 所以f(x)的二次插值多项式为:226 52337)(x x x L ++-= (3) 用Newton 基底: 均差表如下: Newton 所以f(x)的二次插值多项式为:2 2 6 52337)(x x x N ++-= 由以上计算可知,三种方法得到的多项式是相同的。 6、在44≤≤-x 上给出x e x f =)(的等距节点函数表,若用二次插值求e x 的近似 值,要使截断误差不超过10-6,问使用函数表的步长h 应取多少? 解:以x i-1,x i ,x i+1为插值节点多项式的截断误差,则有 式中.,11h x x h x x i i +=-=+- 令 634103 9-≤h e 得00658.0≤h 插值点个数

是奇数,故实际可采用的函数值表步长 8、13)(47+++=x x x x f ,求]2,,2,2[710Λf 及]2,,2,2[810Λf 。 解:由均差的性质可知,均差与导数有如下关系: 所以有:1! 7! 7!7)(]2,,2,2[)7(7 1 === ξf f Λ 15、证明两点三次Hermite 插值余项是 并由此求出分段三次Hermite 插值的误差限。 证明:利用[x k ,x k+1]上两点三次Hermite 插值条件 知)()()(33x H x f x R -=有二重零点x k 和k+1。设 确定函数k(x): 当k x x =或x k+1时k(x)取任何有限值均可; 当1,+≠k k x x x 时,),(1+∈k k x x x ,构造关于变量t 的函数 显然有 在[x k ,x][x,x k+1]上对g(x)使用Rolle 定理,存在),(1x x k ∈η及),(12+∈k x x η使得 在),(1ηk x ,),(21ηη,),(12+k x η上对)(x g '使用Rolle 定理,存在),(11ηηk k x ∈, ),(212ηηη∈k 和),(123+∈k k x ηη使得 再依次对)(t g ''和)(t g '''使用Rolle 定理,知至少存在),(1+∈k k x x ξ使得 而!4)()()()4()4()4(t k t f t g -=,将ξ代入,得到 推导过程表明ξ依赖于1,+k k x x 及x 综合以上过程有:!4/)())(()(212)4(3+--=k k x x x x f x R ξ 确定误差限: 记)(x I h 为f(x)在[a,b]上基于等距节点的分段三次Hermite 插值函数。 n a b h n k kh a x k -==+=),,1,0(,Λ 在区间[x k ,x k+1]上有 而最值)(,16 1)1(max )()(max 4 4221 02121 sh x x h h s s x x x x k s k k x x x l k +== -=--≤≤+≤≤+ 进而得误差估计:)(max 3841)()()4(4 x f h x I x f b x a h ≤≤≤ - 16、求一个次数不高于4次的多项式)(x p ,使它满足0)0()0(='=p p ,

相关文档
最新文档