数学建模模拟赛题

数学建模模拟赛题
数学建模模拟赛题

数学建模模拟赛题

吊车问题

某公司一货运码头,配备带有动力驱动的货运吊车,如图1所示。现需将货物从货运船的起吊点A 吊运到货运码头的终点C ,且吊车的运动方式如图2所示,即在AB 段先以匀加速(加速度大小为a 2米

秒)运行(运行时间为1t 秒),达到

一定速度后,以匀速运行(运行时间为2t 秒),然后以匀减速(加速度大小为a )运行(运行时间为3t 秒);从岸边B 点到终点位置C 点,以匀速运行(运行时间为4t 秒)。已知AB 间的距离为1D 米,BC 间的距离为2D 米,缆绳长度为l 米(假设缆绳在货物吊运过程中长度保持不变)。

吊车缆绳的最大承载力为max 20000T kg =,吊车运行的最大加速度max 1a =2

m s ,另外从货物安全上的考虑,到达终点处,货物的水平速度0.5x m v s ≤,请 图2 吊车运行方式图

图1货运码头示意图

解决如下问题:

(1) 已知加速度a 的大小为20.5m s ,距离12D 60m D 10m ==,,15l m =,

货物质量6000m =公斤,在不考虑吊车缆绳承载力的情况下,确定吊车运行方式,即建立模型,确定时间,1,2,3,4i t i =的大小,使得货物从岸边B 点到终点C ,其间摆动最小。

(2) 在第一问假设条件下,如果同时计及吊运效率,建立模型确定时间

,1,2,3,4i t i =的大小,使货物从岸边B 点到终点C 不仅摆动幅度小而且整体效率高。

(3) 考虑缆绳的最大承载力,并兼顾摆动大小和效率,请建立模型,确定

吊车运行方式,即确定加速度a 的大小、时间,1,2,3,4i t i =,并确定最大起吊货物重量max m 。

(完整版)数学建模模拟试题及答案

数学建模模拟试题及答案 一、填空题(每题5分,共20分) 1.一个连通图能够一笔画出的充分必要条件是 . 2. 设银行的年利率为0.2,则五年后的一百万元相当于现在的 万元. 3. 在夏季博览会上,商人预测每天冰淇淋销量N 将和下列因素有关: (1) 参加展览会的人数n ;(2)气温T 超过C 10; (3)冰淇淋的售价p . 由此建立的冰淇淋销量的比例模型应为 . 4. 如图一是一个邮路,邮递员从邮局A 出发走遍所有 长方形街路后再返回邮局.若每个小长方形街路的边长横向 均为1km ,纵向均为2km ,则他至少要走km . 二、分析判断题(每题10分,共20分) 1. 有一大堆油腻的盘子和一盆热的洗涤剂水。为尽量图一 多洗干净盘子,有哪些因素应予以考虑?试至少列出四种。 2. 某种疾病每年新发生1000例,患者中有一半当年可治愈.若2000年底时有1200个病人,到2005年将会出现什么结果?有人说,无论多少年过去,患者人数只是趋向2000人,但不会达到2000人,试判断这个说法的正确性. 三、计算题(每题20分,共40分) 1. 某工厂计划用两种原材料B A ,生产甲、乙两种产品,两种原材料的最高供应量依次为22和20个单位;每单位产品甲需用两种原材料依次为1、1个单位,产值为3(百元);乙的需要量依次为3、1个单位,产值为9(百元);又根据市场预测,产品乙的市场需求量最多为6个单位,而甲、乙两种产品的需求比不超过5:2,试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答: (1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况. 2. 两个水厂21,A A 将自来水供应三个小区,,,321B B B 每天各水厂的供应量与各小区的需求量以及各水厂调运到各小区的供水单价见下表.试安排供水方案,使总供水费最小?

数学建模知识竞赛题库

数学建模知识竞赛题库 1.请问计算机中的二进制源于我国古代的哪部经典? D A.《墨经》 B.《诗经》 C.《周书》 D.《周易》 2.世界上面积最大的高原是?D A.青藏高原 B.帕米尔高原 C.黄土高原 D.巴西高原 3.我国海洋国土面积约有多少万平方公里? B A.200 B.300 C.280 D.340 4.世界上面值最高的邮票是匈牙利五百亿彭哥,它的图案是B A.猫 B.飞鸽 C.海鸥 D.鹰 5. 龙虾是我们的一种美食、你知道它体内的血是什么颜色的吗?B A.红色 B.蓝色 C.灰色 D.绿色 6.MATLAB使用三维向量[R G B]来表示一种颜色,则黑色为(D ) A. [1 0 1] B. [1 1 1] C. [0 0 1] D. [0 0 0] 7.秦始皇之后,有几个朝代对长城进行了修葺? A A.7个 B.8个 C.9个 D.10个 8.中国历史上历时最长的朝代是?A A.周朝 B.汉朝 C.唐朝 D.宋朝 9我国第一个获得世界冠军的是谁?C A 吴传玉 B 郑凤荣 C 荣国团 D 陈镜开 10.我国最早在奥运会上获得金牌的是哪位运动员?B A.李宁 B.许海峰 C.高凤莲 D.吴佳怩

11.围棋共有多少个棋子?B A.360 B.361 C.362 D.365 12下列属于物理模型的是:A A水箱中的舰艇 B分子结构图 C火箭模型 D电路图 13名言:生命在于运动是谁说的?C A.车尔尼夫斯基 B.普希金 C.伏尔泰 D.契诃夫 14.饱食后不宜剧烈运动是因为B A.会得阑尾炎 B.有障消化 C.导致神经衰弱 D.呕吐 15、MATLAB软件中,把二维矩阵按一维方式寻址时的寻址访问是按(B)优先的。 A.行 B.列 C.对角线 D.左上角16红军长征中,哪次战役最突出反应毛泽东的军事思想和指挥才?A A.四渡赤水B.抢渡大渡河C.飞夺泸定桥D.直罗镇战役 17色盲患者最普遍的不易分辨的颜色是什么?A A.红绿 B.蓝绿 C.红蓝 D.绿蓝 18下列哪种症状是没有理由遗传的? A.精神分裂症 B.近视 C.糖尿病 D.口吃 19下面哪个变量是正无穷大变量?(A )

数学建模的万能模板

K:学科评价模型 学科的水平、地位是高等学校的一个重要指标,而学科间水平的评价对于学科的发展有着重要的作用,它可以使得各学科能更加深入的了解本学科(与其他学科相比较)的地位及不足之处,可以更好的促进该学科的发展。因此,如何给出合理的学科评价体系或模型一直是学科发展研究的热点问题。现有某大学(科研与教学并重型高校)的13个学科在一段时期内的调查数据,包括各种建设成效数据和前期投入的数据。 1、根据已给数据建立学科评价模型,要求必要的数据分析及建模过程。 2、模型分析,给出建立模型的适用性、合理性分析。 3、假设数据来自于某科研型或教学型高校,请给出相应的学科评价模型。

承诺书

页编号

学科评价 摘要 (一)对问题的基本认识或处理整个问题的基本框架,思路(简明扼要,重点,亮点突出)研究目的,意义要求)本文研究。。。。问题。。即数学类型的归纳 (一)(建模思路) (1.每题数据性质等粗略分析)首先,本文分别分析每个小题的特点:。。。。。 (2.建立模型的思路:) 针对第一问。。。问题,本文建立。。。模型;在第一个。。。模型中,本文对。。。。。 问题进行简化,利用。。。。什么知识建立什么模型;在对。。。。。模型改进的基础上建立了。。。。模型Ⅱ。 针对第二。。。。。。 针对第三。。。。。。。 (三)算法思想,求解思路,使用方法,程序) 1)针对模型求解,(设计。。。求解思路)。本文使用。。。什么算法,。。软件工具,对附件中所给的数据进行筛选,去除异常数据,对残缺数据进行适当的补充,求解出什么问题,进一步求解出。。。什么结果。(方法,软件,结果清晰写出来) 2)建模特点,模型检验)对模型进行合理的理论证明和推导,所给出的理论证明结果大约为。。。。。 模型优点。。。,建模思想方法。。。。,算法特点。。。。。,结果检验。。。。,。。。。,模型检验。。。。从中随机抽取了3组(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。等等 3)在模型的检验模型中,本文分别讨论了以上模型的精度,稳定性,灵敏度等分析。。(四)(数据结果,结论,回答所问道所有问题)最后,归纳全文,突出亮点,指出不足,提出本文通过改进或扩展。。。。。,得出什么。。。。模型。 (注意:1.具体的方法,结果,软件,名称,思想,亮点,明确详细写出来 2.不要写废话,不要照抄题目的一些话,直奔主题 3.不写结论一定不会获奖) 关键字:结合问题方法理论概念等 1

数学建模期末试卷A及答案

2009《数学建模》期末试卷A 考试形式:开卷 考试时间:120分钟 姓名: 学号: 成绩: ___ 1.(10分)叙述数学建模的基本步骤,并简要说明每一步的基本要求。 2.(10分)试建立不允许缺货的生产销售存贮模型。 设生产速率为常数k ,销售速率为常数r ,k r <。 在每个生产周期T 内,开始一段时间(00T t ≤≤) 边生产边销售,后一段时间(T t T ≤≤0)只销售不 生产,存贮量)(t q 的变化如图所示。设每次生产开工 费为1c ,每件产品单位时间的存贮费为2c ,以总费用最小为准则确定最优周期T ,并讨论k r <<和k r ≈的情况。 3.(10分)设)(t x 表示时刻t 的人口,试解释阻滞增长(Logistic )模型 ?????=-=0)0()1(x x x x x r dt dx m 中涉及的所有变量、参数,并用尽可能简洁的语言表述清楚该模型的建模思想。 4.(25分)已知8个城市v 0,v 1,…,v 7之间有一个公路网(如图所示), 每条公路为图中的边,边上的权数表示通过该公路所需的时间. (1)设你处在城市v 0,那么从v 0到其他各城市,应选择什么路径使所需的时间最短? (2)求出该图的一棵最小生成树。 5.(15分)求解如下非线性规划: 20 s.t.2 122 2 121≤≤≤+-=x x x x x z Max 6.(20分)某种合金的主要成分使金属甲与金属乙.经试验与分析, 发现这两种金属成分所占的百分比之和x 与合金的膨胀系数y 之间有一定的相关关系.先测试了12次, 得数据如下表:

的模型。 7.(10分)有12个苹果,其中有一个与其它的11个不同,或者比它们轻,或者比它们重,试用没有砝码的天平称量三次,找出这个苹果,并说明它的轻重情况。 《数学建模》模拟试卷(三)参考解答 1. 数学模型是对于现实世界的某一特定对象,为了某个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到的一个数学结构。它或者能解释特定现象的现实状态,或者能预测对象的未来状态,或者能提供处理对象的最优决策或控制。 数学建模方法 一般来说数学建模方法大体上可分为机理分析和测试分析两种。 机理分析是根据客观事物特征的认识,找出反应内部机理的数量规律,建立的数学模型常有明确的物理意义。 测试分析是将研究对象看作一个"黑箱"(意即内部机理看不清楚),通过对测量数据的统计分析,找出与数据拟合得最好的模型。 数学建模的一般步骤 (1)模型准备:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息。 (2)模型假设:为了利用数学方法,通常要对问题做出必要的、合理的假设,使问题的主要特征凸现出来,忽略问题的次要方面。 (3)模型构成:根据所做的假设以及事物之间的联系,构造各种量之间的关系,把问题化为数学问题,注意要尽量采用简单的数学工具。 4)模型求解:利用已知的数学方法来求解上一步所得到的数学问题,此时往往还要作出进一步的简化或假设。 (5)模型分析:对所得到的解答进行分析,特别要注意当数据变化时所得结果是否稳定。 (6)模型检验:分析所得结果的实际意义,与实际情况进行比较,看是否符合实际,如果不够理想,应该修改、补充假设,或重新建模,不断完善。 (7)模型应用:所建立的模型必须在实际应用中才能产生效益,在应用中不断改进和完善。 2. 单位时间总费用 k T r k r c T c T c 2)()(21-+= ,使)(T c 达到最小的最优周期 )(2T 21*r k r c k c -= 。当k r <<时,r c c 21*2T = ,相当于不考虑生产的情况;当k r ≈时,∞→*T ,因为产量被售量抵消,无法形成贮存量。 3. t ——时刻; )(t x ——t 时刻的人口数量; r ——人口的固有增长率; m x ——自然资源和环境条件所能容纳的最大人口数量;

商品期货交易数学建模

2014中南大学数学建模模拟竞赛第一轮 承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):中南大学 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期: 2014 年 8 月 11 日赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

商品期货交易策略 摘要 我国的期货发展历史已有十多年,吸引了大量交易者的参与,如何从中获取相对稳定的收益成为交易者非常关注的问题。本文旨在为交易者谋得最大盈利,通过数据分析,找到影响价格因素,对价格波动进行分类并预测,从而建立交易模型。 本文通过对数据抽样,拟合检验,建立主成分分析模型(模型1),找到影响价格因素指标,回归分析检验结果;再建立聚类分析模型(模型2),对波动方式进行分类,并建立小波神经网络预测模型(模型3)对价格趋势作出预测,最后建立期货获利交易模型(模型4),使交易者获得最大盈利。 模型1:主成分分析模型 由于对价格有影响的因素众多,而由SPSS得到的散点图和相关系数表可发现,成交价与B1价、S1价和日期有极其显著的关系,但许多变量之间可能存在信息上的重叠。故选用了主成分分析模型,进行贡献率的判定。利用SPSS软件,将数据标准化(数据见附件1),并获得相关系数表和特征方程,提取特征值大于1的前4 个主成分,通过计算可得到每个主成分前的系数,即特征向量。计算可得出主成分表达式。最后可由主成分综合模型中根据每个因素的贡献率判定对价格的影响因素。最后利用MatlabR2012a 软件进行回归分析检验。 模型2:聚类分析模型 为找到不同波动方式的类型,先利用MatlabR2012a软件绘出时间-盈利走势图,在此基础上选择盈利最大周期,3个交易日;然后选择R性聚类分析,对变量进行相似性度量,对相似性大的变量进行聚类。利用SPSS软件,将10个相关变量进行组内链接,皮尔逊相关测量区间的相关性方法作出聚类图,共分为8组(表2),最后给出分析得到的交易量、持仓量和价格的关系。 模型3:小波神经网络预测模型 为了对价格的后期走势作出预测,按交易者的投资来看必然是短期预测,故采用精确度较高的小波神经网络进行预测。利用MatlabR2012a软件,选取3个输入节点,6个隐含层节点和1个输出节点,对9天的数据进行训练,修正,另外10天的数据进行预测,分别反复训练200次和500次,得到预测结果与实际结果高精确度吻合(见图4-5),说明该预测模型合理。 模型4:期货获利交易模型 根据前两问得出价格相关因素和价格的预测,为使交易者盈利最大,建立期货获利交易模型,在原先盈利函数上扣除手续费、保证金,利用线性规划方法,设立约束条件,目标函数为最大盈利,最后利用MatlabR2012a软件进行求解得到月所有日最大收益为515700元。 关键字:主成分分析聚类分析小波神经网络预测期货获利价格波动最大盈利

2015年美国数学建模竞赛第二次模拟赛题

Problem A Warmer Days or Sour Grapes ? The high quality of wines(葡萄酒)produced in the Finger Lakes Region(五指湖区)of upstate (北部)New York is widely known. Proximity(接近)to lakes tempers the climate and makes it more suitable for growing several varieties of premium(独特)grapes: R iesling(雷司令), G ewürztraminer(琼瑶浆), C hardonnay(霞多丽), M erlot(梅洛), P inot Noir(黑比诺), and Cabernet F ranc(品丽珠). (There are many more, but we will restrict(限制)the discussion to these six to simplify(简化)the modeling.) Each variety has its own preferred “average temperature” range but is also different in its susceptibility(感受性)to diseases and ability to withstand(抵抗)short periods of unusually cold temperature. As our local climate changes, the relative suitability of these varieties will be changing as well. A forward-looking winery(酒厂)has hired your team to help with the long-term planning. You will need to recommend a) the proportion(比例)of the total vineyard(葡萄园)to be used for growing each of the above six varieties; b) and when should these changes be implemented (实施)(based on observed temperatures and/or current market prices for each type of wine). Naturally, the winery is interested in maximizing its annual profit. But since the latter (后者)is weather-dependent, it might vary a lot year-to-year. You are also asked to evaluate the trade-offs (权衡)between optimizing the expected/average case versus the worst(-realistic-)scenario(情景). Things to keep in mind: Climate modeling is complicated(复杂)and predicting the rate of “global warming” is a hotly debated area. For the purposes of this problem, assume that the annual average temperature in Ithaca(伊萨卡), NY will increase by no more than 4°C by the end of this century. It is not all about the average temperature – a short snap(临时)of sub- zero(零度)temperature in late Ferburay or early March (after the vines already started getting used to warmer weather) is far more damaging than the same low temperature would be in the middle of the winter. It takes at least 3 years for a newly planted vine to start producing grapes suitable for winemaking. Problem B Outlook of Car-to-Car Tech SAN FRANCISCO -- After more than a decade of research into car-to-car communications, U.S. auto safety regulators took a step forward today by unveiling their plan for requiring cars to have wireless gear that will enable them to warn drivers of danger.

数学建模模拟试题

2012年数学建模竞赛试题 注意事项(请参赛队员详细阅读!) 1. 凯里学院校内数学建模竞赛丁2012年6月29日8: 00至7月 1日20 : 00举行。 2. 参赛队可在A、B两题中任选其中一题,可以使用各种图书资料、网络信息、计算机和软件以及各种实验手段。 3. 答卷论文请提交WORD文档方式的A4纸电子稿。并按下列要求制作。 论文用白色A4纸单面打印;上下左右各留出至少 2.5厘米的贞边距; 从左侧装订。 封面:只需填上所选论文题目(注明A或B)及参赛队序号,其他一律不要。 首页:论文题目、摘要(含模型的主要特点、建模方法和主要结果)。 正文:问题提出、问题分析、模型假设、符号说明、模型建立、模型求 解、计算方法设计和软件实现、模型结果分析和检验、模型优缺点分析等。 4. 论文从第三页开始编写贞码,贞码必须位丁每贞贞脚中部,用阿拉伯数字从“ 1”开始连续编号。 论文题目用三号黑体字、一级标题用四号黑体字,并居中;二级、三 级标题用小四号黑体字,左端对齐(不居中)。论文中其他汉字一律采用 小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。 提请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词), 在整篇论文评阅中占有重要权重,请认真书写(注意篇幅不能超过一页,且无需译成英文)。评阅时将首先根据摘要和论文整体结构及概貌对论文优劣进行初步筛选引用别人的成果或其他公开的资料(包括网上查到的资料)必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出贞码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号]作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号]作者,论文名,杂志名,卷期号:起止贞码,出版年。 参考文献中网上资源的表述方式为: [编号]作者,资源标题,网址,访问时间(年月日)。 5. 竞赛评奖以模型假设的合理性、建模的创造性、结果的正确性、文字表述的活晰程度为主要标准。 6. 答卷(电子稿)务必丁2012年7月1日20:00 —22:00交到凯里学院数学实验室潘东云或雷学红老师处。 凯里学院数学建模领导小组 2012年06月28日

数学建模模拟试题(一)

数学建模模拟试题(一) 一、填空题(每题5分,共20分) 1. 若,, x z z y ∝∝则y 与x 的函数关系是 . 2. 在超级市场的收银台有两条队伍可选择,队1有1m 个顾客,每人都买了1n 件商品,队2有2m 个顾客,每人都买了2n 件商品,假设每个人付款需p 秒,而扫描每件商品需t 秒,则加入较快队1的条件是 . 3. 马尔萨斯与罗捷斯蒂克两个人口增长模型的主要区别是假设了 . 4. 在研究猪的身长与体重关系时,我们通过与已知其相关性质的的弹性梁作 的方法建立了模型. 二、分析判断题(每小题15分,满分30分) 1. 要为一所大学编制全校性选修课程表,有哪些因素应予以考虑?试至少列出5种. 2. 一起交通事故发生3个小时后,警方测得司机血液中酒精的含量是 ),ml /mg (100/56 又过两个小时,含量降为),ml /mg (100/40试判断,当事故发生时,司 机是否违反了酒精含量的规定(不超过80/100)ml /mg (. (提示:不妨设开始时刻为)(,0t C t =表示t 时刻血液中酒精的浓度,则依平衡原理,在时间间隔],[t t t ?+内酒精浓度的改变量为 t t kC t C t t C ?-=-?+)()()( 其中0>k 为比例常数,负号则表示了浓度随时间的推移是递减的.) 三、计算题(每题25分,满分50分) 1. 一个毛纺厂使用羊毛、兔毛和某种纤维生产甲、乙两种混纺毛料,生产一个单位产品甲需要的三种原料依次为3、2、8个单位,产值为580元;生产一个单位产品乙需要的三种原料依次为2、3、5个单位,产值为680元,三种原料在计划期内的供给量依次为90、30和80单位.试建立线性规划模型以求一个生产方案,使得总产值达到最大,并由此回答: (1) 最优生产方案是否具有可选择余地?若有请至少给出两个,否则说明理由. (2) 原材料的利用情况. 2. 三个砖厂321,,A A A 向三个工地321,,B B B 供应红砖.各砖厂的供应量与各工地的需求量以及各砖厂调运红砖到各工地的单价见表.试安排调运方案,使总费用最小?

2019数学建模国赛a题答案

中国大学生数学建模竞赛: 全国大学生数学建模竞赛创办于1992年,每年一届,已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2018年,来自全国34个省/市/区(包括香港、澳门和台湾)及美国和新加坡的1449所院校/校区、42128个队(本科38573队、专科3555队)、超过12万名大学生报名参加本项竞赛。 赛事设置: 竞赛宗旨 创新意识团队精神重在参与公平竞争。 指导原则 指导原则:扩大受益面,保证公平性,推动教学改革,提高竞赛质量,扩大国际交流,促进科学研究。 规模与数据 全国大学生数学建模竞赛是全国高校规模最大的课外科技活动之一。该竞赛每年9月(一般在上旬某个周末的星期五至下周星期一共3天,72小时)举行,竞赛面向全国大专院校的学生,不分专业(但竞赛分本科、专科两组,本科组竞赛所有大学生均可参加,专科组竞赛只有专科生(包括高职、高专生)可以参加)。同学可以向该校教务部门咨询,如有必要也可直接与全国竞赛组委会或各省(市、自治区)赛区组委会联系。 全国大学生数学建模竞赛创办于1992年,每年一届,成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞

赛。2014年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、美国的1338所院校、25347个队(其中本科组22233队、专科组3114队)、7万多名大学生报名参加本项竞赛。 比赛时间 2017年比赛时间是9月14号20:00到9月17号24:00,总共76小时,采取通讯方式比赛,比赛地点在各个高校。比赛时间全国统一的,不可以与老师交流,可以在互联网查阅资料。 同学们在比赛期间应该注意安排时间,以免出现时间不够用的情况。 组委名单 注:第五届专家组任期两年(2010-2011)。2011年底任期届满后,组委会对专家组进行了调整,并决定此后不再对外公布专家组成员名单。 第五届组委会成员名单(2010-2013)及下属专家组成员名单 第四届组委会成员名单及下属专家组成员名单 第一、二、三届组委第一、二、三届组委会成员名单及下属专家组成员名单引各赛区组委会各赛区联系方式列表引 [注1] 各赛区联系人请注意:若本赛区联系e-mail地址发生变化,请通知全国组委会进行修改。 [注2] 全国已成立赛区的有28个省、市、自治区,国内尚未成立赛区的区域组成联合赛区,其他(境外参赛学生)组成国际赛区,共30个赛区。

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

2020全国大学生数学建模竞赛试题

A题炉温曲线 在集成电路板等电子产品生产中,需要将安装有各种电子元件的印刷电路板放置在回焊炉中,通过加热,将电子元件自动焊接到电路板上。在这个生产过程中,让回焊炉的各部分保持工艺要求的温度,对产品质量至关重要。目前,这方面的许多工作是通过实验测试来进行控制和调整的。本题旨在通过机理模型来进行分析研究。 回焊炉内部设置若干个小温区,它们从功能上可分成4个大温区:预热区、恒温区、回流区、冷却区(如图1所示)。电路板两侧搭在传送带上匀速进入炉内进行加热焊接。 图1 回焊炉截面示意图 某回焊炉内有11个小温区及炉前区域和炉后区域(如图1),每个小温区长度为30.5 cm,相邻小温区之间有5 cm的间隙,炉前区域和炉后区域长度均为25 cm。 回焊炉启动后,炉内空气温度会在短时间内达到稳定,此后,回焊炉方可进行焊接工作。炉前区域、炉后区域以及小温区之间的间隙不做特殊的温度控制,其温度与相邻温区的温度有关,各温区边界附近的温度也可能受到相邻温区温度的影响。另外,生产车间的温度保持在25oC。 在设定各温区的温度和传送带的过炉速度后,可以通过温度传感器测试某些位置上焊接区域中心的温度,称之为炉温曲线(即焊接区域中心温度曲线)。附件是某次实验中炉温曲线的数据,各温区设定的温度分别为175oC(小温区1~5)、195oC(小温区6)、235oC(小温区7)、255oC(小温区8~9)及25oC(小温区10~11);传送带的过炉速度为70 cm/min;焊接区域的厚度为0.15 mm。温度传感器在焊接区域中心的温度达到30oC时开始工作,电路板进入回焊炉开始计时。 实际生产时可以通过调节各温区的设定温度和传送带的过炉速度来控制产品质量。在上述实验设定温度的基础上,各小温区设定温度可以进行oC范围内的调整。调整时要求小温区1~5中的温度保持一致,小温区8~9中的温度保持一致,小温区10~11中的温度保持25oC。传送带的过炉速度调节范围为65~100 cm/min。 在回焊炉电路板焊接生产中,炉温曲线应满足一定的要求,称为制程界限(见表1)。 表1 制程界限 界限名称 最低值 最高值

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

SARS传播的数学模型 数学建模全国赛优秀论文

SARS传播的数学模型 (轩辕杨杰整理) 摘要 本文分析了题目所提供的早期SARS传播模型的合理性与实用性,认为该模型可以预测疫情发展的大致趋势,但是存在一定的不足.第一,混淆了累计患病人数与累计确诊人数的概念;第二,借助其他地区数据进行预测,后期预测结果不够准确;第三,模型的参数L、K的设定缺乏依据,具有一定的主观性. 针对早期模型的不足,在系统分析了SARS的传播机理后,把SARS的传播过程划分为:征兆期,爆发期,高峰期和衰退期4个阶段.将每个阶段影响SARS 传播的因素参数化,在传染病SIR模型的基础上,改进得到SARS传播模型.采用离散化的方法对本模型求数值解得到:北京SARS疫情的预测持续时间为106天,预测SARS患者累计2514人,与实际情况比较吻合. 应用SARS传播模型,对隔离时间及隔离措施强度的效果进行分析,得出结论:“早发现,早隔离”能有效减少累计患病人数;“严格隔离”能有效缩短疫情持续时间. 在建立模型的过程中发现,需要认清SARS传播机理,获得真实有效的数据.而题目所提供的累计确诊人数并不等于同期累计患病人数,这给模型的建立带来不小的困难. 本文分析了海外来京旅游人数受SARS的影响,建立时间序列半参数回归模型进行了预测,估算出SARS会对北京入境旅游业造成23.22亿元人民币损失,并预计北京海外旅游人数在10月以前能恢复正常. 最后给当地报刊写了一篇短文,介绍了建立传染病数学模型的重要性.

1.问题的重述 SARS (严重急性呼吸道综合症,俗称:非典型肺炎)的爆发和蔓延使我们认识到,定量地研究传染病的传播规律,为预测和控制传染病蔓延创造条件,具有很高的重要性.现需要做以下工作: (1) 对题目提供的一个早期模型,评价其合理性和实用性. (2) 建立自己的模型,说明优于早期模型的原因;说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够信息的模型,并指出这样做的困难;评价卫生部门采取的措施,如:提前和延后5天采取严格的隔离措施,估计对疫情传播的影响. (3) 根据题目提供的数据建立相应的数学模型,预测SARS 对社会经济的影响. (4) 给当地报刊写一篇通俗短文,说明建立传染病数学模型的重要性. 2.早期模型的分析与评价 题目要求建立SARS 的传播模型,整个工作的关键是建立真正能够预测以及能为预防和控制提供可靠、足够的信息的模型.如何结合可靠、足够这两个要求评价一个模型的合理性和实用性,首先需要明确: 合理性定义 要求模型的建立有根据,预测结果切合实际. 实用性定义 要求模型能全面模拟真实情况,以量化指标指导实际. 所以合理的模型能为预防和控制提供可靠的信息;实用的模型能为预防和控制提供足够的信息. 2.1早期模型简述 早期模型是一个SARS 疫情分析及疫情走势预测的模型, 该模型假定初始时刻的病例数为0N , 平均每病人每天可传染K 个人(K 一般为小数),K 代表某种社会环境下一个病人传染他人的平均概率,与全社会的警觉程度、政府和公众采取的各种措施有关.整个模型的K 值从开始到高峰期间保持不变,高峰期后 10天的范围内K 值逐步被调整到比较小的值,然后又保持不变. 平均每个病人可以直接感染他人的时间为L 天.整个模型的L 一直被定为20.则在L 天之内,病例数目的增长随时间t (单位天)的关系是: t k N t N )1()(0+?= 考虑传染期限L 的作用后,变化将显著偏离指数律,增长速度会放慢.采用半模拟循环计算的办法,把到达L 天的病例从可以引发直接传染的基数中去掉. 2.2早期模型合理性评价 根据早期模型对北京疫情的分析与预测,其先将北京的病例起点定在3月1日,经过大约59天在4月29日左右达到高峰,然后通过拟合起点和4月20日以后的数据定出高峰期以前的K =0.13913.高峰期后的K 值按香港情况变化,即10天范围内K 值逐步被调整到0.0273.L 恒为20.由此画出北京3月1日至5月7日疫情发展趋势拟合图像以及5月7日以后的疫情发展趋势预测图像,如图1.

美国大学生数学建模竞赛赛题翻译

2015年美国大学生数学建模竞赛赛题翻译 2015年美国大学生数学竞赛正在进行,比赛时间为北京时间:2015年2月6日(星期五)上午9点—2月10日上午9点.竞赛以三人(本科生)为一组,在四天时间内,就指定的问题,完成该实际问题的数学建模的全过程,并就问题的重述、简化和假设及其合理性的论述、数学模型的建立和求解(及软件)、检验和改进、模型的优缺点及其可能的应用范围的自我评述等内容写出论文。 2015 MCM/ICM Problems 总计4题,参赛者可从MCM Problem A, MCM Problem B,ICM Problem C orICM Problem D等四道赛题中自由选择。 2015Contest Problems MCM PROBLEMS PROBLEM A: Eradicating Ebola The worldmedical association has announced that theirnewmedicationcould stop Ebola andcurepatients whose disease is not advanced. Build a realistic, sensible, andusefulmodel thatconsiders not onlythespread of the disease,thequantity of themedicine needed,possible feasible delivery systems(sending the medicine to where itis needed), (geographical)locations of delivery,speed of manufacturing of the va ccine ordrug, but also any othercritical factors your team considers necessaryas partof themodel to optimize theeradicationofEbola,orat least its current strain. Inadd ition to your modeling approach for thecontest, prepare a1—2 page non-technical letter for the world medicalassociation touse intheir announcement. 中文翻译: 问题一:根除埃博拉病毒 世界医学协会已经宣布他们的新药物能阻止埃博拉病毒并且可以治愈一些处于非晚期疾病患者。建立一个现实的,合理的并且有用的模型,该模型不仅考虑了疾病的蔓延,需要药物的量,可能可行的输送系统,输送的位置,疫苗或药物的生产速度,而且也要考虑其他重要的因素,诸如你的团队认为有必要作为模型的一部分来进行优化而使埃博拉病毒根除的一些因素,或者至少考虑当前的状态。除了你的用于比赛的建模方法外,为世界医学协会准备一份1-2页的非技术性的信,方便其在公告中使用。 PROBLEMB: Searchingforalost plane Recall the lostMalaysian flight MH370.Build agenericmathematicalmodel that could assist "searchers" in planninga useful search for a lost planefeared to have crashed in open water suchas the Atlantic, Pacific,Indian, Southern,or Arctic Ocean whil eflyingfrom PointA to Point B. Assume that there are no signals fromthe downed plane。Your model should recognize thattherearemany different types of planes forw

数学建模模拟试题及参考答案

《数学建模》模拟试题 一、(02') 人带着猫、鸡、米过河,船除希望要人计划之外,至多能载猫、鸡、米三者之一,而当人不在场时猫要吃鸡、鸡要吃米,设计一个安全过河方案,并使渡河次数尽量地少。 二、(02') 雨滴的速度v 与空气密度ρ、粘滞系数μ和重力加速度g 有关,其中粘滞系数的定义是:运动物体在六题中受的摩擦力与速度梯度和接触面积的乘积成正比,比例系数为粘滞系数,用量纲分析方法给出速度v 的表达式。 三、(03') 要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学,模型讨论是否跑都越快,淋雨量越少。 将人体简化成一个长方体,高m a 5.1=(颈部以下),宽m b 5.0=厚m c 2.0=,设跑步距离 ,1000m d =跑步最大速度s m v m /5=,雨速s m u /4= ,降雨量h cm w /2=,记跑步速度为v ,按以下步骤进行讨论; (1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量 (2)雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,如图1建立总淋雨量与速度v 及参数θ,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算0 30,0==θθ时的总淋雨量。 (3))雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为?,如图2建立总淋雨量与速度v 及参数?,,,,,,w u d c b a 之间的关系,问速度v 多大,总淋雨量最少,计算030=θ时的总淋雨量。 四、(03') 建立铅球掷远模型,不考虑阻力,设铅球初速度为v ,出手高度为h 出手角度为α(与地面夹角),建立投掷距离与α,,h v 的关系式,并在h v ,一定的条件下求最佳出手角度。

相关文档
最新文档