力矩控制器原理与接线

力矩控制器原理与接线
力矩控制器原理与接线

力矩控制器

一.概述

力矩控制器为代替三相自耦变压器,而专门设计的一种先进的全电子化控制装置,能工作在电阻、电感性负载。此控制器广泛应用于五金机械塑料、电线、电缆、绳网、印刷、造纸、纺织、印染、化疑纤、橡绞、电影胶皮等各种机械、机电行业。

与三相自藕调压器相比较,本控制器由于采用了电子调节,无触点磨损,电压调节平衡,起动性能好,本控制器具有体积小、重量轻、效率高、发热小、节约能源(经测定平均节能17%以上),使用寿命长、安装、维修方便。

二.技术参数

1.输入电压:三相交流电压 380V±10%

2.输出电压:三相交流电压 0-380V

3.额定电流:标称电流(面板上标称的电流)

4.输出电压可以无极调节,从而使电机实现无极调速

5、频率50~60HZ。

三.工作环境

1、环境温度:-25℃~+55℃。

2、空气相对湿度:≤85%(20℃±5℃)。

3、无显著冲击震动。

四.工作原理

三相调压器调速控制器主回路采用进口双向可控硅,改变可控硅的开放角大小,就能使电机或其它负载的工作电压从0至380V连续可调,也就实现了平衡地调压调速过程,以满足不同生产的工艺要求。

在可控硅控制电路中采用了先进的集成电路,加入了电

流回馈, 构成一个循环控制系统。既提高了力矩电机的机械性硬度,又改善性能,同时还提高了力矩电机的超载能力,扩大了力矩电机的使用范围。为了使调速过程尽快进入稳定状态,在控制回路中还加入了电压回馈以提高控制器的技术性能。

五.使用方法

1. 接线说明:请严格按以下接线示意图接线:D1、D2、D3三点为

控制器的输出端,接力矩电机;A 、B 、C 、为输入端接三相380V 电源。 N 为零线接口,接零线。 2.旋钮旋至零位。 3.总电源。(指示灯亮)

4.控制开关,调节调速电位器旋钮,使电机达到你所需的速度。

5. 电位器为精密长寿电位器。

六.注意事项

1.严禁输出短路。

2.严禁使用中,负载电流超过过面板标称电流值。 3、严禁零线N 接入电机星点.

4、若控制器出现问题务必请专业人员检修,以免使故障范围扩大.

六.接线图

A B C

D1D2D3A B C

输入 380V

输出 0~380V V 1

U1

W1

W2V 2U2力矩电机

A B C D1D2D3

A B C

输入 380V 输出 0~380V

V 1

U1

W1

W2V 2U2力矩电机

N

力矩电机控制器 工作原理

本控制器为代替三相自耦变压器,而专门设计的一种先进的全电子化控制装置,能工作在电阻、电感性负载。广泛适用于五金机械塑料、电线、电缆、绳网、印刷、造纸、纺织、印染、化疑纤、橡绞、电影胶皮等各种机械、机电行业。 与三相自藕调压器相比较,本控制器由于采用了电子调节,无触点磨损,电压调节平衡,起动性能好,本控制器具有体积小、重量轻、效率高、发热小、节约能源(经测定平均节能17%以上),使用寿命长、安装、维修方便。 二、工作条件: 1、环境温度:-25℃~+55℃。 2、空气相对湿度:≤85%(20℃±5℃)。 3、无显著冲击震动外。 4、工作电压:三相电压交流380V、220V(±10%)。 5、50~60HZ。 三、工作原理: 三相调压器调速控制器主回路采用进口双向可控硅,改变可控制硅的开放角大小,就能使电机或其它负载的工作电压从0至375V连续可调,也就实现了平衡地调压调速过程,以满足不同生产的工艺要求。 在可控硅控制电路中采用了三相同步集成模块,加入了电流正反馈,构成一个闭环控制系统。既提高了力矩电机的机械性硬度,又改善了力矩电机在低电压时的起动性能,同时还提高了力矩电机的过载能力,扩大了力矩电机的使用范围。为了使调速过程尽快进入稳定状态,在控制回路中还加入了电压反馈,以提高控制器的技术性能。 四、使用方法: 接线说明:请严格按以下接线示意图接线,D1、D2、D3三点为控制器的输出端,接力矩电机的电源线柱W1V1U1(Ⅱ型力矩电机必须为Y接法及星型接法,电机中性点W2V2U2必须严格接电源零线N,否则,本控制器无法正常工作或烧毁本装置。) 1、调速旋钮旋至零位。 2、接通总电源,打开控制器开关。(指示灯亮) 3、整好面板上反馈设定按键。(一般不需调节,出厂时已按常规设定好,可适用不同启动电压的力矩电机)。 4、调节调速电位器旋钮,使电机达到你所需的速度。

电机控制线路图大全

电机控制线路图大全 Y-△(星三角)降压启动控制线路-接触器应用接线图 Y-△降压启动适用于正常工作时定子绕组作三角形连接的电动机。由于方法简便且经济,所以使用较普遍,但启动转矩只有全压启动的三分之…,故只适用于空载或轻载启动。 Y-△启动器有OX3-13、Qx3—30、、Qx3—55、QX3—125型等。OX3后丽的数字系指额定电压为380V时,启动器可控制电动机的最大功率值(以kW计)。 OX3—13型Y-△自动启动器的控制线路如图11—11所示。(https://www.360docs.net/doc/3f14962956.html,) 合上电源开关Qs后,按下启动按钮SB2,接触器KM和KMl线圈同时获电吸合,KM和KMl 主触头闭合,电动机接成Y降压启动,与此同时,时间继电器KT的线圈同时获电,I 星形—三角形降压起动控制线路

星形——三角形降压起动控制线路 星形——三角形( Y —△)降压起动是指电动机起动时,把定子绕组接成星形,以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。 Y —△起动只能用于正常运行时为△形接法的电动机。 1.按钮、接触器控制 Y —△降压起动控制线路 图 2.19 ( a )为按钮、接触器控制 Y —△降压起动控制线路。线路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合, KM1 自锁,电动机星形起动,待电动机转速接近额定转速时,按下 SB2 , KM2 断电、 KM3 得电并自锁,电动机转换成三角形全压运行。 2.时间继电器控制 Y —△降压起动控制线路 图 2.19 ( b )为时间继电器自动控制 Y —△降压起动控制线路,电路的工作原理为:按下起动按钮 SB1 , KM1 、 KM2 得电吸合,电动机星形起动,同时 KT 也得电,经延时后时间继电器 KT 常闭触头打开,使得 KM2 断电,常开触头闭合,使得 KM3 得电闭合并自锁,电动机由星形切换成三角形正常运行。 图2定子串电阻降压起动控制线路

PLC控制伺服电机应用实例

PLC控制伺服电机应用实例,写出组成整个系统的PLC模块及外围器件,并附相关程序。 PLC品牌不限。 以松下FP1系列PLC和A4系列伺服驱动为例,编制控制伺服电机定长正、反旋转的PLC程序并设计外围接线图,此方案不采用松下的位置控制模块FPG--PP11\12\21\22等,而是用晶体管输出式的PLC,让其特定输出点给出位置指令脉冲串,直接发送到伺服输入端,此时松下A4伺服工作在位置模式。在PLC 程序中设定伺服电机旋转速度,单位为(rpm),设伺服电机设定为1000个脉冲转一圈。PLC输出脉冲频率=(速度设定值/6)*100(HZ)。假设该伺服系统的驱动直线定位精度为±0.1mm,伺服电机每转一圈滚珠丝杠副移动10mm,伺服电机转一圈需要的脉冲数为1000,故该系统的脉冲当量或者说驱动分辨率为0.01mm(一个丝);PLC输出脉冲数=长度设定值*10。 以上的结论是在伺服电机参数设定完的基础上得出的。也就是说,在计算PLC发出脉冲频率与脉冲前,先根据机械条件,综合考虑精度与速度要求设定好伺服电机的电子齿轮比!大致过程如下: 机械机构确定后,伺服电机转动一圈的行走长度已经固定(如上面所说的10mm),设计要求的定位精度为0.1mm(10个丝)。为了保证此精度,一般情况下是让一个脉冲的行走长度低于0.1mm,如设定一个脉冲的行走长度为如上所述的0.01mm,于是电机转一圈所需要脉冲数即为1000个脉冲。此种设定当电机速度要求为1200转/分时,PLC应该发出的脉冲频率为20K。松下FP1---40T 的PLC的CPU本体可以发脉冲频率为50KHz,完全可以满足要求。 如果电机转动一圈为100mm,设定一个脉冲行走仍然是0.01mm,电机转一圈所需要脉冲数即为10000 个脉冲,电机速度为1200转时所需要脉冲频率就是200K。PLC的CPU输出点工作频率就不够了。需要位置控制专用模块等方式。 有了以上频率与脉冲数的算法就只需应用PLC的相应脉冲指令发出脉冲即可实现控制了。假设使用松下 A4伺服,其工作在位置模式,伺服电机参数设置与接线方式如下: 一、按照伺服电机驱动器说明书上的“位置控制模式控制信号接线图”接线: pin3(PULS1),pin4(PULS2)为脉冲信号端子,PULS1连接直流电源正极(24V电源需串连2K左右的电阻),PULS2连接控制器(如PLC的输出端子)。 pin5(SIGN1),pin6(SIGN2)为控制方向信号端子,SIGN1连接直流电源正极(24V电源需串连2K左右的电阻),SIGN2连接控制器(如PLC的输出端子)。当此端子接收信号变化时,伺服电机的运转方向改变。实际运转方向由伺服电机驱动器的P41,P42这两个参数控制,pin7(com+)与外接24V直流电源的正极相连。pin29(SRV-0N),伺服使能信号,此端子与外接24V直流电源的负极相连,则伺服电机进入使能状态,通俗地讲就是伺服电机已经准备好,接收脉冲即可以运转。 上面所述的六根线连接完毕(电源、编码器、电机线当然不能忘),伺服电机即可根据控制器发出的脉冲与方向信号运转。其他的信号端子,如伺服报警、偏差计数清零、定位完成等可根据您的要求接入控制器构成更完善的控制系统。

交流力矩电机控制器的电路原理与检修

交流力矩电机控制器的电路原理与检修 交流力矩电机控制器的电路原理与检修 一、交流力矩电动机性能简述 力矩电动机,又分为交流力矩电动机和直流力矩电动机,在电路结构上与一般的交、直流电动机相类似,但在性能上有所不同。本文以交流力矩电机控制器的原理和检修内容为重点。交流力矩电动机转子的电阻比变通交流电动机的转子电阻大,其机械特性比较软。对力矩电机的使用所注重的技术参数主要是额定堵转电压、额定堵转电流和额定堵转电流下的堵转时间等。 力矩电动机是一种具有软机械特性和宽调速范围的特种电机,允许较大的转差率,电机轴不是像变通电机一样以恒功率输出动力而是近似以恒定力矩输出动力。当负载增加时,电机转速能随之降低,而输出力矩增加;力矩电动机的堵转电流小,能承受一定时间的堵转运行。配以晶闸管控制装置,可进行调压调速,调整范围达1:4;力矩电动机适用于纺织、电线电缆、金属加工、造纸、橡胶塑料以及印刷机械等工业领域,其机械特性特别适用于卷绕、开卷、堵转和调速等工艺流程。 早期对力矩电动机的调速和出力控制,是采用大功率三相自耦变压器,来调节力矩电机的电源电压,电力电子技术相对成熟后,逐步过渡到采用晶闸管调速(调压)电路和变频器调速(调频),实施对力矩电动机的调速控制。交流力矩电动机的晶闸管调速控制器,与一般的三相晶闸管调压电路(主电路结构和控制电路)是相同的,只不过驱动负载有所不同而已。有的设备在控制环节引入电流或电压负反馈闭环控制,改善了起动和运行性能,也提高了机械特性硬度。 2 、一款最简单的力矩电动机控制器 _此主题相关图片如下,点击图片看大图: 图1 HDY-2型力矩电机控制器 这是一款适用于额定堵转电流12A以下小功率三相力矩电动机的控制器电路,整机电路安装于一个小型机壳内,机器留有6个接线端子,三个为电源进线端子,三个为电机接线端子。主电路采用双向晶闸管BT139(三端塑封元件),工作电流16A,耐压600V,触发电流≤50mA。两只双向晶闸管串接于L1、L2电源支路,L3直通,省去了一只双向晶闸管。因为三相电源经负载互成回路,只对两相电源进行移相调压控制,即改变了三相输出电压。移相触发电路和调光台灯的控制思路相同,用R、C积分电路与双向触发二极管相配合,提供双向晶闸管每个电网周期内正、负半波的两个触发电流,实现交流调压。470k电位器为双联电位器,调节时使两只双向晶闸管的控制角同步变化,使输出三相电压平衡。 〔故障实例1〕HDY-2型力矩电机控制器,工作不正常,检测为输出电压不平衡。U、W之间输出电压为380V。检查发现L1电源所接双向晶闸管BT139击穿损坏,失去调压功能,导致三相输出电压不平衡。 晶闸管调压电路中,发现1000V以下截止电压的器件,较易发生击穿损坏故障。BT139为截止电压600V的管子,处于交流电压峰值500V的边缘,虽然实际上有200V的截止电压余量(标定击穿电压值尚有100V富裕量),若用于优质电网(未被污染,电压呈较好的正弦波),一般没有问题。但问题是现在的电网,因非线性整流设备的大量安装和应用,好多地区电网波形畸变已相当严重,这使得晶闸管调压设备的运行(电气)环境变得恶劣,设备本身的应用,又反过来加剧了电网的劣变。用户和供应厂商,往往又出于成本的考虑,省掉了安装该类设备必须追加的输入电抗器!所以导致晶闸管调压设备的高故障率,表现为耐电压稍低的晶闸管模块屡被击穿! 遇有此类故障,须尽量更换反向耐压值高的管子。对于屡损晶闸管的场所,应追加输入电抗器,以改善电网供电质量。 更换损坏晶闸管器件,在三相供电回路中串入了3只由XD1-25扼流圈代作的三相电抗器,交付用户使用后,晶闸管击穿的故障率大为降低。

力矩控制器原理与接线

力矩控制器 一.概述 力矩控制器为代替三相自耦变压器,而专门设计的一种先进的全电子化控制装置,能工作在电阻、电感性负载。此控制器广泛应用于五金机械塑料、电线、电缆、绳网、印刷、造纸、纺织、印染、化疑纤、橡绞、电影胶皮等各种机械、机电行业。 与三相自藕调压器相比较,本控制器由于采用了电子调节,无触点磨损,电压调节平衡,起动性能好,本控制器具有体积小、重量轻、效率高、发热小、节约能源(经测定平均节能17%以上),使用寿命长、安装、维修方便。 二.技术参数 1.输入电压:三相交流电压 380V±10% 2.输出电压:三相交流电压 0-380V 3.额定电流:标称电流(面板上标称的电流) 4.输出电压可以无极调节,从而使电机实现无极调速 5、频率50~60HZ。 三.工作环境 1、环境温度:-25℃~+55℃。 2、空气相对湿度:≤85%(20℃±5℃)。 3、无显著冲击震动。 四.工作原理 三相调压器调速控制器主回路采用进口双向可控硅,改变可控硅的开放角大小,就能使电机或其它负载的工作电压从0至380V连续可调,也就实现了平衡地调压调速过程,以满足不同生产的工艺要求。 在可控硅控制电路中采用了先进的集成电路,加入了电

流回馈, 构成一个循环控制系统。既提高了力矩电机的机械性硬度,又改善性能,同时还提高了力矩电机的超载能力,扩大了力矩电机的使用范围。为了使调速过程尽快进入稳定状态,在控制回路中还加入了电压回馈以提高控制器的技术性能。 五.使用方法 1. 接线说明:请严格按以下接线示意图接线:D1、D2、D3三点为 控制器的输出端,接力矩电机;A 、B 、C 、为输入端接三相380V 电源。 N 为零线接口,接零线。 2.旋钮旋至零位。 3.总电源。(指示灯亮) 4.控制开关,调节调速电位器旋钮,使电机达到你所需的速度。 5. 电位器为精密长寿电位器。 六.注意事项 1.严禁输出短路。 2.严禁使用中,负载电流超过过面板标称电流值。 3、严禁零线N 接入电机星点. 4、若控制器出现问题务必请专业人员检修,以免使故障范围扩大. 六.接线图 A B C D1D2D3A B C 输入 380V 输出 0~380V V 1 U1 W1 W2V 2U2力矩电机 A B C D1D2D3 A B C 输入 380V 输出 0~380V V 1 U1 W1 W2V 2U2力矩电机 N

伺服电机驱动控制器DOC

目录 一、伺服驱动概述 (1) 二、本产品特性 (2) 三、电路原理图及PCB版图 (4) 四、电路功能模块分析 (4) 五、焊接(附元件清单) (14)

一.伺服驱动概述 1. 伺服电机的概念 伺服电机是在伺服系统中控制机械元件运转的发动机,作为一种执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出,是一种补助马达间接变速装置。伺服电机是可以连续旋转的电-机械转换器,直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。 2.伺服电机分类 普通直流伺服电动机 直流伺服电机低惯量直流伺服电动机 直流力矩电动机 3. 控制系统对伺服电动机的基本要求 宽广的调速范围 机械特性和调节特性均为线性 无“自转”现象 快速响应 控制功率小、重量轻、体积小等。 4. 直流伺服电机的基本特性 (1)机械特性在输入的电枢电压Ua保持不变时,电机的转速n随电磁转矩M变化而变化的规律,称直流电机的机械特性 (2)调节特性直流电机在一定的电磁转矩M(或负载转矩)下电机的稳态转速n随电枢的控制电压Ua变化而变化的规律,被称为直流电机的调节特性 (3)动态特性从原来的稳定状态到新的稳定状态,存在一个过渡过程,这就是直流电机的动态特性。 5. 直流伺服电机的驱动原理 伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm 直流伺服电机分为有刷和无刷电机。有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。因此它可以用于对成本敏感的普通工业和民用场合。无刷直流伺服电机电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。电机免维护不存在碳刷损耗的情况,效率很高,运行温度低噪音小,电磁辐射很小,长寿命,可用于各种环境

电动车无刷控制器电路图(高清)

今以应用最广泛的以PIC16F72为智能控制中心,350W的整机电路为例,整机电路如图1: (原文件名:1.gif) 图1:350W整机电路图 整机电路看起来很复杂,我们将其简化成框图再看看: (原文件名:2.gif) 图2:电路框图

电路大体上可以分成五部分: 一、电源稳压,供应部分; 二、信号输入与预处理部分; 三、智能信号处理,控制部分; 四、驱动控制信号预处理部分; 五、功率驱动开关部分。 下面我们先来看看此电路最核心的部分:PIC16F72组成的单片机智能处理、控制部分,因为其他电路都是为其服务或被其控制,弄清楚这部分,其它电路就比 较容易明白。 (原文件名:3.gif)

图3:PIC16F72在控制器中的各引脚应用图 我们先来简单介绍一下PIC16F72的外部资源:该单片机有28个引脚,去掉电源、复位、振荡器等,共有22个可复用的IO口,其中第13脚是CCP1输出口,可输出最大分辨率达10BIT的可调PWM信号,另有AN0-AN4共5路AD模数转换输入口,可提供检测外部电路的电压,一个外部中断输入脚,可处理突发事件。内部软件资源我们在软件部分讲解,这里并不需要很关心。 各引脚应用如下: 1:MCLR复位/烧写高压输入两用口 2:模拟量输入口:放大后的电流信号输入口,单片机将此信号进行A-D转换后经过运算来控制PWM的输出,使电流不致过大而烧毁功率管。正常运转时电压应在0-1.5V左右 3:模拟量输入口:电源电压经分压后的输入口,单片机将此信号进行A-D转换后判断电池电压是否过低,如果低则切断输出以保护电池,避免电池因过放电而损坏。正常时电压应在3V以上 4:模拟量输入口:线性霍尔组成的手柄调速电压输入口,单片机根据此电压高低来控制输出给电机的总功率,从而达到调整速度的目的。 5:模拟/数字量输入口:刹车信号电压输入口。可以使用AD转换器判断,或根据电平高低判断,平时该脚为高电平,当有刹车信号输入时,该脚变成低电平,单片机收到该信号后切断给电机的供电,以减少不必要的损耗。 6:数字量输入口:1+1助力脉冲信号输入口,当骑行者踏动踏板使车前行时,该口会收到齿轮传感器发出的脉冲信号,该信号被单片机接收到后会给电机输出一定功率以帮助骑行者更轻松地往前走。 7:模拟/数字量输入口:由于电机的位置传感器排列方法不同,该口的电平高低决定适合于哪种电机,目前市场上常见的有所谓120°和60°排列的电机。有的控制器还可以根据该口的电压高低来控制起动时电流的大小,以适合不同的力度需求。 8:单片机电源地。 9:单片机外接振荡器输入脚。 10:单片机外接振荡器反馈输出脚。 11:数字输入口:功能开关1 12:数字输入口:功能开关2 13:数字输出口:PWM调制信号输出脚,速度或电流由其输出的脉冲占空比宽度控制。 14:数字输入口:功能开关3 15、16、17:数字输入口:电机转子位置传感器信号输入口,单片机根据其信号变化决定让电机的相应绕组通电,从而使电机始终向需要的方向转动。这个信

《直流力矩电机》

永磁式直流力矩电动机 1.概述 永磁式直流力矩电动机是一种特殊的控制电机,是作为高精度伺服系统的执行元件,适应大扭矩、直接驱动系统,安装空间又很紧凑的场合而特殊设计的控制电机。 实际上,许多自动控制系统控制对象的运动速度相对是比较低的,比如:地面搜索雷达天线的控制系统;陀螺平台的稳定系统;单晶炉的旋转系统;精密拉丝系统等等,在这些控制系统中如果采用齿轮减速驱动,将会大大降低系统的精度,增加系统的惯量和反应时间,加大传动噪声。如果采用力矩电机组成的直接驱动系统,就能够在很宽的范围内达到低速平稳运行,大大提高系统的精度,降低系统的噪声。还有一些负载运行在很低的速度,接近堵转状态,或是负载轴端要加一定的制动反力矩,这些场合,都适合采用力矩电机。 2.性能特点 永磁式直流力矩电动机的性能有以下特点: 2.1高的转矩惯量比 一方面力矩电机设计成在一定体积下输出尽可能大的转矩,另一方面,实现无齿轮传动,从负载轴端看,折算到负载轴上转矩与惯量之比比齿轮传动大一个齿轮传动比的倍数,使系统加速能力大大增加。 2.2高的藕合刚度 力矩电机直接装置于负载轴或轮毂上,没有齿隙,没有弹性变形,传动链短,使系统伺服刚度得以提高。 2.3快的响应速度 力矩电机具有高转矩惯量比,使电机机械时间常数比较小,同时,电气时间常数也很小,保证了在宽广运行速度下都能快速响应,大大提高系统的硬度和品质。 2.4高的速度和位置分辩率 与齿轮或液压传动系统相比,没有齿隙引起的零点死区,减少了传动链 中传动部件的非线性因素,使系统的分辩率仅取决于误差检测元件的精度。 2.5高线性度

转矩的增长正比于输入电流,不随速度和角位置而变化,转矩~电流 特性基本通过零点,非线性死区很小。 2.6结构紧凑 典型的力矩电机设计成分装式的薄环形状(由定子、转子、电刷架三大 件组成),安装时占用较小的空间,尤其在对轴向尺寸、体积、重量要求严格的场合,具有较大的结构适应性和灵活性。 3. 性能指标说明 3.1峰值堵转转矩 电机受磁钢祛磁条件限制及设计中考虑最佳性能时,施加峰值电流电机处于瞬间堵转状态,此时输出的转矩为峰值堵转转矩。 3.2峰值堵转电流 对应峰值堵转转矩时输入的最大电流。 3.3峰值堵转电压 对应于产生峰值堵转电流时的电枢电压。 3.4连续堵转转矩 电机受发热、散热条件及电机绝缘等级条件限制,允许的长期堵转输出的转矩。 3.5连续堵转电流 对应连续堵转转矩时施加的电流。 3.6连续堵转电压 对应于产生连续堵转电流时的电枢电压。 3.7最大空载转速 力矩电机在空载时加以峰值堵转电压所达到的稳定速度。 4.电动机的工作特性 永磁式直流力矩电动机的工作特性见下图:

电动汽车电机控制器原理

电动汽车电机控制器 一、电机控制器的概述 根据GB/T 18488.1-2001《电动汽车用电机及其控制器技术条件》对电机控制器的定义,电机控制器就是控制主牵引电源与电机之间能量传输的装置、是由外界控制信号接口电路、电机控制电路和驱动电路组成。 电机、驱动器和电机控制器作为电动汽车的主要部件,在电动汽车整车系统中起着非常重要的作用,其相关领域的研究具有重要的理论意义和现实意义。 二、电机控制器的原理 图1汽车电机控制器原理图 电机控制器作为整个制动系统的控制中心,它由逆变器和控制器两部分组成。逆变器接收电池输送过来的直流电电能,逆变成三相交流电给汽车电机提供电源。控制器接受电机转速等信号反馈到仪表,当发生制动或者加速行为时,控制器控制变频器频率的升降,从而达到加速或者减速的目的。 三、电机控制器的分类 1、直流电机驱动系统 电机控制器一般采用脉宽调制(PWM)斩波控制方式,控制技术简单、成熟、成本低,但效率低、体积大等缺点。 2、交流感应电机驱动系统 电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速,采用矢量控制或直接转矩控制策略实现电机转矩控制的快速响应。

3、交流永磁电机驱动系统 包括正弦波永磁同步电机驱动系统和梯形波无刷直流电机驱动系统,其中正弦波永磁同步电机控制器采用PWM方式实现高压直流到三相交流的电源变换,采用变频调速方式实现电机调速;梯形波无刷直流电机控制通常采用“弱磁调速”方式实现电机的控制。由于正弦波永磁同步电机驱动系统低速转矩脉动小且高速恒功率区调速更稳定,因此比梯形波无刷直流电机驰动系统具有更好的应用前景。 4、开关磁阻电机驱动系统 开关磁阻电机驱动系统的电机控制一般采用模糊滑模控制方法。目前纯电动汽车所用电机均为永磁同步电机,交流永磁电机采用稀土永磁体励磁,与感应电机相比不需要励磁电路,具有效率高、功率密度大、控制精度高、转矩脉动小等特点。 四、电动控制器的相关术语 1、额定功率:在额定条件下的输出功率。 2、峰值功率:在规定的持续时间内,电机允许的最大输出功率。 3、额定转速:额定功率下电机的转速。 4、最高工作转速:相应于电动汽车最高设计车速的电机转速。 5、额定转矩:电机在额定功率和额定转速下的输出转矩。 6、峰值转矩:电机在规定的持续时间内允许输出的最大转矩。 7、电机及控制器整体效率:电机转轴输出功率除以控制器输入功率再乘以100%。 扩展阅读: WP4000变频功率分析仪应用于电动汽车电机试验 现行的电动汽车相关标准大全 如何选择电动汽车电池监测系统 hb

三相力矩电机控制器自动力矩补偿

AX-LJ12A三相全桥力矩电机控制器使用手册V1.31 一,概述 AX-LJ系列力矩电机控制器,是适应力矩电机/三相风机的专用控制器,以下简称控制器。该控制器采用全数字技术,接入三相电相序自适应。控制器采用6只德国原装进口的可控硅/可控硅模块,进行精密全桥移相,6只精密脉冲变压器隔离SPWM触发,节能环保。内部采用高效能的双CPU,闭环PID力矩数字补偿算法,多任务协同处理,实现了对电机的精密控制。控制器具有深度的电压负反馈功能,输入三相电缺项、过温度、过电流、报警保护功能。可长时间带负载连续运行。控制器设计新颖,数码管全数字显示,可实现平滑无极恒力矩调速,三相输出电压平衡稳定,电压调节平滑,驱动电机软具有启动功能,性价比高。广泛应用于,冶金、纺织、塑料、电线电缆、造纸、包装等驱动恒张力收卷/调速设备以及三相风机的调速等行业。 二,技术指标 01,输入电源:三相AC380V/50Hz; 02,输出电机电压范围:10V(86V)—-370V; 03,额定工作电流AX-LJ12A=12A,输出最大瞬间电流:AX-LJ12A=20A; 04,三相不平衡:≤3%; 05,输出电压精度:>98%; 06,适配力矩电机:10N.m—-60N.m; 07,环境温度:-10℃---+40℃; 08,相对湿度:≤85%,无结露; 09,偿间隔范围1-9分钟; 10,补偿数据范围0.1%-9.9%; 11,累计补偿数据1-9999,该数据可设定保存或者不保存; 12,电位器设定范围0%-100%回差1% 三,产品特点 1,控制方式:多功能键盘+手动精密电位器+PID自动力矩补偿; 2,触发方式:三相六管全桥双脉冲; 3,反馈方式:全电压2F/2V-1042.6,霍尔20A/20MA-1014.3; 4,散热方式:电子铝+强制风冷40*40*26; 5,检测方式:缺相、过流、高温报警保护; 6,运行方式:锁相环技术相序自适应功能; 7,外部控制:有外部紧急停止功能; 8,面板控制:有运行与暂停功能,暂停时自动补偿时间暂停。 三,控制器面板与使用说明

无刷电机控制器基本原理

无刷电机控制器基本原理 电动车采用的电机分有刷电机和无刷电机两种,由于无刷电机具有噪声低、寿命长的特点,因而在电动车中获得比较广泛应用。无刷电机的控制器要比有刷电机控制器复杂得多,在维修上有一定的难度,因此,本文从无刷控制器的原理入手介绍维修要点,以期对广大维修爱好者有所帮助。 基本原理 电动车无刷控制器主要由单片机主控电路、功率管前级驱动电路、电子换向器、霍尔信号检测电路、转把信号电路、欠电检测电路、限流/过流检测电路、刹车信号电路、限速电路、电源电路等部分组成,其原理框图如图1所示,下面介绍主要电路的工作原理。 1. 电子换向器 无刷电机与有刷电机的根本区别就在于无刷电机用电子换向器代替了有刷电机的机械换向器,因而控制方法也就大不相同,复杂程度明显提高。在无刷电机控制器中,用6个功率MOSFET管组成电子换向器,其结构如图2所示。图中MOSFET管VT1、VT4构成无刷电机A相绕组的桥臂,VT3、VT6 构成无刷电机B相绕组的桥臂,VT5、VT2构成无刷电机C相绕组的桥臂,在任何情况,同一桥臂的上下两管不能同时导通,否则要烧坏管子。 6只功率MOSFET管按一定要求顺次导通,就可实现无刷电机A、B、C 三相绕组的轮流通电,完成换相要求,电机正常运转。在电动车无刷电机控制器中,这6只功率管有二二通电方式和三三通电方式的运用,二二通电方式即每一瞬间有两只功率管同时通电,三三通电方式即每一瞬间有三只功率管同时通电。对于二二通电方式,功率管须按VT1、VT2;VT2、VT3;VT3、VT4;VT4、VT5;VT5、VT6;VT6、VT1;VT1、VT2??的通电顺序,电机才能正常运转。对于三三通电方式,功率管须按VT1、VT2、VT3;VT2、VT3、VT4;VT3、VT4、VT5;VT4、VT5、VT6;VT5、VT6、VT1; VT6、VT1、VT2;VT1、VT2 、VT3??的次序通电,电机才能正常运转。

力矩电机控制器工作原理

一、力矩电机控制器工作原理: 力矩电机控制器Y LJ-K-3-F系列是在原YKT-3,LTS系列力矩电机控制器的基础上 改制的一种新型的电子调压(开、闭环)控制装置,主要特点是在线速度变化后,张力仍能保持在所允许的范围内,适用于卷绕产品时的张力基本保持不变,电机性能与卷绕性能协调匹配,因此能代替传统复杂的设备系统,可大大节省投资。是机电一体化力矩电机的理想配套装置。控制器采用可控硅对电机无级调速、电压调节平稳,起动性能好、体积小、重量轻、效率高、解决传统设备维护困难的缺点,延长使用寿命。本控制器有开环、闭环控制两种模式。开环控制有系统简单、调整方便等优点,闭环控制是指系统中由检测传感器,如张力传感器、速度传感器、电流传感器、位移传感器、温度传感器、流量传感器等,将所需控制的物理量转换成电压讯号反馈到控制器中,控制器通过调压方式对这些物理量实现闭环控制。控制器采用GB3797-89及Q/JBHZ2-99标准。 主要技术数据 1、额定电压:三相380V±10%;频率:50Hz或60Hz。 2、输出电压范围:电压从70V到365V。 3、输出最大电流:6、8A、12、22、32、50、80A。 4、输出电压三相偏差:±3%。 5、转矩调节比:10﹕1。 使用条件 1、环境温度:-5℃~+40℃,温度变化率应不大于5℃/h。 2、相对湿度:在40℃时,不超过50%;在20℃以下时,不超过90%,相对湿度的变化率不超过5%/h,且无凝露现象。 3、安装使用地点的海拔高度不超过1000m。 4、控制器在使用环境中,不得有过量的尘埃和足以使电气元器件金属腐蚀的气体。 5、控制器工作时,外部振动频率≦150Hz,振动加速度不得超过5m/s2。 6、交流输入电源 a、电压持续波动范围±10%;短暂波动不超过-10%~+15%; b、频率波动不超过±2%,频率的变化速度不超过±1%/S ; c、三相电源的不平衡度不大于2%; d、波形畸变不超过5%。 工作原理与电路特性: 控制器主要电路采用三相全波Y联接,可任意选择所需要的负载形式,即为三角形或星形(星形负载中线不必联接);与其他类型电路相比这样的电路优点是输出谐波分量低,使电机内部损耗小于任何一种其他类型的电路,则电路效率高,并对邻近通讯电路干扰小,是控制器各种形式主电路中最为理想的一种。 控制器采用进口的双向晶闸管,改变流过电机交流电流的导通角,从而使电机的工作电压从70V~365V连续可调,以适应不同的工作情况;控制电路中采用宽脉冲及光电耦合管来触发主晶闸管,采用自动跟踪控制方法,用三相网路相位同步控制,保证三相输出自动平衡,并通过输出反馈控制,能有效地防止电机在运行过程调压失控;其次对电机起动、关机均采取了控制措施。因此产品性能优良,具有抗干扰能力强,起动性能好,平稳,无电流冲击,运行稳定,可靠等优点。

伺服电机运行控制器的

编号: 审定成绩: 重庆邮电大学移通学院 毕业设计(论文) 设计(论文)题目:伺服电机运行控制器的设计 单位(系别):自动化 学生姓名:武波 专业:电气工程与自动化 班级:05010901 学号:0513090137

指导教师:聂岚 答辩组负责人:徐辉 填表时间:2013年6月 重庆邮电大学移通学院教务处制

摘要 步进电机是最常见的一种电机,作为一种数字伺服执行元件,能与控制芯片相结合成伺服控制系统;具有良好的随动性,能够实现精准控制,在现代控制领域中具有不可替代的作用。步进电机控制系统主要由步进控制器,功率放大器及步进电机等组成。采用单片机控制,用软件代替上述步进控制器,使得线路简单,成本低,可靠性大大增加。软件编程可灵活产生不同类型步进电机励磁序列来控制各种步进电机的运行方式。 本设计首先介绍了步进电机、AT89C52单片机、L297和L298N驱动电路的基本原理与功能;其次,设计步进电机实现起停、转向、速度控制方案;再次,在这些器件功能与特点的基础上,拟出设计思路,构建系统的总体框架;最后利用PROTEL软件绘出电路图,同时写出设计系统的运行流程和相关程序。本设计主要思想是以AT89C52单片机为控制核心,L297和L298N作为驱动芯片。通过单片机内部的定时器改变CP脉冲的频率时间对步进电机的转速控制,实现电机调速与正反转功能,并将电机所处的状态用数码管显示出来。 【关键词】伺服步进电机单片机AT89C52

ABSTRACT Stepper motor is one of the most common motors. As a digital servo actuators, it can be combined with a control chip into the servo control system; with the good follow—up, it can realize the precise control and hold an irreplaceable role in modern control domain. Stepper motor control system is mainly composed of stepping controller, power amplifier and the stepper motor, etc. Controlled by single chip microcomputer, using software instead of the above step controller, makes the circuit simple, low cost and reliability is greatly increased. Software programming can flexibly produce different types of stepper motor excitation sequence to control the operation of various kinds of stepper motor. This design first introduced the principle and function of the stepper motor, AT89C52 singlechip microcomputer, L297 and L298N drive circuit; Second, design the scheme of start-stop, steering and speed, position control of stepper motor; Once again, on the basis of these devices’ functions and characteristics, draw up the design idea and build the system's overall framework; Finally using PROTEL software draw circuit diagram, at the same time write a design system operation process and related procedures. The main idea of the design is based on AT89C52 single chip microcomputer as control core, chip L297 and L298 as a driver. Through single chip microcomputer internal timers to alter the frequency of CP pulses time stepping motor speed control, realizes the motor speed and positive &negative function, and use digital tube to display the motor's state. 【Key words】servo stepper motor singlechip AT89C52

ZCLJ25A型力矩电机控制器使用说明

图<1>安装尺寸 L1L2L3 模块5.1K/2W ZCLJ25A 型力矩电机控制器使用说明 一.简述 本控制器是专为控制力矩电机而设计的一种新型的电子调压装置。控制器采用可控硅控制、电压负反馈控制系统实现电机无级调速,具有电压调节平稳、启动性能好、体积小、重量轻、安装维修方便等特点。广泛应用于包装、印刷、纺织、塑料、造纸、冶金、电线电缆、拉丝等机械设备行业。 二.主要技术指标 1.输出电压范围:AC45V ~370V 2.最大输出电流:25A 3.输出电压精度:>97% 4.三相输出不对称性:≤3% 5.输入控制方式: l)由电位器手动调节输入控制信号 2)DC0~10V 控制信号输入 6.散热方式:风冷强排 三.使用环境 环境温度:-10℃~+40℃ 相对湿度:<90%。 四.外形尺寸及安装方式 安装方式:将控制器平放或侧放于电控柜内,通过四个安装 孔直接安装,控制器与其他装置之间水平方向至少留有5cm 空间,垂直方向与其他部件至少有10cm 空间,以充分散热。 五. 六.接线示意和接线要求: 如图(3),X2的 端子3、4、5接电位器(5.1K Ω/2W) 作为手动控制信号。当外部控制装置的输出0~10V 电压作为控制信号时,由端子6(-)、7(+)输入。X1的端子1、2为220V 的风机电源输入端。图(4)为主控回路接线示意图,X3的端子L1、L2、L3接三相输入,U 、V 、W 接三相输出。 -W L2L3U V L1X3AC380V ( 输入 )AC45V-370V ( 输出 )图<4>图<3> AC220V 风机电源X121 5.1K/2W 电位器 手动设定X254376-+

电动车无刷马达控制器硬件电路详解

电动车无刷马达控制器硬件电路详解 电动车无刷电机是目前最普及的电动车用动力源,无刷电机以其相对有刷电机长寿,免维护的特点得到广泛应用,然而由于其使用直流电而无换向用的电刷,其换向控制相对有刷电机要复杂许多,同时由于电动车负载极不稳定,又使用电池作电源,因此控制器自身的保护及对电机,电源的保护均对控制器提出更多要求。 自电动车用无刷电动机问世以来,其控制器发展分两个阶段:第一阶段为使用专用无刷电动机控制芯片为主组成的纯硬件电路控制器,这种电路较为简单,其中控制芯片的代表是摩托罗拉的MC33035,这个不是这里的主题,所以也不作深入介绍。第二阶段是以MCU为主的控制芯片。这是这篇文章介绍的重点,在MCR版本的设计中,揉和了模拟、数字、大功率MOSFET驱动等等许多重要应用,结合MCU智能化控制,是一个非常有启迪性的设计。 今以应用最广泛的以PIC16F72为智能控制中心,350W的整机电路为例,整机电路如图1: 图1:350W整机电路图 整机电路看起来很复杂,我们将其简化成框图再看看:

图2:电路框图 电路大体上可以分成五部分: 一、电源稳压,供应部分; 二、信号输入与预处理部分; 三、智能信号处理,控制部分; 四、驱动控制信号预处理部分; 五、功率驱动开关部分。 下面我们先来看看此电路最核心的部分:PIC16F72组成的单片机智能处理、控制部分,因为其他电路都是为其服务或被其控制,弄清楚这部分,其它电路就比较容易明白。 图3:PIC16F72在控制器中的各引脚应用图

我们先来简单介绍一下PIC16F72的外部资源:该单片机有28个引脚,去掉电源、复位、振荡器等,共有22个可复用的IO口,其中第13脚是CCP1输出口,可输出最大分辨率达10BIT的可调PWM信号,另有AN0‐AN4共5路AD模数转换输入口,可提供检测外部电路的电压,一个外部中断输入脚,可处理突发事件。内部软件资源我们在软件部分讲解,这里并不需要很关心。 各引脚应用如下: 1:MCLR复位/烧写高压输入两用口 2:模拟量输入口:放大后的电流信号输入口,单片机将此信号进行A‐D转换后经过运算来控制PWM的输出,使电流不致过大而烧毁功率管。正常运转时电压应在0‐1.5V左右 3:模拟量输入口:电源电压经分压后的输入口,单片机将此信号进行A‐D转换后判断电池电压是否过低,如果低则切断输出以保护电池,避免电池因过放电而损坏。正常时电压应在3V以上 4:模拟量输入口:线性霍尔组成的手柄调速电压输入口,单片机根据此电压高低来控制输出给电机的总功率,从而达到调整速度的目的。 5:模拟/数字量输入口:刹车信号电压输入口。可以使用AD转换器判断,或根据电平高低判断,平时该脚为高电平,当有刹车信号输入时,该脚变成低电平,单片机收到该信号后切断给电机的供电,以减少不必要的损耗。 6:数字量输入口:1+1助力脉冲信号输入口,当骑行者踏动踏板使车前行时,该口会收到齿轮传感器发出的脉冲信号,该信号被单片机接收到后会给电机输出一定功率以帮助骑行者更轻松地往前走。 7:模拟/数字量输入口:由于电机的位置传感器排列方法不同,该口的电平高低决定适合于哪种电机,目前市场上常见的有所谓120°和60°排列的电机。有的控制器还可以根据该口的电压高低来控制起动时电流的大小,以适合不同的力度需求。 8:单片机电源地。 9:单片机外接振荡器输入脚。 10:单片机外接振荡器反馈输出脚。 11:数字输入口:功能开关1 12:数字输入口:功能开关2 13:数字输出口:PWM调制信号输出脚,速度或电流由其输出的脉冲占空比宽度控制。 14:数字输入口:功能开关3 15、16、17:数字输入口:电机转子位置传感器信号输入口,单片机根据其信号变化决定让电机的相应绕组通电,从而使电机始终向需要的方向转动。这个信号上面讲过有120°和60°之分,这个角度实际上是这三个信号的电相位之差,120°就是和三相电一样,每个相位和前面的相位角相差120°。60°就是相差60°。 18:数字输出口:该口控制一个LED指示灯,大部分厂商都将该指示灯用作故障情况显示,当控制器有重大故障时该指示灯闪烁不同的次数表示不同的故障类型以方便生产、维修。 19:单片机电源地。 20:单片机电源正。上限是5.5V。 21:数字输入口:外部中断输入,当电流由于意外原因突然增大而不在控制范围时,该口有低电平脉冲输入。单片机收到此信号时产生中断,关闭电机的输出,从而保护重要器件不致损坏或故障不再扩大。 22:数字输出口:同步续流控制端,当电流比较大时,该口输出低电平,控制其后逻辑电路,使同步续流功能开启。该功能在后面详细讲解。 23‐‐28:数字输出口:是功率管的逻辑开关,单片机根据电机转子位置传感器的信号,由这里输出三相交流信号控制功率MOSFET开关的导通和关闭,使电机正常运转。

松下伺服器接线总结..-共27页

松下伺服电机接线总结 伺服驱动器型号:MDDHT5540 伺服电机型号:MSME152G1H 运动控制卡型号:PCI-1240 1、主电路 工作原理:按下空气开关MCCB后,控制电路L1C、L2C先得电。此时ALM+引脚有输出,ALM回路控制的回路接通,ALM回路的继电器控制的开关ALM 闭合。软件开关通过程序控制主电路的通断,正常运行情况下一直运行。此时只要按下开始按钮ON,电磁接触器线圈主电路瞬间接通,电磁接触器线圈MC得电后,使电磁接触器控制的开关MC闭合,此时即使开始按钮ON断开,由于电路的自锁作用,主电路仍然接通。 2、脉冲发送电路

接线根据: 运动控制卡PCI-1240给出的控制卡功能模块图如下图所示 由图可知,运动控制卡输出脉冲的方式为长线驱动方式。 松电机下伺服使用手册中P3-35(P151)中提到长线驱动接线端子说明如下图 手册P3-18(P134)给出的长线驱动接线方法如下图

3、编码器反馈脉冲接收电路 接线原理:关于利用伺服驱动器输出的ABZ相脉冲计算伺服电机的旋转角度(参考 网址:http://bbs.gongkong1/Details/201910/2019103112034201901-1.shtml)推荐做法:先将OA、OB脉冲四倍频(类似于DSP的QEP计数模块),具体实现的时候只需要记住OA、OB的每个脉冲跳变即可实现四倍频,同时要辩相,一般我们定义OA超前OB为电机旋转正方向,此时脉冲累加,否则为负方向,脉冲累减。知道了脉冲个数就好办了,如果松下伺服输出的脉冲个数为一圈2500个,由于我们四倍频了,故实际到我们这里就应该是10000个没圈,根据这个脉冲你就可以知道电机的相对位置。根据OC信号,你可以知道电机的绝对位置,一般定义OC出现的时刻就是电机转子的零位,因此每次检测到OC出现,就应该认为绝对位置出现,这样可以清除累积误差。根据收到的脉冲数,采用M法测速也可以计算出实际电机的转速。 接线根据: 伺服驱动器说明书P3-32(P148)给出的接线说明

相关文档
最新文档