1.生活中的“斐波那契数列”

1.生活中的“斐波那契数列”
1.生活中的“斐波那契数列”

2014年温州市小学数学小课题评比

学校:苍南县钱库小学

成员姓名:陈耀坤吴文强金旭杭

小课题题目:生活中的“斐波那契数列”——台阶中的数学

指导教师:陈瑞帐

生活中的“斐波那契数列”

——台阶中的数学

一、问题的提出

周末爸爸妈妈带我去龙港影城看3D电影,影城的大门口有16级水泥台阶,我发现老年人大多是一级一级地往上走的,年轻的小伙子喜欢两级两级地往上走,小朋友则是一会儿走一级,一会儿又蹦两级……很快,一个念头闪入我的脑海:按照他们这样不同的走法,走完这16级台阶,一共会有多少种不同的走法呢?会不会有什么规律呢?于是,在爸爸妈妈的鼓励下,我决定开始台阶走法的研究。

二、研究过程

1.从最简单的做起

该怎样开展研究呢?我找了两个好朋友,做合作伙伴。我们想起了老师曾经提到过的华罗庚说的话:“善于退,足够地退,退到最原始的而不失重要的地方是学好数学的一个诀窍。”也就是说可以“从最简单的做起”于是我们通过画楼梯入手。

1个台阶(1种)

2个台阶(2种)

3个台阶(3种)

4个台阶(5种)

……

后来我觉得用这种表示方法实在太麻烦了,有没有更简捷的表达方法呢?于是在数学老师的启发下就想到了用最简单的数字来表达:

楼梯台阶数及方法楼梯上法表示

一个台阶(1种)(1)

二个台阶(2种)(1,1)(2)

三个台阶(3种)(1,1,1)(1,2)(2,1)

四个台阶(5种)(1,1,1 ,1)(1,1,2)(1,2,1)(2,1,1)(2,2)五个台阶(8种)(1,1,1,1,1)(1,1,1,2)(1,1,2,1)(1,2,1,1)

(2,1,1,1)(2,1,2)(2,2,1)(1,2,2) 5个台阶有8种走法,那现在求16个台阶有几种走法,该怎么办呢?我们想用这个方法继

续进行进去,我尝试着:

六个台阶(13种) (1,1,1,1,1,1)(1,2,1,1,1)(1,1,2,1,1) (1,1,1,2,1)(1,1,1,1,2)(2,1,1,1,1) (1,1,2,2)(2,1,1,2)(2,1,2,1)(2,2,1,1,) (1,2,2,1)(1,2,1,2)(2,2,2)

七个台阶(21种)(1,1,1,1,1,1,1)(1,1,1,1,1,2)(1,1,1,1,2,1) (1,1,1,2,1,1)(1,1,2,1,1,1)(1,2,1,1,1,1) (2,1,1,1,1,1)(1,1,1,2,2) (1,1,2,2,1) (1,2,2,1,1) (2,2,1,1,1) (1,2,1,1,2) (1,2,1,2,1) (1,2,2,1,1,) (2,1,1,1,2) (2,1,1,2,1) (2,1,2,1,1) (2,2,2,1) (2,2,1,2) (2,1,2,2) (1,2,2,2) ……

2.整理数据,发现规律

这样写下去还是很麻烦,数字会越来越大,而且很容易出现遗漏或重复。有没有规律呢?我们重新整理了数据,发现台阶上法数据之间有关联:

7个台阶的走法=6个台阶的走法+5个台阶的走法,也就是13+8=21。6个台阶的走法=5个台阶的走法+4个台阶的走法,也就是8+5=13……

那走台阶的上法是否有规律?是否是后一个数都是前两个数的和呢?照这样推理,8个台阶数的走法应该是34种呢?我决定用数字拆分来进行验证,发现答案完全符合。

台阶数 1 2 3 4 5 6 7 …… 台阶上法

1

2

3

5

8

13

21

……

3=2+1 5=3+2 8=5+3 13=8+5 21=13+8

台阶数 (8)

9

10 11 12 13 14 15 16 17 18 19

20

…… 台阶上法 …… 34 55 89 144 233 377 610 987 1597 2584 4181 6765 10946

……

于是,很快就算出了走16个台阶的上法共有1597种。

3.深入探究

这种规律是否巧合呢?

若规定每步可以迈一级台阶或二级台阶,最多可以迈三级台阶,从地面走到最上一级台阶,哪又有有多少种不同的走法?

一个台阶(1种)(1)

二个台阶(2种)(1,1)(2)

三个台阶(4种)(1,1,1)(1,2)(2,1)(3)

四个台阶(7种)(1,1,1,1)(1,1,2)(1,2,1)(2,1,1)(2,2)

(1,3)(3,1)

五个台阶(13种)(1,1,1,1,1)(1,1,1,2)(1,1,2,1)(1,2,1,1)

(2,1,1,1)(2,1,2)(2,2,1)(1,2,2)(1,1,3)

(1,3,1)(3,1,1)(2,3)(3,2)

六个台阶(24种)(1,1,1,1,1,1)(1,2,1,1,1)(1,1,2,1,1)

(1,1,1,2,1)(1,1,1,1,2)(2,1,1,1,1)

(1,1,2,2)(2,1,1,2)(2,1,2,1)(2,2,1,1,)

(1,2,2,1)(1,2,1,2)(2,2,2)(1,1,1,3)

(1,1,3,1)(1,3,1,1)(3,1,1,1)(1,2,3)

(1,3,2)(2,1,3)(2,3,1)(3,1,2)(3,2,1)(3,3)

……

我们同样尝试整理这些数据,发现此时台阶上法数据之间也有关联:

台阶数 1 2 3 4 5 6 ……

台阶上法 1 2 4 7 13 24 ……

7=4+2+1 13=7+4+2 24=13+7+4

6个台阶的走法=5个台阶的走法+4个台阶的走法+3个台阶的走法,也就是24=13+7+4。5个台阶的走法=4个台阶的走法+3个台阶的走法+2个台阶的走法,也就是13=7+4+2。

每个数等于前三个数之和。由此依次可以推出7个台阶的走法=6个台阶的走法+5个台阶的走法+4个台阶的走法=47。8个台阶的走法=7个台阶的走法+6个台阶的走法+5个台阶的走法=84

……

4.寻找理论依据: 1).斐波那契数列

莱昂纳多斐波那契(1175-1250)出生于意大利比萨市,是一名闻名于欧洲的数学家,其主要的著作有《算盘书》、《实用几何》和《四艺经》等。在1202年斐波那契提出了一个非常著名的数列,即:

假设一对兔子每隔一个月生一对一雌一雄的小兔子,每对小兔子在两个月以后也开始生一对一雌一雄的小兔子,每月一次,如此下去。年初时兔房里放一对大兔子,问一年以后,兔房内共有多少对兔子?据载首先是由9世纪法国数学家吕卡将级数1,1,2,3,5,8,13,21,34,……命名为斐波那契级数。 这就是非常著名的斐波那契数列问题。

通项公式为:

2).杨辉三角: 1 1 1 2 1 1 3 3 1 1 4 6 4 1 ……

过第一行的“1”向左下方做45度斜线,之后做直线的平行线,将每条直线所过的数加起来,即得一数列1、1、2、3、5、8…… 5.斐波那契数在生活中的应用

我们去图书馆查找,网上搜索,咨询老师,收集到有关斐波那契数在生活中的应用。

台阶数 (8)

9

10 11 12 13 14 15 16 17 18 ……

台阶上法 …… 84 155 286 525 966 1777 3268 6011 11056 20335 3740

2

……

植物中的斐波那契数

(1)细察下列各种花,它们的花瓣的数目具有斐波那契数:延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花。

(2)细察以下花的类似花瓣部分,它们也具有斐波那契数:紫宛、大波斯菊、雏菊。

斐波那契数经常与花瓣的数目相结合:

3………………………百合和蝴蝶花

5………………………蓝花耧斗菜、金凤花、飞燕草

8………………………翠雀花

13………………………金盏草

21………………………紫宛

34,55,89……………雏菊

还可以在植物的叶、枝、茎等排列中发现。例如,在树木的枝干上选一片叶子,记其为数0,然后依序点数叶子(假定没有折损),直到到达与那息叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数的叶序比呈现为斐波那契数的比。

2)斐波那契数列与黄金比值

相继的斐波那契数的比的数列:

它们交错地或大于或小于黄金比的值。该数列的极限为。这种联系暗示了无论(尤其在自然现象中)在哪里出现黄金比、黄金矩形或等角螺线,那里也就会出现斐波那契数,反之亦然。

3).【斐波那契数列的应用】

一位魔术师拿着一块边长为8英尺的正方形地毯,对他的地毯匠朋友说:“请您把这块地毯分成四小块,再把它们缝成一块长13英尺,宽5英尺的长方形地毯。”这位匠师对魔术师算术之差深感惊异,因为商者之间面积相差达一平方英尺呢!可是魔术师竟让匠师用图2和图3的办法达到了他的目的!

这真是不可思议的事!亲爱的读者,你猜得到那神奇的一平方英尺究竟跑到哪儿去呢?

斐波那契数列在自然科学的其他分支,也有许多应用。例如,树木的生长,由于新生的枝条,往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔,例如一年,以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数,便构成斐波那契数列。这个规律,就是生物学上著名的“鲁德维格定律”。

另外,观察延龄草,野玫瑰,南美血根草,大波斯菊,金凤花,耧斗菜,百合花,蝴蝶花的花瓣.可以发现它们花瓣数目具有斐波那契数:3,5,8,13,21……

斐波那契螺旋

具有13条顺时针旋转和21条逆时针旋转的螺旋的蓟的头部

具有13条逆时针旋转和21条逆时针旋转的螺旋的蓟的头部

这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样。这似乎是植物排列种子的“优化方式”,它能使所有种子具有差不多的大小却又疏密得当,不至于在圆心处挤了太多的种子而在圆周处却又稀稀拉拉。叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是222.5度,这个角度称为“黄金角度”,因为它和整个圆周360度之比是黄金分割数0.618033989……的倒数,而这种生长方式就决定了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144条。

三、研究感悟

16级台阶走法居然这么多,走台阶也能用数学方法来解决。原来数学如此美妙,并不像人们平时所说的那么抽象、那么枯燥。其实,只要我们善于观察,多动脑筋,用心去感悟生活,用心去体验、去思考,就会发现:数学就在我们身边,生活中到处都有数学,只需你我去思考!

斐波那契数列资料

斐波那契数列

斐波那契数列 一、简介 斐波那契数列(Fibonacci),又称黄金分割数列,由数学家斐波那契最早以“兔子繁殖问题”引入,推动了数学的发展。故斐波那契数列又称“兔子数列”。 斐波那契数列指这样的数列:1,1,2,3,5,8,13,……,前两个数的和等于后面一个数字。这样我们可以得到一个递推式,记斐波那契数列的第i项为F i,则F i=F i-1+F i-2. 兔子繁殖问题指设有一对新生的兔子,从第三个月开始他们每个月都生一对兔子,新生的兔子从第三个月开始又每个月生一对兔子。按此规律,并假定兔子没有死亡,10个月后共有多少个兔子? 这道题目通过找规律发现答案就是斐波那契数列,第n个月兔子的数量是斐波那契数列的第n项。 二、性质 如果要了解斐波那契数列的性质,必然要先知道它的通项公式才能更简单的推导出一些定理。那么下面我们就通过初等代数的待定系数法计算出通项公式。 令常数p,q满足F n-pF n-1=q(F n-1-pF n-2)。则可得: F n-pF n-1=q(F n-1-pF n-2) =q2(F n-2-pF n-3) =…=q n-2(F2-pF1) 又∵F n-pF n-1=q(F n-1-pF n-2) ∴F n-pF n-1=qF n-1-pqF n-2 F n-1+F n-2-pF n-1-qF n-1+pqF n-2=0 (1-p-q)F n-1+(1+pq)F n-2=0 ∴p+q=1,pq=-1是其中的一种方程组 ∴F n-pF n-1= q n-2(F2-pF1)=q n-2(1-p)=q n-1 F n=q n-1+pF n-1=q n-1+p(q n-2+p(q n-3+…))=q n-1+pq n-2+p2q n-3+…+p n-1 不难看出,上式是一个以p/q为公比的等比数列。将它用求和公式求和可以得到: 而上面出现了方程组p+q=1,pq=-1,可以得到p(1-p)=-1,p2-p-1=0,这样就得到了一个标准的一元二次方程,配方得p2-p+0.25=1.25,(p-0.5)2=1.25,p=±√1.25+0.5。随意取出一组解即可: 这就是著名的斐波那契数列通项公式。有了它,斐波那契数列的一些性质 也不难得出了。比如斐波那契数列相邻两项的比值趋向于黄金分割比,即:

斐波那契数列应用

生活中我们常常相信亲眼所见,但又常常为自己的眼睛所骗,魔术就是一个很好的例子。数学中也有这种欺骗我们眼睛的奇妙的数学魔术,我们还是来看一个简单的问题吧,将图3中面积为13×13=169的正方形裁剪成图中标出的四块几何图形,然后重新拼接成图4,计算可知长方形的面积为8×21=168,比正方形少了一个单位的面积,真不可思议! 这两个问题是这样的令人惊奇和难以理解,我们在白纸上将正方形量好画出,剪成四块,重新安排后拼成长方形,除非图形做得很大并且作图和剪裁都十分精确,我们一般是不会发现拼接成的长方形在对角线附近发生了微小的重叠,正是沿对角线的微小重叠导致了一个单位面积的丢失。要证实这一点我们只要计算一下长方形对角线的斜率和正方形拼接各片相应边的斜率,比较一下就会清楚了。 问题2中涉及到四个数据5、8、13和21,有一定数学基础的同学会认出这是著名的斐波那契数列中的四项,斐波那契数列的特征是它的每一项都是前两项之和:1,1,2,3,5,8,13,21,34,……。我们还可以使用这个数列中的其他相邻四项来试验这个过程,无论选取哪四项,都可以发现正方形和长方形的面积是不会相等的,有时正方形的面积比长方形多一个单位面积,有时则正好相反。多做几次上述实验,我们就会得出斐波那契数列的一个重要性质:这个数列任意一项的平方等于它前后相邻两项之积加1或减1。用公式表示就是:。其中表示正方形的面积,表示长方形的面积。知道了这个事实,我们就可以自己构造类似于问题2的几何趣题。 爬梯子问题(斐波那契数列应用) 1.小明要上楼梯,他每次能向上走一级、两级或三级,如果楼梯有10级,他有几种不同的走法? 这里我们不妨也来研究一下其中的规律:如果楼梯就一级,他有1种走法;如果楼梯有两级,他有2种走法;如果楼梯有三级,他有4种走法;如果有五级楼梯,他有7种走法. 既:楼梯的级数:12345678... 上楼梯的走法:124713244481... 这其中的规律就是,这里从第4个数开始,每一个数都等于它前面的3个数之和。

斐波那契数列与黄金分割的应用研究

斐波那契数列与黄金分割 应用研究 作者姓名 院系6系 学号

摘要 “斐波那契数列(Fibonacci)”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。斐波那契数列是一个古老而有趣的问题,由于其所具有的各种特殊属性,它与最优美的黄金分割有这密不可分的关系。在数学领域以及自然界中随处可见,而且正逐渐被应用在人们的日常生活与娱乐中。 关键词:斐波那契,黄金分割,应用 1 引言 斐波那契数列又称“斐波那契神奇数列”,是由13世纪的意大利数学家斐波那契提出的,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。假设一对成年兔子放于围栏中,每月可生下一对一雌一雄的小兔,而小兔出生一个月后便可以生育小兔,且每月都生下一对一雌一雄的小兔.问把这样一对初生的小兔置于围栏中,一年后围栏中共有多少对兔子(假定兔子没有死亡)?据此,可得月份与兔子对数之间的对应关系如下: 月份0 1 2 3 4 5 6 7 ? 大兔对数0 1 1 2 3 5 8 13 ? 小兔对数 1 0 1 1 2 3 5 8 ? 兔子总对数 1 1 2 3 5 8 13 21 ? 如果用F n 表示第n个月兔子的总对数,那么F n能构成一个数列:1,1,2,3,5,8,13,21,34,55,89?.这个数列显然有如下的递推关系: F n =F n-1 +F n-2 (n>1,n为正整数),F0 =0,F1 =1 (1) 满足(1)式的数列就叫做斐波那契数列,这是一个带有初值的用递推关系表示的数列。这个数列一问世就吸引了无数数学家的兴趣,以下是费氏数列的定义及通项公式。 费氏数列是是由一连串的数字所组成的(1、1、2、3、5、8、13、…),而且这串数字之间具有一定的规则,就是每一个数字必须是前两个数字的和( an =

斐波那契数列的通项公式推导解析

斐波那契数列的通项公式推导 山西省原平市原平一中任所怀 做了这些年的数学题,我时常有这样的感受。一个新的数学题初次接触时,会觉得这个题的解题技巧很妙,甚至有点非夷所思,但如果把同类型问题多做几个,你就会发现原来所谓的技巧,其实是一种再正常不过的想法,是一种由已知到未知的必然之路。这样我们就由解题的技巧而转化到了通解通法,进一步就会形成解题的思想,所以我对于数学爱好者建议,做题时要把同类型题多种总结和分析,这样你的数学才会有长足的进步。 下面我们就由递推推导通项的问题,进行对比分析。 例1在数列中,,求数列的通项。(普通高中课程标准实验教科书人教A版必修5第69页6题) 分析:此题可分两步来进行,首先由构造一个等比数列,其中 ,并写出的通项;然后利用,两边同除以得 ,由累加法,就可求出数列的通项。 解:( 设,则()所以数列为等比数列,且首项为 ,公比为3。所以。 于是有,两边都除以得 设,则有 由累加法可得

因为所以() 于是有。 总结:上面的求解过程实质,求是一个把已知条件逐步化简的过程,由相邻三项的递推关系化为相邻两项的递推关系,进一步求出通项公式。 下面我们来研究一下著名的斐波那契数列的通项。 已知数列,其中,,求数列的通项。 解:首先我们要构造一个等比数列,于是设 则有。(1) 则由已知得(2) 对照(1)(2)两式得解得或。 我们取前一解,就会有。 设,则有 所以数列为等比数列,首项为,公比为

所以。即(3) 再次构造等比数列,设 则有 对照(3)式,可得所以 x=. 于是有 设,则有数列为等比数列,首项为,公比为,于是= 所以有。

高考数学 题型全归纳:数列在生活中的应用(含答案)

数列在生活中的应用 在实际生活和经济活动中,很多问题都与数列密切相关。如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决。与此同时,数列在艺术创作上也有突出的作用! 数学家华罗庚曾经说过:宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。这是对数学与生活关系的精彩描述。 首先, 我重点分析等差数列、等比数列在实际生活和经济活动中的应用。 (一)按揭货款中的数列问题 随着中央推行积极的财政政策,购置房地产按揭货款(公积金贷款)制度的推出,极大地刺激了人们的消费欲望,扩大了内需,有效地拉动了经济增长。 众所周知,按揭货款(公积金贷款)中都实行按月等额还本付息。这个等额数是如何得来的,此外若干月后,还应归还银行多少本金,这些人们往往很难做到心中有数。下面就来寻求这一问题的解决办法。 若贷款数额a0元,贷款月利率为p,还款方式每月等额还本付息a元.设第n月还款后的本金为an,那么有: a1=a0(1+p)-a, a2=a1(1+p)-a, a3=a2(1+p)-a, ...... an+1=an(1+p)-a,.........................(*) 将(*)变形,得(an+1-a/p)/(an-a/p)=1+p. 由此可见,{an-a/p}是一个以a1-a/p为首项,1+p为公比的等比数列。日常生活中一切有关按揭货款的问题,均可根据此式计算。 (二)有关数列的其他经济应用问题 数列知识除在个人投资理财方面有较为广泛的应用外,在企业经营管理上也是不可或缺的。一定做过大量的应用题吧!虽然这些应用题是从实际生活中抽象出的略高于生活的问题,但他们是数学习题中最能反映数学知识与实际生活密切关系的一类问题。因此,解答应用问题有助于我们对数学在日常生活中广泛应用的理解和认识。 (三)数列在艺术中的广泛应用

浅谈斐波那契数列在生活中的应用

浅谈斐波那契数列在生活中的应用 发表时间:2019-07-29T11:38:49.093Z 来源:《基层建设》2019年第14期作者:孙烨赵倩[导读] 摘要:数学是一门来自生活又高于生活的科学,数学研究是人类社会进步的动力。 山东协和学院山东济南 250107摘要:数学是一门来自生活又高于生活的科学,数学研究是人类社会进步的动力。数列知识在生活中也有着广泛的应用,例如生物种群数量的变化,银行的利息计算,人口增长,粮食增长、住房建设等,都会用到数学知识。本文介绍斐波那契数列的简单情况,可以帮助学生提高对数列的知识。数列是数学学习中一个非常重要的分支,并且因为数列的研究和计算与社会经济和资源生活紧密相关,加上灵活 多变的计算,有趣的问题等,都使得对于数列的研究受到越来越多人的关注。 关键词:斐波那契数列应用黄金分割 1 引言 数列在我们的生活中具有广泛的应用,例如资源计算等问题,并且在解决诸如投资分配,汇率计算和资源利用分配等问题方面具有无可比拟的优势。本文将简要介绍数列广泛应用,分析斐波那契数在上述几个生活领域中的应用。 斐波那契数列在现实生活中被广泛使用,研究它以使其服务于我们的生活具有很大的意义。 人类很早就看到了大自然的数学特征:蜜蜂的繁殖规律,树枝、钢琴音阶的排列以及花瓣在花托边缘的对称分布、整个花朵几乎完美无缺地呈现出辐射对称性……,所有这一切向我们展示了许多美丽的数学模式。对自然、社会和生活中的许多现象的解释,通常可归因于斐波那契数列上来。 斐波那契数列在数学理论中有许多有趣的特性,似乎在自然界中也存在着这个性质,都被斐波那契数列支持。 2 斐波那契数列的应用 (1)斐波那契数列和花瓣数花瓣数是极有特征的。多数情况下,花瓣的数目都是3,5,8,13,21,34,55,…这些数恰好是斐波那契数列的某些项,例如,海棠2瓣花瓣,铁栏、百合花和兰花以及茉莉花都有3瓣花瓣,洋紫荆、黄蝉和蝴蝶兰是5瓣花瓣。万寿菊的花瓣有13瓣;至良属的植物有5瓣花瓣;许多翠雀属植物有8瓣花瓣;雏菊属植物有89、55或者34个瓣花瓣。 (2)斐波那契数列和仙人掌的结构在仙人掌的结构中有这一数列的特征。研究人员分析了仙人掌的形状、叶片的厚度以及控制仙人掌情况的其他因素,并将数据输入计算机,结果发现仙人掌的斐波那契序列结构使仙人掌能够最大限度地减少能量消耗并适应干旱沙漠中的生长环境。 (3)斐波那契数列和向日葵种子排列向日葵种子的排列是典型的数学模型。仔细观察向日葵盘,你会发现两组螺旋,一组顺时针旋转,另一组螺旋逆时针旋转,彼此嵌套。虽然不同向日葵品种的种子选装方向和螺旋线的数量有所不同,但往往不会超出34和55、55和89或者89和144这3组数字,每组数字就是斐波那契序列中的两个相邻数字。前一个数字是顺时针旋转的线数,后一个数字是逆时针旋转的线数。回想起向日葵。种子全都紧密排列在花盘当中,每个种子都保证按照适合的角度生长大小还基本保持一致又疏密得当,与此同时,螺旋的数目也是斐波那契序列中的数字,世界如此繁琐,却又如此的井然有序。 (4)斐波那契数列与台阶问题当只有一个台阶时,只有一种移动方式,F1=1两个台阶,有2种走法,一步上两个台阶或者一阶一阶的上,所以F2=2。三个台阶时,走法有一步一阶,2阶再1阶,1阶再2阶,因此,F3=3。四个台阶时,走法有(1,1,1,1),(1,1,2),(1,2,1),(2,1,1)(0,2,2),共5种方法,所以F4=5依此类推,有数列:1,2,3,5,8,13,21,34,55,89,144,233,...斐波那契与自然,生活和科学上有很多联系,但是从这几个例子中,我们可以看到斐波那契数列的应用的广泛性,我们可以看到数学之美无处不在。它是一门科学,同时也是一种艺术,一种语言,它就像一朵盛开的茉莉花,白皙而优雅,简言而之,数学伴随着自然生活共同发展。 (5)斐波那契数列与蜜蜂的家谱蜜蜂的“家谱”:蜜蜂的繁殖规律十分有趣。雄蜂只有一个母亲,没有父亲,因为蜂后所产的卵,未受精的孵化为雄蜂,受精的孵化为雌蜂(即工蜂或蜂后)。人们在追踪雄蜂的家谱时,发现1只雄蜂的第n代子孙的数目刚好就是斐波那契数列的第n项f(n)。 (6)黄金分割与斐波那契的联系斐波那契和黄金比例(也称黄金分割,Φ,取三位小数1.618)密切相关。黄金法则,也称为黄金比率,是指将直线分成两部分,使得一部分与整体的比率等于剩余部分与该部分的比率,即0.618/1=0.382/0.618。0.618是斐波那契数列相邻两项之比的近似值,一般称之为黄金分割数。这是古希腊哲学家、数学家毕达哥拉斯于公元前6世纪由提出,后被著名的希腊美学家柏拉图称为“黄金比例率”。 (7)斐波那契数列和鳞片的关系菠萝果实上的菱形鳞片排成一列,8排向左倾斜,13排向右倾斜;挪威云杉的球果在一个方向上有3排鳞片,在另一个方向上有5排鳞片;常见的落叶松是一种针叶树,松果上有鳞片,两个方向也排成5行8行;美国松树松鳞片在两个方向上排成3行和5行。 (8)影视作品中的斐波那契数列斐波那契数列在欧美可以说是是每个人都知道,在电影这种通俗艺术中也经常的出现,例如在风靡一时的《达芬奇密码》当中它就作为一个重要的符号和情节线索出现,在《魔法玩具城》当中也出现过。由此可见此数列就像黄金分割那样的流行。可是虽说叫得上名,大多数人并没有深入理解研究。在电视剧中也经常看到斐波那契数列的影子,比如:日剧《考试之神》的第五回,义嗣做全国模拟考试题中的最后一道数学题。还在FOX热播美剧《Fringe》中也是多次引用,甚至被当做全剧宣传海报的主要设计元素。 3 结束语 除了上文中涉及的几个方面外,斐波那契数列在生活的其他领域当中例如现代物理、准晶体结构、化学等领域,斐波纳契数列都有着广泛的应用。这个奥秘神奇的序列就在我们生活中任何常见的事物中隐藏,植被如一朵向日葵,一棵花菜,宏观如飓风以及星系,微观小至细胞的分裂,斐波那契数列都有存在。而且,通过对上文数列在生活中应用的几个方面的分析,也希望能激发大家对斐波那契数列的兴趣,感受数学的魅力。

浅谈菲波纳契数列的内涵和应用价值

浅谈菲波纳契数列的内涵和应用价值 99数学本四班 莫少勇 指导教师 孙丽英 摘 要 本文从菲波那契数列出发,通过探究其数学内涵和它在实际生活中的应用,提高学生对数学的欣赏能力,初步建立数学建模的思想,从而提高用数学知识分析实际问题的能力。 关键词 Fibonacci 数列 黄金数 优选法 数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有语言的简明、精巧美,而且有公式、定理的结构整体美;不仅有逻辑、抽象美,而且有创造应用美。古希腊的毕达哥拉斯学派,首先从数的比例中求出美的形式,发现了黄金数。神奇的菲波纳契数列正是黄金数之后的一大发现,它又被誉为“黄金数列”。 一. F ibonacci 数列的由来 Fibonacci 数列的提出,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对? 对于n=1,2,……,令F n 表示第n 个月开始时兔子的总对数,B n 、A n 分别是未成年和成年的兔子(简称小兔和大兔)的对数,则F n = A n +B n 根据题设,有 显然,F 1=1,F 2=1,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,于是按此规律我们得到一个带有初值的递推关系式: ?? ?==∈≥+=1 F 1,F Z)n 3,(n F F F 212-n 1-n n 若我们规定F 0=1,则上式可变为 ?? ?==∈≥+=1F 1,F Z)n 2,(n F F F 102-n 1-n n 这就是Fibonacci 数列的通常定义,也就是数列1,1,2,3,5,8,13,21,34,55,89,……, 这串数列的特点是:其中任一个数都是前两数之和。 这个兔子问题是意大利数学家梁拿多(Leomardo )在他所著的《算盘全集》中提出的,而梁拿多又名菲波纳契(Fibonacci ),所以这个数列称作菲波纳契数列,其中每一项称作Fibonacci 数。 它的通项是F n =51[(25 1+)n+1-(251-)n+1 ],由法国数学家比内(Binet )求出的。 二.Fibonacci 数列的内涵 (1)Fibonacci 数列的通项的证明我们可以通过求解常系数线性齐次递推关系或者利用生成函数法来实现。 证法一:

数列在生活中的应用

数列在生活中的应用 摘要: 数学是一门源于生活又用于生活的科学,数学研究是亘古以来人类社会生活中不可缺少的一部分。数列计算是数学学习中一个十分重要的分支,并且由于数列的研究与计算同社会经济、资源生活有着紧密的联系,使得对于数列研究的重视热情逐渐高涨,加之具有的灵活多变的计算,趣味横生的问题等,都使得对于数列的研究受到越来越多人的关注。 关键词:数列应用分期付款资源利用 众所周知,数列是数学知识中的一个重要环节,以具体问题为基础,进行答案的解析是数列学习中的一个重要部分,这就注定了数列是以解决实际问题为目的而存在的。数列在经济生活和资源计算等领域,有着广泛的使用,在解决投资分配、汇率计算、资源利用分配等方面问题中有着无可比拟的优势。本文将在简述数列广泛应用的基础上,具体分析数列在以上几个生活领域中的应用情况。 一、例述数列在生活中的应用 数学不仅仅是我们生活中的工具,更大程度上是我们生活中的必需品,并影响着人们的生活。以生活中的一个常见问题为例: 在对某地超市进行统计调查后发现,每天购买甲乙两种蔬菜的人数约为200人,且第一天购买甲种蔬菜的第二天会有20%购买乙种蔬菜,第一天购买乙种蔬菜的第二天会有30%购买甲种蔬菜,则据此推算超市应当如何安排甲乙两种蔬菜的进货量。 解决方案:设第n天购买甲乙两种蔬菜的人数分别为An、Bn,则: An+1=0.8An+0.3Bn; Bn+1=0.2An+0.7Bn; 由于An+Bn=200,则可推算得An+1=0.8An+0.3(200-An)

=60+0.5An; 则An+1-120=0.5(An-120); 可得,{An-120}是以A1-120为首项,0.5为公比的等比数列; 假设,第一天购买甲种蔬菜的有a人,则 An=0.5^(n-1)*(a-120)+120 当n趋近于无穷时,易得,An趋近于120且与a的值无关。 则可知,购买甲种蔬菜的人数稳定在120人,购买一种蔬菜的人数稳定在80人。 上述例题,以生活中常见的一类问题为原型,通过理论求解达到了解决实际问题的目的,这是数列在生活中应用的冰山一角。 二、银行储蓄与分期付款中的数列应用 储蓄与贷款与国计民生、社会生活发展息息相关,大到支援国家建设,小到个人家庭的财政支出管理,处处都嵌套着数列的应用。 在人们日常的生活规划中,为未来进行资金储备的零存整取的存储模式是银行储蓄中常见的一种金融计算方式。下面将以某一常见模式为例,进行数列在储蓄领域应用的解析。 设储户每期存入银行的金额为M,利率设为p,储户连续存入n期,那么到第n期期末时,本金数额为nM,在这个过程中,第一期存款利率为pMn,第二期的存款利率为PM(n-1)以此类推,到了第(n-1)期时存款利率为2pM,第n 期存款利率为pM。对上述各阶段的利息求和可得: Sn=Mp+2Mp+……+Mp(n-1)+Mpn =Mp(1+2+……+n-1+n) =1/2n(n+1)Mp 期间,纳税金额为:1/2n(n+1)Mp*20%=1/10n(n+1)Mp 最后,实际取出金额为:nA*1/2n(n+1)Mp-1/10n(n+1)Mp =M[n+2/5n(n+1)p] 这是学生在练习中接触到的一种银行金融储蓄计算方式,是数列应用深入生活,影响生活方面的直接体现。随着社会经济的发展,人们的理财观念也渐渐发生了转变,小额贷款成为了社会生活中的一个热门话题。这就是数列在生活中的

详解由递推公式求斐波那契数列的通项公式

详解由递推公式求斐波那契数列的通项公式 武汉市黄陂区第四中学 蔡从江 斐波那契数列的递推公式是121==a a ,11-++=n n n a a a (2≥n 且N n ∈),那么它的通项公式是怎样的呢?不少同学经常问到这个问题。 下面详细解答用待定系数法构造过渡数列求其通项公式。 由递推公式11-++=n n n a a a ,可设)(11-++=+n n n n a a a a λμλ,比较得1=-λμ且1=μλ,即012=-+λλ,解得251±-= λ。若251+-=λ,则251+=μ;若251--=λ,则2 51-=μ。 先以2 51+-=λ,251+=μ求解, 此时)2)(2 15(21521511≥-++=-+-+n a a a a n n n n , 所以)2()215()215()215(2151211≥+=-++=-+ -+n a a a a n n n n , 即)2()2 15(2511≥++-=+n a a n n n , 再另)2]()215([251)215( 11≥+--=+-++n x a x a n n n n 即n n n x x )2 15()215(215)215(1+=+-+++, 所以12 15215=-++x x 即55=x , 所以 ])215(55[251)215(5511n n n n a a +--=+-++, )2]()2 15(551[)251()215(552111≥+--=+--++n a n n n ,

所以)2]()2 15(551[)251()215(552111≥+--=+--++n a n n n , )2]()251()251[(5 1])215(551[)251()215(55112111≥--+=+--++=++-++n a n n n n n 所以)3]()251()251[(5 1≥--+=n a n n n , 又121==a a 适合上式,故 *)]()251()251[(51N n a n n n ∈--+=, 同理可得251--=λ,2 51-=μ时,*)]()251()251[(51N n a n n n ∈--+=, 因此斐波那契数列的通项公式是 *)]()251()251[(51N n a n n n ∈--+=

高三数学 教案 斐波那契数列通项公式推导过程

斐波那契数列 斐波那契数列,又称黄金分割数列、因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递推的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=3,n∈N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从1963年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。 定义 斐波那契数列指的是这样一个数列1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,987,1597,2584,4181,6765,10946,17711,28657,46368........ 自然中的斐波那契数列 这个数列从第3项开始,每一项都等于前两项之和。 斐波那契数列的定义者,是意大利数学家列昂纳多·斐波那契,生于公元1170年,卒于1250年,籍贯是比萨。他被人称作“比萨的列昂纳多”。1202年,他撰写了《算盘全书》(Liber Abacci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点于阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯等地研究数学。 通项公式 递推公式 斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... 如果设F(n)为该数列的第n项(n∈N*),那么这句话可以写成如下形式::F(n)=F(n-1)+F(n-2) 显然这是一个线性递推数列。 通项公式

浅谈菲波纳契数列的内涵和应用价值

浅谈菲波纳契数列的内涵和应用价值 99数学本四班莫少勇指导教师孙丽英 摘要本文从菲波那契数列出发,通过探究其数学内涵和它在实际生活中的应用,提高学生对数学的欣赏能力,初步建立数学建模的思想,从而提高用数学知识分析实际问题的能力。 关键词 Fibonacci数列黄金数优选法 数学美不仅有形式的和谐美,而且有内容的严谨美;不仅有语言的简明、精巧美,而且有公式、定理的结构整体美;不仅有逻辑、抽象美,而且有创造应用美。古希腊的毕达哥拉斯学派,首先从数的比例中求出美的形式,发现了黄金数。神奇的菲波纳契数列正是黄金数之后的一大发现,它又被誉为“黄金数列”。 一.Fibonacci数列的由来 Fibonacci数列的提出,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,

而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对? 对于n=1,2,……,令F n 表示第n 个月开始时兔子的总对数,B n 、A n 分别是未成年和成年的兔子(简称小兔和大兔)的对数,则F n = A n +B n 根据题设,有 显然,F 1=1,F 2=1,而且从第三个月开始,每月的兔子总数恰好等于它前面两个月的兔子总数之和,于是按此规律我们得到一个带有初值的递推关系式: ?? ?==∈≥+=1 F 1,F Z)n 3,(n F F F 212-n 1-n n 若我们规定F 0=1,则上式可变为 ?? ?==∈≥+=1 F 1,F Z)n 2,(n F F F 102-n 1-n n

使用fork()调用计算Fibonacci数列

实验二Linux 进程创建 实验目的 ?加深对进程概念的理解 ?练习使用fork()系统调用创建进程 ?练习Linux操作系统下C程序设计 实验准备知识 1. fork()函数:创建一个新进程. ?调用格式: #include #include int fork(); ?返回值: 正确返回时,等于0表示创建子进程,从子进程返回的ID值;大于0表示从父进程返回的子进程的进程ID值。 错误返回时,等于-1表示创建失败 实验内容:使用fork()调用计算Fibonacci数列 ?Fibonacci数列是0,1,1,2,3,5,8…….通常表示为:fib0=0, fib1=1,fib n=fib n-1+fib n-2 ?写一个C程序,使用fork()系统调用产生一个子进程来计算 Fibonacci数列,序列通过命令行显示。例如,如果参数为5,Fibonacci数列的前5个数字将在子进程中被输出。 ?因为父进程和子进程拥有各自的数据拷贝,所以需要由子进程

输出。在退出程序之前,父进程调用wait()等待子进程完成。 要求提供必要的错误检测以保证在命令行传递的参数是非负数. 实验程序: #include #include #include #include int main(int argc, char* argv[]) { pid_t pid; int i; int f0,f1,f2; f0=0; f1=1; if(argv[1]<0) { fprintf(stderr,"request a nun-negative number"); } pid=fork(); //printf("pid = %d ",pid); if(pid<0) { fprintf(stderr,"fork failed"); exit(-1); } else if(pid==0) { printf("argv[1] = %d\n",atoi(argv[1])); printf("0 1 "); for(i=2; i<=atoi(argv[1]);i++) { f2=f0+f1; f0=f1; f1=f2; printf("%d ",f2); }

用初等数学方法求斐波那契数列的通项公式

用初等数学方法求斐波那契数列的通项公式 斐波那契 (Fibonacci) 数列是着名的数列,有很高的实用价值。多年来,学者们一直在探究它的通项公式的求解方法,已经涌现出了多种方法。但据笔者们所知,这些方法大都需要比较高深的数学知识,例如组合数学的方法、概率的方等等,让人比较难理解,不容易接受。基于此,研究给出了一种简易的初等数学方法,先探求它们的特征多项式,然后通过求解线性方程组的思想,得出它们的通项公式。这种方法深入浅出,有一定的实用价值。 1.斐波那契数列的由来 13 世纪意大利数学家斐波那契在他的《算盘书》的修订版中增加了一道着名的兔子繁殖问题. 问题是这样的: 如果每对兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同),每对兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子.假定这些兔子都没有死亡现象,那么从第一对刚出生的兔子开始,12 个月以后会有多少对兔子呢解释说明为:一个月:只有一对兔子;第二个月:仍然只有一对兔子;第三个月:这对兔子生了一对小兔子,共有1+1=2 对兔子.第四个月:最初的一对兔子又生一对兔子,共有2+1=3对兔子.则由第一个月到第十二个月兔子的对数分别是:1,1,2,3,5,8,13,21,34,55,89,144,……,人为了纪念提出兔子繁殖问题的斐波纳契,将这个兔子数列称为斐波那契数列,即把 1,1,2,3,5,8,13,21,34…这样的数列称为斐波那契数列。 2.斐波那契数列的定义 定义:数列F1,F2,… ,Fn,…如果满足条件121==F F ,21--+=n n n F F F (对所有的正整数n ≥ 3),则称此数列为斐波那契(Fibonacci)数列。

斐波那契数列

斐波那契数列 一、简介 斐波那契数列(Fibonacci),又称黄金分割数列,由数学家斐波那契最早以“兔子繁殖问题”引入,推动了数学的发展。故斐波那契数列又称“兔子数列”。 斐波那契数列指这样的数列: 1,1,2,3,5,8,13,……,前两个数的和等于后面一个数字。这样我们可以得到一个递推式,记斐波那契数列的第i项为F i,则F i=F i-1+F i-2. 兔子繁殖问题指设有一对新生的兔子,从第三个月开始他们每个月都生一对兔子,新生的兔子从第三个月开始又每个月生一对兔子。按此规律,并假定兔子没有死亡,10个月后共有多少个兔子? 这道题目通过找规律发现答案就是斐波那契数列,第n个月兔子的数量是斐波那契数列的第n项。 二、性质 如果要了解斐波那契数列的性质,必然要先知道它的通项公式才能更简单的推导出一些定理。那么下面我们就通过初等代数的待定系数法计算出通项公 式。 令常数p,q满足F n-pF n-1=q(F n-1-pF n-2)。则可得: F n-pF n-1=q(F n-1-pF n-2) =q2(F n-2-pF n-3) =…=q n-2(F2-pF1)

又∵F n-pF n-1=q(F n-1-pF n-2) ∴F n-pF n-1=qF n-1-pqF n-2 F n-1+F n-2-pF n-1-qF n-1+pqF n-2=0 (1-p-q)F n-1+(1+pq)F n-2=0 ∴p+q=1,pq=-1是其中的一种方程组 ∴F n-pF n-1= q n-2(F2-pF1)=q n-2(1-p)=q n-1 F n=q n-1+pF n-1=q n-1+p(q n-2+p(q n-3+…))=q n-1+pq n-2+p2q n-3+…+p n-1 不难看出,上式是一个以p/q为公比的等比数列。将它用求和公式求和可以得到: 而上面出现了方程组p+q=1,pq=-1,可以得到p(1-p)=-1,p2-p-1=0,这样就得到了一个标准的一元二次方程,配方得p2-p+0.25=1.25,(p-0.5)2=1.25,p=±√1.25+0.5。随意取出一组解即可: 这就是著名的斐波那契数列通项公式。有了它,斐波那契数列的一些性质也不难得出了。比如斐波那契数列相邻两项的比值趋向于黄金分割比,即: 根据斐波那契数列通项公式,可以得到 因为n是趋向于正无限的,因此我们可以知道: 那么我们就可以把分子和分母的第二项同时省略掉,即 这就是斐波那契数列的魅力之一——它和黄金分割比有密切的关系。下面将给出斐波那契数列的几个性质及其证明。

斐波那契数列的应用

+斐波那契数列的应用 第一章斐波那契数列的提出 意大利数学家斐波那契在《算盘全集》中提出了一个有趣的兔子繁殖问题:如果每队兔子(一雄一雌)每月能生殖一对小兔子(也是一雄一雌,下同)每队兔子第一个月没有生殖能力,但从第二个月以后便能每月生一对小兔子。假定这些兔子都不死亡现象,那么从一对刚出生的兔子开始,一年只有会有多少对兔子呢?解释说明为:一个月:只有一对兔子;第二个月:仍然只有一对兔子;第三个月:这对兔子生了一对小兔子,共有1+1=2对兔子。第四个月:最初的一对兔子又生一堆兔子,共成为2+1=3对兔子。后人为了纪念兔子繁殖问题的斐波纳契将这个兔子数列成为斐波那契数列。也就是把1,1,2,3,5,8,13,21,34…这样的数列称为斐波那契数列。 第二章斐波那契数列的应用 人类很早就从自然界中看到了数学特征:蜜蜂的繁殖规律,树的分枝,钢琴音阶的排列以及花瓣对称排列在花托边缘、整个花朵几乎完美无缺地呈现出辐射对称状……,所有这一切向我们展示了许多美丽的数学模式。而对这些自然、社会以及生活中的许多现象的解释,最后往往都能归结到Fibonacci数列上来。

斐波那契数列在数学理论上有许多有趣的性质,不可思议的是在自然界中也存在着这个性质,似乎完全没有秩序的植物的纸条彼此相隔的距离或叶子的生长凡是,都被斐波那契数列支持着。 2.1 斐波那契数列与花朵的花瓣数 花瓣数是极有特征的。多数情况下,花瓣的数目都是3,5,8,13,21,34,55,…这些数恰好是斐波那契数列的某些项,例如,百合花有3瓣花瓣,至良属的植物有5瓣花瓣;许多翠雀属植物有8瓣花瓣;万寿菊的花瓣有13瓣,更有趣的是,有一位学者细心地数过一朵花的花瓣,发现这朵花的花瓣刚好有157瓣。且他又发现其中有13瓣与其他144瓣有显著的不同,是特别长并卷曲向内,这表明这朵花的花瓣树木是由F1=13和F2=144合成的。 2.2 斐波那契数列与仙人掌的结构 在仙人掌的结构中有这一数列的特征。研究人员分析了仙人掌的形状、叶片厚度和一系列控制仙人掌情况的各种因素,并将所得数据输入电脑,结果发现仙人掌的Fibonacci数列结构特征能让仙人掌最大限度地减少能量消耗,适应其在干旱沙漠的生长环境。 2.3 斐波那契数列与向日葵种子排列方式 向日葵种子的排列方式,就是一种典型的数学模式。仔细观察向日葵花盘,你就会发现两组螺旋线,一组顺时针方向盘旋,另一组则逆时针方向盘旋,并且

人教B版高中数学必修5-2.3斐波那契数列的应用

斐波那契数列的应用 在期货应用技术分析时,大家知道黄金分割率的重要性,并能够举出大量例子证明其神奇的功能。事实上,自然界中,无数现象也在默默地展示菲波那奇数列的神奇规律。 一、从黄金分割到斐波那契 1、黄金分割早在古希腊时代,人们就已经认识到0.618的神奇,并将其称为黄金分割率。出于对这一数字的偏爱,它被应用到建筑和绘画等领域,从巴台农神庙到美国纽约众议院大楼,甚至基督十字架的分割比例也由它来定义,黄金分割率已经成为西方人追求外在美的内在规则。与此同时,人们也逐渐认识到黄金分割率广泛存在于自然界中,从花朵的图案、棕榈树的叶子到肚脐对人体的分割,几乎无处不在。 2、斐波那契数列在黄金分割被应用了很久以后,1202年斐波那契出版了一本名为《关于算盘的书》。书中,他用了一个简单的数学题提出了斐波那契数列的概念。问题是这样的:″假定每对家兔每月可繁殖两只小兔,并且每只家兔到两个月后就可以繁殖后代。那末,若开始时有一对家兔,经过一年的时间将繁殖多少只家兔?″问题的答案并不复杂,但由此了一个有趣的现象,即每月底的家兔数量将做如下变化:1、2、 3、5、8、13、21、3 4、5 5、89、144、233、……,该数列中每个数字均是前两个数字之和。这就是著名的斐波那契数列,将数列中每相邻两数的前者除以后者,其极限结果就是″黄金分割率″--0.618。这一数列的提出使我们对黄金分割的认识从静态走向动态,自然界的变化规律已经触手可及了。 二、从斐波那契到普遍性的增长和衰竭在技术分析的领域中,每一种价格的变动模式都对应着斐波那契数列的不同的表现。因此,下面就从应用的角度扩展数列的模型。 1、从自然增长到普遍增长在菲波那奇数列中,“1、1”的基点是数列的基础,但在现实世界中,基点“1、1”只是一种特殊的现象,如果将基点加以推广,就能构造出更加普遍的增长数列。例如:以4和7为基点进行推倒的增长数列就是不同于斐波那契数列的新数列,但最终极限值仍是0.618,只是基点不同形成了

斐波那契数列在一维搜索中的应用

Fibonacci数列在一维搜索中的应用 斐波那契数列: 斐波那契数列又称“斐波那契神奇数列”,是由13世纪的意大利数学家斐波那契提出的,当时是和兔子的繁殖问题有关的,它是一个很重要的数学模型。这个问题是:有小兔一对,若第二个月它们成年,第三个月生下小兔一对,以后每月生产一对小兔,而所生小兔亦在第二个月成年,第三个月生产另一对小兔,以后亦每月生产小兔一对,假定每产一对小兔必为一雌一雄,且均无死亡,试问一年后共有小兔几对? 斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、34 、…… 这个数列从第三项开始,每一项都等于前两项之和。 即:如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:F(0) = 0,F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3) ∴F(n)=(1/ 即:F(n)= 111 22 n n ?? ???? +- ?? - ? ? ? ? ?? ???? ??

一维搜索: 在求无约束多维最优化问题时,通常时根据目标函数的特征,构造出一类逐次使目标函数值下降的搜索(迭代)算法,方法如下: 选择初始近似点()0X ,(当然,()0X 越靠近极小点越好),按照某种规则 确定一个方向(0)P ,从()0X 出发沿(0)P 方向求目标函数的最优解()1 X ,()2X ,。。。。。。。。设迭代中已得到()k X ,按同样的规则确定一个方向()k P ,从()k X 出发沿方向()k P 求目标函数()()k f X 在此方向上的最优解,即: ()()()()min ()()k k k k k f X P f X P λ λλ+=+ 得到新点 ()()()1k k k k X X P λ+=+ ,其中k λ称为最优步长。再从 ()1k X +出发,继续上述过程产生一个收敛于问题的最优解的点列{()k X }。在这个过程中要求我们去求解一系列单变量函数 ()()()()k k k F f X P λλ=+的极值问题,即一维搜索。 这种方法不仅对于解决一维极值问题本身很重要,而且它还是求解多维极值问题的重要组成部分。一维搜索的方法很多,一下介绍2种具有代表性的方法,这两种方法的第一步都要确定一个初始搜索区间。

斐波那契数列的通项公式推导

斐波那契数列的通项公式推导 一个新的数学题初次接触时,会觉得这个题的解题技巧很妙,甚至有点非夷所思,但如果把同类型问题多做几个,你就会发现原来所谓的技巧,其实是一种再正常不过的想法,是一种由已知到未知的必然之路。这样我们就由解题的技巧而转化到了通解通法,进一步就会形成解题的思想,所以我对于数学爱好者建议,做题时要把同类型题多种总结和分析,这样你的数学才会有长足的进步。 下面我们就由递推推导通项的问题,进行对比分析。 例1 在数列{}n a 中,1=5a ,2=2a ,13=23n n n a a a --+ (3)n ≥,求数列{}n a 的通项。 (普通高中课程标准实验教科书人教A 版必修5第69页6题) 分析:此题可分两步来进行,首先由构造一个等比数列,其中 ,并写出的通项;然后利用,两边同除以得 ,由累加法,就可求出数列{}n a 的通项。 解:( 设,则()所以数列 为等比数列,且首项为 ,公比为3。所以 。 于是有,两边都除以得 设,则有 由累加法可得 因为 所以() 于是有。 总结:上面的求解过程实质,求是一个把已知条件逐步化简的过程,由相邻三项的递推关系化为相邻两项的递推关系,进一步求出通项公式。 下面我们来研究一下著名的斐波那契数列的通项。 已知数列{}n a ,其中,,求数列{}n a 的通项。

解:首先我们要构造一个等比数列,于是设 则有。(1) 则由已知得(2) 对照(1)(2)两式得解得或。 我们取前一解,就会有。 设,则有 所以数列为等比数列,首项为,公比为 所以。即(3) 再次构造等比数列,设 则有 对照(3)式,可得所以 x=. 于是有 设,则有数列为等比数列,首项为,公比为,于是= 所以有。

相关文档
最新文档