Erlang-C公式

Erlang-C公式
Erlang-C公式

Erlang-c 公式解析:

公式

M代表现有坐席人员

U代表话务强度

Ec呼叫等待概率

下面将分步骤介绍ErLang.C计算公式,所用例子为:360话务量/半小时,平均每个话务持续4分钟,呼叫中心可用客服人员55个。服务水平的目标应答(等待)时间是15秒。

第1个参数计算话务请求率

λ=average arrival rate (来电频率/密度)=360通/半小时÷1800秒=0.2通/秒

第2个参数平均通话时长

Ts=average call duration(平均每通电话时长)=240秒/通

第3个参数已有座席数

m=numbers of agents(坐席数)=55人

第4个参数流量密度(话务强度)

traffic intensify(话务强度)= λ×TS =0.2通/秒×240秒/通=48秒/秒

为每秒需要处理48秒的工作量,即每秒需要48个人

换另一种工作量算法可能大家更容易懂,即360通电话,每通240秒,那么处理这些电话共需 86400秒,而每个座席员每半小时有1800秒,在最理想化的状态下我们也需要360×240÷1800=48 人

第5个参数计算代理的占用率

代理占用率,也就是代理的使用率,用代理数目除以流量密度来计算。代理占用率在0到1之间。如果它超过了1,就说明当前代理超负荷了。

P= agent occupancy(占用率) = 48人÷55人 =87.3%

接下来就开始代入Erlang C公式

第6个参数计算可能等待的概率

Ec(m,u)参数表示了一个话务不能马上被处理而必须等待的概率。它在

0到l之间,也可以乘以100%后用百分比来表示。

m!即m的阶乘,这里即1*2*3*4*.....*54*55 Excel中可用 =fact(55)

计算

这个呐就是加总从K=0开始一直算到k=m-1为止,这里即算到k=54为止因此得出最终结果0.239

那么该公式Ec(m,u)在Excel中可表达为 =poisson(m,u,false)/(poisson(m,u,false)+(1-P)*poisson(m-1,u,true))

prob(call has to wait)呼叫等待的概率=23.9%

第7个参数计算平均应答速度

求出了Ec(m,u)值以后,可以容易地计算出一个话务的平均等待时长,也就是所指的“平均应答速度”,即ASA。

Tw=average waiting time 平均等待时长=Average Speed of Answer 平均应答速度(ASA)=8.2秒

第8个参数计算服务水平参数

计算出一个话务可以在目标等待时间内被处理的概率。现在给出公式,这个概率要在0到l之间,并且要乘以100%转化为百分比。

t=target answer time(服务水平目标)=15秒(这里为15秒)

e为自然数的底数即2.718281828

在Excel中可用 =exp(1) 计算 Excel中次方用 ^ 计算,这里excel 公式即 =1-0.239*exp(1)^(-0.4375)

W(t)即该服务水平目标下可能的服务水平=84.6%

第9个参数计算需要的坐席数目

如果服务水平参数已经规定好了,并且要计算所需的坐席,那么必须经过反复试验和调整误差。必须要找到可以刚刚好达到所需数目的坐席。

计算方法:

该算法通过贪婪计算得出符合该服务水平的最小座席数目:

A(要求达到的服务水平参数)

{

预测座席数=话务量流量密度;

服务水平参数=B;

for(服务水平参数>要求达到的服务水平参数)

{

预测座席数--

服务水平参数=B;

)

for(服务水平参数<要求达到的服务水平参数)

{

预测座席数++;

服务水平参数=B:

)

return预测座席数;

}

概率统计公式大全(复习重点)

第一章随机事件和概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

期望 方差公式的证明全集

期望与方差的相关公式的证明 -、数学期望的来由 早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平? 用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为100*3/4=75法郎,乙的期望所得值为25法郎。 这个故事里出现了“期望”这个词,数学期望由此而来。 定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑ ∞ =1 <∞时, 则称ξ存在数学期望,并且数学期望为E ξ=∑∞ =1 i i i p a , 如果i i i p a ∑ ∞ =1 =∞,则数学期望不存在。 [] 1 定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定. 二、数学期望的性质 (1)设C 是常数,则E(C )=C 。 (2)若k 是常数,则E (kX )=kE (X )。 (3))E(X )E(X )X E(X 2121+=+。 三、 方差的定义 前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,是随机变量一个重要的数字特征。但是在一些场合下,仅仅知道随机变量取值的

(完整版)纯电动汽车动力性计算公式

XXEV 动力性计算 1 初定部分参数如下 2 最高行驶车速的计算 最高车速的计算式如下: mph h km i i r n V g 5.43/70295 .61487 .02400377.0.377.00 max ==??? =?= (2-1) 式中: n —电机转速(rpm ); r —车轮滚动半径(m ); g i —变速器速比;取五档,等于1; 0i —差速器速比。 所以,能达到的理论最高车速为70km/h 。 3 最大爬坡度的计算 满载时,最大爬坡度可由下式计算得到,即 00max 2.8)015.0487 .08.9180009 .0295.612400arcsin( ).....arcsin( =-?????=-=f r g m i i T d g tq ηα

所以满载时最大爬坡度为tan( m ax α)*100%=14.4%>14%,满足规定要求。 4 电机功率的选型 纯电动汽车的功率全部由电机来提供,所以电机功率的选择须满足汽车的最高车速、最大爬坡度等动力性能的要求。 4.1 以最高设计车速确定电机额定功率 当汽车以最高车速m ax V 匀速行驶时,电机所需提供的功率(kw )计算式为: max 2 max ).15.21....(36001 V V A C f g m P d n +=η (2-1) 式中: η—整车动力传动系统效率η(包括主减速器和驱动电机及控制器的工作效率),取0.86; m —汽车满载质量,取18000kg ; g —重力加速度,取9.8m/s 2; f —滚动阻力系数,取0.016; d C —空气阻力系数,取0.6; A —电动汽车的迎风面积,取2.550×3.200=8.16m 2(原车宽*车身高); m ax V —最高车速,取70km/h 。 把以上相应的数据代入式(2-1)后,可求得该车以最高车速行驶时,电机所需提供的功率(kw ),即 kw 1005.8970)15.217016.86.0016.08.918000(86.036001).15 .21....(360012 max 2 max <kw V V A C f g m P D n =???+???=+?=η (3-2) 4.2满足以10km/h 的车速驶过14%坡度所需电机的峰值功率 将14%坡度转化为角度:018)14.0(tan ==-α。 车辆在14%坡度上以10km/h 的车速行驶时所需的电机峰值功率计算式为:

二手车交易计算公式(很实用)

汽车的折旧率是很高的。最基本、简便方法是采用重置成本法来计算。即被评估车辆的现在市场价格=重置成本×成新率。 重置成本:购买一辆新的与被评估车辆相同相近的车辆所支付的金额(不含装饰)。 成新率:计算方法以使用年限法比较简单。成新率=1-已使用年限/规定使用年限×100%。计算时时间单位统一为月。汽车的规定使用年限为15年。 举例说明:2002年1月份购买的高尔夫1.6/5VAT舒适型,规定使用年限为15年,即180个月。使用3年后即2005年10月进行估价,那么它的成新率=1-(45个月/180个月)×100%=75%,而高尔夫1.6/5VAT舒适型现在的官方报价为14.5万,即为其重置成本。14.5×75%,即10.875万就是计算出的估价了。 当然,这只是考虑了年限后得出的数据。前面说了,汽车的折旧率非常高,所以,在计算成新率时使用更多的是成新率=1-折旧率,而折旧率就需要通过加权计算以下几项:年限折旧率,里程折旧率,故障折旧率,油耗及排污折旧率的综合数值。所以,我们通常情况下可以在刚才10.985万的基础上再乘75%,然后以此价格作为一个参考,也就8万多。 举此例子。你可以根据上面公式计算喽。

二手车车价格计算法则 发布时间:2009年1月40日访问次数:1220 1.理想状态下的“十年折旧法则”:即以一辆车的 使用年限为10年来计算。前三年每年按价值减少15% 来计算,中间4年(第4、5、6、7年)每年按价值减 少10%来计算,最后三年每年按价值减少5%来计算。 目前评估师在计算二手车价值时一般采用此方法。但是 由于理想状态不是时刻存在的,因此也有弊端。 2.设备残值的“54321法则”:假如一部车有效寿 命30万公里,将其分为5段,每段6万公里,每段价 值依序为新车价的5/15、4/15、3/15、2/15、1/15。 假设新车价10万元,已行驶12万公里,那么该车的 价值大体是:10×(3+2+1)÷15=4万元。例如:某 车买入价为10万,行驶2万公里,那么该车的价格可 计算为(4+3+2+1)×10/15=6.7万 然而这种方法也存在不足:二手车交易中,经常出 现里程表人为调低的情况。 如果怀疑里程表不准,还可以这样估算二手车的行驶里程数:非营运车每年2.5万公里左右;营运车(例如出租车)大概在18万公里/年。

牛顿迭代法

牛顿迭代法 李保洋 数学科学学院信息与计算科学学号:060424067 指导老师:苏孟龙 摘要:牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法,即牛顿迭代法.迭代法是一种不断用变量的旧值递推新值的过程.跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“牛顿迭代法”属于近似迭代法,本文主要讨论的是牛顿迭代法,方法本身的发现和演变和修正过程,避免二阶导数计算的Newton迭代法的一个改进,并与中国古代的算法,即盈不足术,与牛顿迭代算法的比较. 关键词:Newton迭代算法;近似求解;收敛阶;数值试验;中国古代数学; 九章算术;Duffing方程;非线性方程;收敛速度;渐进性 0 引言: 迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法或者称为一次解法,即一次性解决问题.迭代法又分为精确迭代和近似迭代.“二分法”和“牛顿迭代法”属于近似迭代法. 迭代算法是用计算机解决问题的一种基本方法.它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值.具体使用迭代法求根时应注意以下两种可能发生的情况: (1)如果方程无解,算法求出的近似根序列就不会收敛,迭代过程会变成死循环,因此在使用迭代算法前应先考察方程是否有解,并在程序中对迭代的次数给予限制. (2)方程虽然有解,但迭代公式选择不当,或迭代的初始近似根选择不合理,也会导致迭代失败. 所以利用迭代算法解决问题,需要做好以下三个方面的工作: 1、确定迭代变量.在可以用迭代算法解决的问题中,至少存在一个直接或间接地不断由旧值递推出新值的变量,这个变量就是迭代变量. 2、建立迭代关系式.所谓迭代关系式,指如何从变量的前一个值推出其下一个值的公式(或关系).迭代关系式的建立是解决迭代问题的关键,通常可以使用递推或倒推的方法来完成. 3、对迭代过程进行控制,在什么时候结束迭代过程?这是编写迭代程序必须考虑的问题.不能让迭代过程无休止地重复执行下去.迭代过程的控制通常可分为两种情况:一种是所需的迭代次数是个确定的值,可以计算出来;另一种是所需的迭代次数无法确定.对于前一种情况,可以构建一个固定次数的循环来实现对迭代过程的控制;对于后一种情况,需要进一步分析出用来结束迭代过程的条件. 1牛顿迭代法:

数学期望的计算及应用

数学期望的计算及应用 数学与应用数学111 第四小组 引言: 我们知道,随机变量的概率分布是随机变量的一种最完整的数学描述,而数学期望又是显现概率分布特性的最重要的特征数字之一。因此,掌握数学期望的计算并应用他来分析和解决实际问题显得尤为重要。在学习了概率论以后,我们计算数学期望一般有三种方法:1.从定义入手,即∑∞ == 1 )(k k k p x X E ;2. 应用随机变量函数的期望公式 ∑∞ ==1 )())((k k k p x q x q E 3. 利用期望的有关性质。但是还是会碰到许多麻烦,这里我们将 介绍一些解决这些难题的简单方法。在现实生活中,许多地方都需要用到数学期望。如果我们可以在学会怎么解决数学期望的计算之后,将数学期望应用到现实生活中。就可以解决许多问题,例如农业上,经济上等多个方面难以解决的难题。 下面就让我们来看看,除了最常用的三种计算方法之外还有哪些可以计算较为棘手的数学期望的方法。 1. 变量分解法 ] 1[ 如果可以把不易求得的随机变量X 分解成若干个随机变量之和,应用)(...)()()...(2121n n X E X E X E E E X E ++=++再进行求解得值, 这种方法就叫做变量分解法。这种方法化解了直接用定义求数学期望时的难点问题,因为每一种结果比较好计算,分开来计算便可以比较简单的获得结果。 例题1 : 从甲地到乙地的旅游车上载有20位旅客,自甲地开出,沿途有10个车站,如到达一个车站没有旅客下车,就不停车,以X 表示停车次数,求E(X).(设每位旅客在各个车站下车是等可能的) 分析 : 汽车沿途10站的停车次数X 所以可能取值为0,1,….,10,如果先求出X 的分布列,再由定义计算E(X),则需要分别计算{X=0},{X=1},…,{X=10}等事件的概率,计算相当麻烦。注意到经过每一站时是否停车,只有两种可能,把这两种结果分别与0,1对应起来,映入随机变量i X 每一种结果的概率较易求得。把X 分解成若干个随机变量i X 之和,然后应用公式)(...)()()...(2121n n X E X E X E E E X E ++=++就能最终求出E(X)。

汽车动力性设计计算公式

汽车动力性设计计算公式 动力性计算公式 变速器各档的速度特性: 0 377 .0i i n r u gi e k ai ??= ( km/h ) ......(1) 其中:k r 为车轮滚动半径,m; 由经验公式:?? ? ???-+=)1(20254.0λb d r k (m) d----轮辋直径,in b----轮胎断面宽度,in λ---轮胎变形系数 e n 为发动机转速,r/min ;0i 为后桥主减速速比; gi i 为变速箱各档速比,)...2,1(p i i =,p 为档位数,(以下同)。 各档牵引力 汽车的牵引力: 错误!未指定书签。 t k gi a tq a ti r i i u T u F η???= )()( ( N ) (2) 其中:)(a tq u T 为对应不同转速(或车速)下发动机输出使用扭矩,N ?m ;t η为传动效率。 汽车的空气阻力: 15 .212 a d w u A C F ??= ( N ) (3) 其中:d C 为空气阻力系数,A 为汽车迎风面积,m 2。 汽车的滚动阻力: f G F a f ?= ( N ) (4)

其中:a G =mg 为满载或空载汽车总重(N),f 为滚动阻尼系数 汽车的行驶阻力之和r F : w f r F F F += ( N ) (5) 注:可画出驱动力与行驶阻尼平衡图 各档功率计算 汽车的发动机功率: 9549 )()(e a tq a ei n u T u P ?= (kw ) (6) 其中: )(a ei u P 为第)...2,1(p i i =档对应不同转速(或车速)下发动机的功率。 汽车的阻力功率: t a w f r u F F P η3600)(+= (kw ) (7) 各档动力因子计算 a w a ti a i G F u F u D -= )()( (8) 各档额定车速按下式计算 .377 .0i i n r u i g c e k i c a = (km/h ) (9) 其中:c e n 为发动机的最高转速; )(a i u D 为第)...2,1(p i i =档对应不同转速(或车速)下的动力因子。 对各档在[0,i c a u .]内寻找a u 使得)(a i u D 达到最大,即为各档的最大动力因子m ax .i D 注:可画出各档动力因子随车速变化的曲线 最高车速计算 当汽车的驱动力与行驶阻力平衡时,车速达到最高。 根据最高档驱动力与行驶阻力平衡方程

汽车冷负荷计算方法

1 汽车空调的计算温度选择 按表1 数据作为微型汽车空调系统的计算温度(即车内平均温度)。从上表我们可以看到,微型车的计算温度在环境温度为35℃时定为27℃,而一般轿车在环境温度38℃时定为24℃~27℃ ,一般大中型客车定为27℃ ~28℃ ,可看到微型车车内温差都比它们要高,这其实是综合了多种因 素并经过很多次试验得出的较经 济合理的车内平均温度。因为对 微型车来说,如果计算温度定得 过高了,乘员就会明显感觉制冷 不足;而如果定得过低,势必需 要加大压缩机排量才能满足,这 样功耗必然增加,并影响到整车 的动力性,否则又很可能无法实 现。 2 计算方法 微型车车内与外界热交换示意图 为便于分析,绘制图1 的微型车热交换 示意图。 计算公式 2.2.1计算方法 考虑到汽车空调工作条件都很恶劣,其 热负荷与行车时间、地点、速度、行使 方向、环境状况以及乘员的数量随时发 生变化,以及要求在短时间内降温等特 殊性,按照常规方法来计算制冷量的计 算公式为: Q 0=kQ T =k(Q B + Q G + Q F +Q P + Q A +Q E + Q S )) ⑴ 式中:Q 0———汽车空调设计制冷量,单位为W ; k ———修正系数,可取k=~,这里取k= Q T ———总得热量,单位为W ; Q B ———通过车体围护结构传入的热量,单位为W ; Q G ———通过各玻璃表面以对流方式传入的热量,单位为W ; Q F ———通过各玻璃表面以辐射方式直接传入的热量,单位为W ; Q P ———乘员散发的热量,单位为W ; Q A ———由通风和密封性泄露进入车内的热量,单位为W ; Q E ———发动机室传入的热量,单位为W ; Q S ———车内电器散发的热量,单位为W ; 从公式中我们也可以看出它是通过分别计算各部分得热量求得总需求制冷量的。 3 计算示例 以五菱之光微型客车空调系统的制冷量计算为例,设计条件和工况见表3: (1)整车乘员7 人,各部分参数见下表:

专用汽车设计常用计算公式汇集

第一章专用汽车的总体设计 1总布置参数的确定 专用汽车的外廓尺寸(总长、总宽和总高) 1.1.1长 ①载货汽车w 12m ②半挂汽车列车w 16.5m 1.1.2宽W 2.5m (不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠性 挡泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等) 1.1.3高W4m (汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm 1.1.5汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm 1.2专用汽车的轴距和轮距 1.2.1轴距 轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。 1.2.2轮距 轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。 1.3专用汽车的轴载质量及其分配 专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。 1.3.1各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》)

1.3.2基本计算公式 A 已知条件 a)底盘整备质量G i b)底盘前轴负荷g i c)底盘后轴负荷Z i d)上装部分质心位置L2 e)上装部分质量G2 f)整车装载质量G3 (含驾驶室乘员) g)装载货物质心位置L3 (水平质心位置) h)轴距 l(h I2) B上装部分轴荷分配计算(力矩方程式) 例图1 1 g2 (前轴负荷)X(I -l i )(例图1)=G2 (上装部分质量)X L2 (质心位置)

条件数学期望及其应用

条件数学期望及其应用 The ways of finding the inverse matrix and it ’s application Abstract :The passage lists the ways of calculating the first type of curvilinear integral,and discusses it ’s application in geometry and in physical. Keywords :Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1 设X 是一个离散型随机变量,取值为},,{21 x x ,分布列为},,{21 p p .又事件A 有0)(>A P ,这时 ,2,1,) ()}({)|(|=?====i A P A x X P A x X P P i i A i 为在事件A 发生条件下X 的条件分布列.如果有 ∞<∑A i i i p x | 则称 A i i i p x A X E |]|[∑=. 为随机变量X 在条件A 下的条件数学期望(简称条件期望). 定义2 设X 是一个连续型随机变量,事件A 有0)(>A P ,且X 在条件A 之

专用汽车设计常用计算公式汇集

专用汽车设计常用计算公 式汇集 Prepared on 24 November 2020

第一章专用汽车的总体设计 1 总布置参数的确定 专用汽车的外廓尺寸(总长、总宽和总高) 1.1.1 长 ①载货汽车≤12m ②半挂汽车列车≤16.5m 1.1.2 宽≤ 2.5m(不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠性挡 泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等) 1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4 车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm 1.1.5 汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm 1.2专用汽车的轴距和轮距 1.2.1 轴距 轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。 1.2.2 轮距 轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。 1.3专用汽车的轴载质量及其分配 专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。 1.3.1 各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》)

1.3.2 基本计算公式 A 已知条件 a ) 底盘整备质量G 1 b ) 底盘前轴负荷g 1 c ) 底盘后轴负荷Z 1 d ) 上装部分质心位置L 2 e ) 上装部分质量G 2 f ) 整车装载质量G 3(含驾驶室乘员) g ) 装载货物质心位置L 3(水平质心位置) h ) 轴距)(21l l l + B 上装部分轴荷分配计算(力矩方程式) g 2(前轴负荷)×(12 1l l +)(例图1)=G 2(上装部分质量)×L 2(质心位置) g 2(前轴负荷)=1222 1)()(l l L G +?上装部分质心位置上装部分质量 则后轴负荷222g G Z -= C 载质量轴荷分配计算 g 3(前轴负荷)×)2 1(1l l +=G 3×L 3(载质量水平质心位置) g 3(载质量前轴负荷)= 1332 1)()(l l L G +?装载货物水平质心位置整车装载质量 例图1

条件数学期望及其应用

实用文档 文案大全条件数学期望及其应用 The ways of finding the inverse matrix and it's application Abstract:The passage lists the ways of calculating the first type of curvilinear integral,and discusses it's application in geometry and in physical. Keywords:Curvilinear integral;Continuous;Integrable; Lateral area. 0前言 在曲线积分中,被积函数可以是标量函数或向量函数.积分的值是路径各 点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和.带有权重是曲线积 分与一般区间上的积分的主要不同点.物理学中的许多公式在推广之后都 是以曲线积分的形式出现.曲线积分是物理学中重要的工具. 1条件数学期望 1.1条件数学期望的定义 定义1设X是一个离散型随机变量,取值为},,{21?xx,分布列 为},,{21?pp.又事件A有0)(?AP,这时 ,2,1,)()}({)|(|??????iAPAxXPAxXPP iiAi

为在事件A发生条件下X的条件分布列.如果有 ???Aiii px| 则称 ??. Aiii pxAXE|]|[ 为随机变量X在条件A下的条件数学期望(简称条件期望). 定义2设X是一个连续型随机变量,事件A有0)(?AP,且X在条件A 之 实用文档 ??????dxAXxf)|(称为随机变量文案大全下的条件分布密度函数为)|(Axf.若 X在条件A下的条件数学期望. 定义3设),(YX是离散型二维随机变量,其取值全体为 },2,1,),,{(??jiyx ii, 联合分布列为 ?,2,1,),,(????jiyYxXPp iiij, 在i yY?的条件下X的条件分布列为?,2,1),|(|????iyYxXPp iiji若 ???jiii px|, 则 ??? jiiii pxyYXE|]|[ 为随机变量X在i yY?条件下的条件数学期望. 定义4 设),(YX是连续型二维随机变量,随机变量X在yY?的条件下的条件密度函数为)|(|yxp YX,若 ??????dxyxpx YX)|(|, 则称

汽车设计计算

3 计算公式 3.1 动力性计算公式 3.1.1 变速器各档的速度特性: ( km/h) (1) 其中:为车轮滚动半径,m; 由经验公式: (m) d----轮辋直径,in b----轮胎断面宽度,in ---轮胎变形系数 为发动机转速,r/min;为后桥主减速速比; 为变速箱各档速比,,为档位数,(以下同)。 3.1.2 各档牵引力 汽车的牵引力: ( N ) (2) 其中:为对应不同转速(或车速)下发动机输出使用扭矩,N?m;为传动效率。 汽车的空气阻力: ( N ) .. (3) 其中:为空气阻力系数,A为汽车迎风面积,m2。 汽车的滚动阻力: ( N ) (4) 其中:=mg 为满载或空载汽车总重(N),为滚动阻尼系数汽车的行驶阻力之和:

( N ) (5) 注:可画出驱动力与行驶阻尼平衡图 3.1.3 各档功率计算 汽车的发动机功率: (kw) ... (6) 其中:为第档对应不同转速(或车速)下发动机的功率。 汽车的阻力功率: (kw) (7) 3.1.4 各档动力因子计算 .... ..(8) 各档额定车速按下式计算 (km/h) ...... (9) 其中:为发动机的最高转速; 为第档对应不同转速(或车速)下的动力因子。 对各档在[0,]内寻找使得达到最大,即为各档的最大动力因子 注:可画出各档动力因子随车速变化的曲线 3.1.5 最高车速计算 当汽车的驱动力与行驶阻力平衡时,车速达到最高。 3.1.5.1 根据最高档驱动力与行驶阻力平衡方程 ,

求解。舍去中的负值或非实数值和超过额定车速的值;若还有剩余的 值,则选择它们中最大的一个为最高车速,否则以最高档额定车速作为最高车速。 额定车速按下式计算 (km/h) (10) 其中:为发动机的最高转速 为最高档传动比 3.1.5.2 附着条件校验 根据驱动形式计算驱动轮的法向反力 驱动形式 4*4全驱: 4*2前驱: 4*2后驱: 其中:为轴距,为满载或空载质心距前轴的距离 若满足下式 其中:——道路附着系数 则表示“超出路面附着能力,达不到计算得出的最高车速值!” 3.1.6 爬坡能力计算 (11) 其中:为第档对应不同转速(或车速)下的爬坡度 3.1.6.1 各档爬坡度在[0,]中对寻优,找到最大值 3.1.6.2 附着条件校验 计算道路附着系数提供的极限爬坡能力 驱动形式 4*4:,计算 4*2 前驱:,计算

专用汽车设计常用计算公式汇集

第一章专用汽车的总体设计 1 总布置参数的确定 1.1 专用汽车的外廓尺寸(总长、总宽和总高) 1.1.1 长 ①载货汽车≤12m ②半挂汽车列车≤16.5m 1.1.2 宽≤ 2.5m(不含后视镜、侧位灯、示廓灯、转向指示灯、可折卸装饰线条、挠 性挡泥板、折叠式踏板、防滑链以及轮胎与地面接触部分的变形等) 1.1.3 高≤4m(汽车处于空载状态,顶窗、换气装置等处于关闭状态) 1.1.4 车外后视镜单侧外伸量不得超出汽车或挂车最大宽度处250mm 1.1.5 汽车的顶窗、换气装置等处于开启状态时不得超出车高300mm 1.2专用汽车的轴距和轮距 1.2.1 轴距 轴距是影响专用汽车基本性能的主要尺寸参数。轴距的长短除影响汽车的总长外,还影响汽车的轴荷分配、装载量、装载面积或容积、最小转弯半径、纵向通过半径等,此外,还影响汽车的操纵性和稳定性等。 1.2.2 轮距 轮距除影响汽车总宽外,还影响汽车的总重、机动性和横向稳定性。 1.3专用汽车的轴载质量及其分配 专用汽车的轴载质量是根据公路运输车辆的法规限值和轮胎负荷能力确定的。 1.3.1 各类专用汽车轴载质量限值(JT701-88《公路工程技术标准》) 1.3.2 基本计算公式 A 已知条件 a)底盘整备质量G 1 b)底盘前轴负荷g 1

c)底盘后轴负荷Z 1 d)上装部分质心位置L 2 e)上装部分质量G 2 f)整车装载质量G 3 (含驾驶室乘员) g)装载货物质心位置L 3 (水平质心位置) h)轴距) ( 2 1 l l l+ B 上装部分轴荷分配计算(力矩方程式) g 2 (前轴负荷)×( 1 2 1 l l+)(例图1)=G2(上装部分质量)×L2(质心位置) g 2 (前轴负荷)= 1 2 2 2 1 ) ( ) ( l l L G + ?上装部分质心位置 上装部分质量 则后轴负荷 2 2 2 g G Z- = C 载质量轴荷分配计算 g 3 (前轴负荷)×) 2 1 ( 1 l l+=G3×L3(载质量水平质心位置) g 3 (载质量前轴负荷)= 1 3 3 2 1 ) ( ) ( l l L G + ?装载货物水平质心位置 整车装载质量 则后轴负 3 3 3 g G Z- = D 空车轴荷分配计算 例图1

牛顿-科茨(Newton-Cotes)公式算法

1、编程实现下科学算法,并举一例应用之。(参考书籍《精通 科学MATLAB计算》,王正林等著,电子工业出版社,2009年) 牛顿-科茨(Newton-Cotes)公式算法: Step 1:判断type类型,1转Step 2,2转Step 3,3转Step 4;否则输出值为0; Step 2:计算科茨公式; Step 3:计算牛顿-科茨六点公式; Step 4:计算牛顿-科茨七点公式; 流程图:

定义function函数如下: function I = NewtonCotes(f,a,b,type) %type = 1 科茨公式 %type = 2 牛顿-科茨六点公式 %type = 3 牛顿-科茨七点公式 I=0; switch type case 1, I=((b-a)/90)*(7*subs(sym(f),findsym(sym(f)),a)+... 32*subs(sym(f),findsym(sym(f)),(3*a+b)/4)+... 12*subs(sym(f),findsym(sym(f)),(a+b)/2)+... 32*subs(sym(f),findsym(sym(f)),(a+3*b)/4)+7*subs(sym(f),findsym(sym(f)),b)); case 2, I=((b-a)/288)*(19*subs(sym(f),findsym(sym(f)),a)+... 75*subs(sym(f),findsym(sym(f)),(4*a+b)/5)+... 50*subs(sym(f),findsym(sym(f)),(3*a+2*b)/5)+... 50*subs(sym(f),findsym(sym(f)),(2*a+3*b)/5)+... 75*subs(sym(f),findsym(sym(f)),(a+4*b)/5)+19*subs(sym(f),findsym(sym(f)),b)); case 3, I=((b-a)/840)*(41*subs(sym(f),findsym(sym(f)),a)+... 216*subs(sym(f),findsym(sym(f)),(5*a+b)/6)+... 27*subs(sym(f),findsym(sym(f)),(2*a+b)/3)+... 272*subs(sym(f),findsym(sym(f)),(a+b)/2)+... 27*subs(sym(f),findsym(sym(f)),(a+2*b)/3)+... 216*subs(sym(f),findsym(sym(f)),(a+5*b)/6)+41*subs(sym(f),findsym(sym(f)),b)); end 运算的输入方式及结果为: >> y=NewtonCotes('sin(x)',0,10,1) y = 3.7613 >> y=NewtonCotes('sin(x)',0,10,2)

概率、期望与方差的计算和性质

概率与统计 知识点一:常见的概率类型与概率计算公式; 类型一:古典概型; 1、 古典概型的基本特点: (1) 基本事件数有限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 事件所包含的基本事件数 总的基本事件数 ; 类型二:几何概型; 1、 几何概型的基本特点: (1) 基本事件数有无限多个; (2) 每个基本事件之间互斥且等可能; 2、 概率计算公式: A 事件发生的概率()A P A = 构成事件的区域长度(或面积或体积或角度) 总的区域长度(或面积或体积或角度) ; 注意: (1) 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如 果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比; (2) 如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪 一个是等可能的; 例如:等腰ABC ?中,角C= 23 π ,则: (1) 若点M 是线段AB 上一点,求使得AM AC ≤的概率; (2) 若射线CA 绕着点C 向射线CB 旋转,且射线CA 与线段AB 始终相交且交点是M ,求 使得AM AC ≤的概率; 解析:第一问中明确M 为AB 上动点,即点M 是在AB 上均匀分布,所以这一问应该是长度 之比,所求概率: 13P =; 而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率:2755 = =1208 P ?; 知识点二:常见的概率计算性质; 类型一:事件间的关系与运算; A+B (和事件):表示A 、B 两个事件至少有一个发生; A B ?(积事件) :表示A 、B 两个事件同时发生; A (对立事件) :表示事件A 的对立事件;

概率统计复习提纲百度文库讲解

《概率论与数理统计》总复习提纲 第一块随机事件及其概率 内容提要 基本内容:随机事件与样本空间,事件的关系与运算,概率的概念和基本性质,古典概率,几何概率,条件概率,与条件概率有关的三个公式,事件的独立性,贝努里试验. 1、随机试验、样本空间与随机事件 (1)随机试验:具有以下三个特点的试验称为随机试验,记为. 1)试验可在相同的条件下重复进行; 2)每次试验的结果具有多种可能性,但试验之前可确知试验的所有可能结果; 3)每次试验前不能确定哪一个结果会出现. (2)样本空间:随机试验的所有可能结果组成的集合称为的样本空间记为Ω;试验的每一个可能结果,即Ω中的元素,称为样本点,记为. (3)随机事件:在一定条件下,可能出现也可能不出现的事件称为随机事件,简称事件;也可表述为事件就是样本空间的子集,必然事件(记为)和不可能事件(记为). 2、事件的关系与运算 (1)包含关系与相等:“事件发生必导致发生”,记为或;且. (2)互不相容性:;互为对立事件且. (3)独立性: (1)设为事件,若有,则称事件与相互独立. 等价于:若 (). (2)多个事件的独立:设是n个事件,如果对任意的,任意的 ,具有等式,称个事件相互独立. 3、事件的运算 (1)和事件(并):“事件与至少有一个发生”,记为. (2)积事件(交):“事件与同时发生”,记为或.

(3)差事件、对立事件(余事件):“事件发生而不发生”,记为称为与的差事件; 称为的对立事件;易知:. 4、事件的运算法则 1) 交换律:,; 2) 结合律:,; 3) 分配律:,; 4) 对偶(De Morgan)律:,, 可推广 5、概率的概念 (1)概率的公理化定义: (2)频率的定义:事件在次重复试验中出现次,则比值称为事件在次重复试验中出现的频率,记为,即. (3)统计概率:称为事件的(统计)概率. 在实际问题中,当很大时,取 (4)古典概率:若试验的基本结果数为有限个,且每个事件发生的可能性相等,

汽车的行驶阻力计算

创作编号:BG7531400019813488897SX 创作者: 别如克* 汽车行驶阻力模拟(包括惯量模拟) 一、 汽车在平坦路面行驶阻力的计算: 汽车在平坦路面行驶时受到滚动阻力、空气阻力和加速阻力,如下式所示: j w f F F F F ++= 1.滚动阻力:f G F a f ?= 其中a G 为汽车总重力,从驱G G G a +=,f 为滚动阻力系数,f 为速度的函数,对于轿车,f 的值可用下式计算 f=0.0116+0.000142V 对于货车,f 的值可用下式计算 f=0.0076+0.000056V 2.空气阻力:15 .212 a D w AV C F = 其中,D C 为空气阻力系数 轿车取 0.4-0.6;货车取 0.8-1.0;大客车取 0.6-0.7; Α为汽车迎风面积:H B A ?=1 Β为汽车的前轮距 Η为汽车的高度

a V 为汽车行驶速度 3. 加速阻力:dt dv g G F a j δ = 其中,δ为汽车旋转质量系数,2 2 022 1r i i I G g r I G g T g f a w a ηδ++ =∑ w I 为车轮的转动惯量,Kg.m 2 f I 为发动机飞轮的转动惯量,Kg.m 2 g i 变速器速比 0i 主减速器速比 T η汽车传动系的机械效率 r 为汽车轮胎的滚动半径 二、 测功机所需加的模拟力: 测功机所需加的模拟力有汽车的从动轮所受到的滚动阻力、汽车所受到的空气阻力以及部分加速阻力(除去滚筒和飞轮的惯量所产生的加速阻力和测功机的摩擦阻力),如下式所示: dt dv r I r I g G F AV C f G F c c w a c tr a D PAU )(15.2122 121-++-+?= 其中, a G 汽车总重 g 重力加速度 1G 汽车从动轮上的载苛 c tr F 测功机损耗 1w I 汽车从动轮转动惯量 c I 滚筒和测功器转子的转动惯量 r 汽车车轮滚动半径

概率论知识点总结归纳

欢迎共阅 概率论知识点总结 第一章随机事件及其概率 第一节基本概念 随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E 表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件 样本点样本空间包含关系相等关系事件的和记为A ∪事件的积事件的差 互斥事件对立事件=?B A (1(2(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C)A(B ∪C)=(A∩B)∪(A∩C)=AB ∪AC (4)对偶律(摩根律):B A B A ?=?B A B A ?=? 第二节事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1 (3)可数可加性: ????n A A A 21两两不相容时 概率的性质:

(1)P(Φ)=0 (2)有限可加性:n A A A ??? 21两两不相容时 当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -= (4)P(A -B)=P(A)-P(AB) (5)P (A ∪B )=P(A)+P(B)-P(AB) 第三节古典概率模型 1、设试验E 是古典概型,其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为 2落在区域把μ相互独立. 总结:1.3.独立性是概率论中的最重要概念之一,应正确理解并应用于概率的计算。 第二章一维随机变量及其分布 第二节分布函数 分布函数:设X 是一个随机变量,x 为一个任意实数,称函数}{)(x X P x F ≤=为X 的分布函数。如果将X 看作数轴上随机点的坐标,那么分布函数F(x)的值就表示X 落在区间],(x -∞内的概率 分布函数的性质:(1)单调不减;(2)右连续;(3)1)(,0)(=+∞=-∞F F 第三节离散型随机变量

汽车的动力性设计计算公式

汽车动力性设计计算公式 3.1 动力性计算公式 3.1.1 变速器各档的速度特性: 377.0i i n r u gi e k ai ??= ( km/h ) (1) 其中:k r 为车轮滚动半径,m; 由经验公式:?? ? ???-+=)1(20254.0λb d r k (m) d----轮辋直径,in b----轮胎断面宽度,in λ---轮胎变形系数 e n 为发动机转速,r/min ;0i 为后桥主减速速比; gi i 为变速箱各档速比,)...2,1(p i i =,p 为档位数,(以下同)。 3.1.2 各档牵引力 汽车的牵引力: 错误!未指定书签。 t k gi a tq a ti r i i u T u F η???= )()( ( N ) (2) 其中:)(a tq u T 为对应不同转速(或车速)下发动机输出使用扭矩,N ?m ;t η为传动效率。 汽车的空气阻力: 15 .212 a d w u A C F ??= ( N ) (3) 其中:d C 为空气阻力系数,A 为汽车迎风面积,m 2。 汽车的滚动阻力:

f G F a f ?= ( N ) ......(4) 其中:a G =m g 为满载或空载汽车总重(N),f 为滚动阻尼系数 汽车的行驶阻力之和r F : w f r F F F += ( N ) (5) 注:可画出驱动力与行驶阻尼平衡图 3.1.3 各档功率计算 汽车的发动机功率: 9549 )()(e a tq a ei n u T u P ?= (kw ) (6) 其中: )(a ei u P 为第)...2,1(p i i =档对应不同转速(或车速)下发动机的功率。 汽车的阻力功率: t a w f r u F F P η3600)(+= (kw ) (7) 3.1.4 各档动力因子计算 a w a ti a i G F u F u D -= )()( (8) 各档额定车速按下式计算 .377 .0i i n r u i g c e k i c a = (km/h ) (9) 其中:c e n 为发动机的最高转速; )(a i u D 为第)...2,1(p i i =档对应不同转速(或车速)下的动力因子。 对各档在[0,i c a u .]内寻找a u 使得)(a i u D 达到最大,即为各档的最大动力因子m ax .i D 注:可画出各档动力因子随车速变化的曲线

相关文档
最新文档