工程流体力学杜广生

工程流体力学杜广生
工程流体力学杜广生

(杜广生)版《工程流体力学》习题答案

第一章 习题

1. 解:依据相对密度的定义:13600

13.61000

f w d ρρ===。

式中,w ρ 表示4摄氏度时水的密度。

2. 解:查表可知,标准状态下:2

31.976/CO kg m ρ=,2

32.927/SO kg m ρ=,2

31.429/O kg m ρ=,

2

31.251/N kg m ρ=,2

30.804/H O kg m ρ= ,因此烟气在标准状态下的密度为:

11223

1.9760.135

2.9270.003 1.4290.052 1.2510.760.8040.051.341/n n

kg m ρραραρα=++

=?+?+?+?+?=

3. 解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为

4atm

的空气的等温体积模量:

34101325405.310T K Pa =?=? ;

(2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量:

31.44101325567.410S K p Pa κ==??=?

式中,对于空气,其等熵指数为1.4。

4. 解:根据流体膨胀系数表达式可知:

30.0058502V dV V dT m α=??=??=

因此,膨胀水箱至少应有的体积为2立方米。

5. 解:由流体压缩系数计算公式可知:

392

5

11050.5110/(4.90.98)10

dV V k m N dp -?÷=-=-=?-? 6. 解:根据动力粘度计算关系式:

74678 4.2810 2.910Pa S μρν--==??=??

7. 解:根据运动粘度计算公式:

3

621.310 1.310/999.4

m s μνρ--?===?

8. 解:查表可知,15摄氏度时空气的动力粘度6

17.8310Pa s μ-=??,因此,由牛顿内摩擦定律可知:

630.3

17.83100.2 3.36100.001

U F A

N h μπ--==????=? 9. 解:

如图所示,

高度为h 处的圆锥半径:tan r h α=,则在微元高度dh 范围内的圆锥表面积:

2=2=tan cos cos dh h dA r

dh πα

παα

由于间隙很小,所以间隙内润滑油的流速分布可看作线性分布,则有:

===tan d r h υυωωα

υδδδ

则在微元dh 高度内的力矩为:

33

2===2tan tan tan tan cos cos h h dM dA r dh h h dh ωαπαωατμαπμδαδα

??

因此,圆锥旋转所需的总力矩为:

334

30==2=24

tan tan cos cos H H M dM h dh ωαωαπμπμδαδα??

10. 解:

润滑油与轴承接触处的速度为0,与轴接触处的速度为轴的旋转周速度,即:=

60

n D

πυ 由于间隙很小,所以油层在间隙中沿着径向的速度分布可看作线性分布,即:

=d dy υυδ

则轴与轴承之间的总切应力为:==T A Db υ

τμ

πδ

克服轴承摩擦所消耗的功率为:2

==P T Db υυμπδ

因此,轴的转速可以计算得到:

60=r/min n D υπ

11.解:

根据转速n 可以求得圆盘的旋转角速度:2290

=

==36060

n ππωπ? 如图所示,圆盘上半径为r 处的速度:=r υω,由于间隙很小,所以油层在间隙中沿着轴向的速度分布可看作线性分布,即:

=d dy υυ

δ

则微元宽度dr 上的微元力矩:

3233==2=2=6r dM dA r rdr r r dr r dr ωπμτμ

ππμπδδδ

?? 因此,转动圆盘所需力矩为:

4

42

2

322

-3

(2)0.40.23==6=6=6 3.14=71.98N m 40.23104D

D M dM r dr μμππδδ???????

12. 解:

摩擦应力即为单位面积上的牛顿内摩擦力。由牛顿内摩擦力公式可得:

-3

4

===8850.00159=2814.3210d Pa dy υυτμ

ρνδ???

13. 解:

活塞与缸壁之间的间隙很小,间隙中润滑油的速度分布可以看作线性分布。 间隙宽度:-3-3-152.6-152.4

=

=10=0.11022

D d m δ?? 因此,活塞运动时克服摩擦力所消耗的功率为:

2

2

-4

-3

-2

-3

====6=9200.914410 3.14152.41030.4810=4.42

0.110P T A dL dL

kW

υυυτυμπυρνπδδ

????????? 14. 解:

对于飞轮,存在以下关系式:力矩M=转动惯量J*角加速度α,即=d M J

dt

ω

圆盘的旋转角速度:22600

=

==206060

n ππωπ? 圆盘的转动惯量:2

2

==

G J mR R g

式中,m 为圆盘的质量,R 为圆盘的回转半径,G 为圆盘的重量。

角加速度已知:2

=0.02/rad s α

粘性力力矩:3

22====20224d

d d d L M Tr A dL ω

μτμππδδ

,式中,T 为粘性内摩擦力,d 为轴的直径,L 为轴套长度,δ 为间隙宽度。

因此,润滑油的动力粘度为:

2-22-3

3232-23-2

2

500(3010)0.020.0510====0.2325 Pa s 559.8 3.14(210)510204J GR d L g d L ααδμππδ

???????????? 15. 解:

查表可知,水在20摄氏度时的密度:3=998/kg m ρ ,表面张力:=0.0728/N m σ ,则由式4=cos h gd

σθ

ρ

可得,

-3

-3

440.072810=

==3.665109989.8810

cos cos h m gd σθρ?????? 16. 解:

查表可知,水银在20摄氏度时的密度:3=13550/kg m ρ ,

表面张力:=0.465/N m σ ,则由式4=cos h gd

σθ

ρ

可得,

-3-3

440.465140

=

== 1.3410135509.8810

cos cos h m gd σθρ??-???? 负号表示液面下降。

第二章 习题

1. 解:

因为,压强表测压读数均为表压强,即4=2.710A p Pa ? ,4= 2.910B p Pa -? 因此,选取图中1-1截面为等压面,则有:=+A B Hg p p gh ρ, 查表可知水银在标准大气压,20摄氏度时的密度为33135510/.kg m ?

因此,可以计算h 得到:4

3

-(2.7+2.9)10===0.42213.55109.8

A B Hg p p h m g ρ??? 2. 解:

由于煤气的密度相对于水可以忽略不计,因此,可以得到如下关系式:

222=+g a p p h ρ水 (1) 111=+g a p p h ρ水 (2)

由于不同高度空气产生的压强不可以忽略,即1,2两个高度上的由空气产生的大气压强分别为1a p 和2a p ,并且存在如下关系:12-=a a a p p gH ρ(3)

而煤气管道中1和2处的压强存在如下关系:12=+gH p p ρ煤气 (4) 联立以上四个关系式可以得到:12g +gH=gH a h h ρρρ-水煤气() 即:-3

1231000(100-115)10=+

=1.28+=0.53/20

a h h kg m H ρρρ-??水煤气()

3. 解:

如图所示,选取1-1截面为等压面,则可列等压面方程如下:

12+g =+A a Hg p h p gh ρρ水

因此,可以得到:

-3-321=+-g =101325+135509.890010-10009.880010=212.996

A a Hg p p gh h kPa

ρρ??????水

4. 解:

设容器中气体的真空压强为e p ,绝对压强为ab p

如图所示,选取1-1截面为等压面,则列等压面方程:+=ab a p g h p ρ? 因此,可以计算得到:

-3=-=101325-15949.890010=87.3

ab a p p g h kPa ρ????

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论

工程流体力学及水力学实验报告及分析讨论 实验一流体静力学实验 验原理 重力作用下不可压缩流体静力学基本方程 (1.1) 中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系: (1.2) 此可用仪器(不用另外尺)直接测得S0。 验分析与讨论 同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根。 当P B<0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分:

)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真。 )同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 若再备一根直尺,试采用另外最简便的方法测定γ0。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油 至油面的垂直高度h和h0,由式,从而求得γ0。 如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛由下式计算 中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有 单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、时均有毛细现象,但在计算压差时,互相抵消了。 过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?

工程流体力学教学课件ppt作者闻建龙工程流体力学习题+答案(部分)

闻建龙主编的《工程流体力学》习题参考答案 第一章 绪论 1-1 物质是按什么原则分为固体和液体两大类的? 解:从物质受力和运动的特性将物质分成两大类:不能抵抗切向力,在切向力作用下可以无限的变形(流动),这类物质称为流体。如空气、水等。而在同等条件下,固体则产生有限的变形。 因此,可以说:流体不管是液体还是气体,在无论多么小的剪应力(切向)作用下都能发生连续不断的变形。与此相反,固体的变形与作用的应力成比例,经一段时间变形后将达到平衡,而不会无限增加。 1-2 何谓连续介质假设?引入连续介质模型的目的是什么?在解决流动问题时,应用连续介质模型的条件是什么? 解:1753年,欧拉首次采用连续介质作为流体宏观流动模型,即不考虑流体分子的存在,把真实的流体看成是由无限多流体质点组成的稠密而无间隙的连续介质,甚至在流体与固体边壁距离接近零的极限情况也认为如此,这个假设叫流体连续介质假设或稠密性假设。 流体连续性假设是流体力学中第一个根本性假设,将真实流体看成为连续介质,意味着流体的一切宏观物理量,如密度、压力、速度等,都可看成时间和空间位置的连续函数,使我们有可能用数学分析来讨论和解决流体力学问题。 在一些特定情况下,连续介质假设是不成立的,例如:航天器在高空稀薄气体中飞行,超声速气流中激波前后,血液在微血管(1μm )内的流动。 1-3 底面积为2 5.1m 的薄板在液面上水平移动(图1-3),其移动速度为s m 16,液层 厚度为mm 4,当液体分别为C 020的水和C 0 20时密度为3 856m kg 的原油时,移动平板 所需的力各为多大? 题1-3图 解:20℃ 水:s Pa ??=-3 10 1μ 20℃,3 /856m kg =ρ, 原油:s Pa ??='-3 102.7μ 水: 23 3 /410 416 101m N u =??=? =--δμτ N A F 65.14=?=?=τ

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μμ?'=-=-?,24y y u p a y μμ?'=-=?, 4x x p p p p a μ'=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图 所示),由于上平板运动而引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。(请将 d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2d (1)2d h y p y y u v h x h h μ=- - (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切流动。它只是由于平板运动,由于流体的粘滞性带动流体发生的流动。 当 d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式中2d ()2d h p p v x μ= - (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为2sin (2)2 x g u zh z ,单宽流量 3 sin 3 gh q 。

工程流体力学第二版习题答案

《工程流体力学》习题答案(杜广生主编) 第一章 习题 1. 解:依据相对密度的定义:13600 13.61000 f w d ρρ===。 式中,w ρ 表示4摄氏度时水的密度。 2. 解:查表可知,标准状态下:2 31.976/CO kg m ρ=,2 32.927/SO kg m ρ=,2 31.429/O kg m ρ=, 2 31.251/N kg m ρ=,2 30.804/H O kg m ρ= ,因此烟气在标准状态下的密度为: 11223 1.9760.135 2.9270.003 1.4290.052 1.2510.760.8040.051.341/n n kg m ρραραρα=++=?+?+?+?+?=L 3. 解:(1)气体等温压缩时,气体的体积弹性模量等于作用在气体上的压强,因此,绝对压强为 4atm 的空气的等温体积模量: 34101325405.310T K Pa =?=? ; (2)气体等熵压缩时,其体积弹性模量等于等熵指数和压强的乘积,因此,绝对压强为4atm 的空气的等熵体积模量: 31.44101325567.410S K p Pa κ==??=? 式中,对于空气,其等熵指数为1.4。 4. 解:根据流体膨胀系数表达式可知: 30.0058502V dV V dT m α=??=??= 因此,膨胀水箱至少应有的体积为2立方米。 5. 解:由流体压缩系数计算公式可知: 392 5 11050.5110/(4.90.98)10 dV V k m N dp -?÷=-=-=?-? 6. 解:根据动力粘度计算关系式: 74678 4.2810 2.910Pa S μρν--==??=?? 7. 解:根据运动粘度计算公式:

工程流体力学课后作业答案-莫乃榕版本

流体力学练习题 第一章 1-1解:设:柴油的密度为ρ,重度为γ;40C 水的密度为ρ0,重度为γ0。则在同一地点的相对密度和比重为: 0ρρ=d ,0 γγ=c 30/830100083.0m kg d =?=?=ρρ 30/81348.9100083.0m N c =??=?=γγ 1-2解:336/1260101026.1m kg =??=-ρ 3/123488.91260m N g =?==ργ 1-3解:269/106.191096.101.0m N E V V V V p p V V p p p ?=??=?-=?-=????-=ββ 1-4解:N m p V V p /105.210 41010002956 --?=?=??-=β 299/104.0105.211m N E p p ?=?==-β 1-5解:1)求体积膨涨量和桶内压强 受温度增加的影响,200升汽油的体积膨涨量为: ()l T V V T T 4.2202000006.00=??=?=?β 由于容器封闭,体积不变,从而因体积膨涨量使容器内压强升高,体积压缩量等于体积膨涨量。故: 26400/1027.16108.9140004 .22004.2m N E V V V V V V p p T T p T T ?=???+=?+?-=?+?-=?β 2)在保证液面压强增量0.18个大气压下,求桶内最大能装的汽油质量。设装的汽油体积为V ,那么:体积膨涨量为: T V V T T ?=?β 体积压缩量为:

()()T V E p V V E p V T p T p p ?+?=?+?=?β1 因此,温度升高和压强升高联合作用的结果,应满足: ()()???? ? ??-?+=?-?+=p T p T E p T V V T V V 1110ββ ()())(63.197108.9140001018.01200006.012001145 0l E p T V V p T =???? ?????-??+=???? ???-?+=β ()kg V m 34.1381063.19710007.03=???==-ρ 1-6解:石油的动力粘度:s pa .028.01.010028=?= μ 石油的运动粘度:s m /1011.39 .01000028.025-?=?==ρμν 1-7解:石油的运动粘度:s m St /1044.0100 4025-?===ν 石油的动力粘度:s pa .0356.010 4100089.05=???==-ρνμ 1-8解:2/1147001 .01147.1m N u =?== δμτ 1-9解:()()2/5.1621196.012.02 15.0065.021m N d D u u =-?=-==μδμτ N L d F 54.85.16214.01196.014.3=???=???=τπ 第二章 2-4解:设:测压管中空气的压强为p 2,水银的密度为1ρ,水的密度为2ρ。在水银面建立等压面1-1,在测压管与容器连接处建立等压面2-2。根据等压面理论,有 21p gh p a +=ρ (1) gz p z H g p 2221)(ρρ+=++(2) 由式(1)解出p 2后代入(2),整理得: gz gh p z H g p a 2121)(ρρρ+-=++

传热学 参考书目

参考书目 1.杜广生主编,工程流体力学,中国电力出版社, 2005年1月,北京。 2.孔珑主编,工程流体力学(第二版),水利电力出版社, 1992,北京。 3.景思睿,张鸣远编著,流体力学,西安交通大学出版社,2001 年7月,西安。 4.莫乃榕主编,工程流体力学,华中理工大学出版社。 5.张也影编,流体力学,高等教育出版社 6.禹华谦, 莫乃榕. 工程流体力学(新世纪土木工程系列教材).北京:高等教育出版社,2004.1. 7.归柯庭等. 工程流体力学(21世纪高等院校教材). 北京:科学出版社, 2001. 8.禹华谦, 陈春光, 麦继婷. 工程流体力学(水力学). 成都:西南交通大学, 1999.12. 9.莫乃榕, 槐文信. 流体力学水力学题解(21世纪高等学校辅导教材.力学系列丛书).华中科技大学出版社,2002.1. 10.美)M.C.波特(Merle C.Potter), D.C.维格特(David C.Wiggert)著.流体力学(英文版).北京:机械工业出版社,2003.8. 11.郑洽馀, 鲁钟琪. 流体力学(第1版). 北京:机械工业出版社,1980. 12.潘文全. 流体力学基础(第1版). 北京:机械工业出版社,1980. 13.周亨达. 工程流体力学(第2版). 北京:冶金工业出版社,1988. 14.王维新. 流体力学(第1版). 北京:煤炭工业出版社,1986. 15.潘文全. 工程流体力学(第1版). 北京:清华大学出版社,1988. 16.李诗久. 工程流体力学(第1版). 北京:机械工业出版社,1980. 17.江宏俊. 流体力学(第1版). 北京:高等教育出版社,1985. 18.罗大海、诸葛茜. 流体力学简明教程. 北京:高等教育出版社,1986. 19.屠大燕. 流体力学与流体机械(第1版). 北京:中国建筑工业出版社,1994. 20.莫乃榕. 工程流体力学. 武汉:华中科技大学出版社,2000. 21.汪兴华. 工程流体力学习题集(第1版). 北京:机械工业出版社,1983. 22.叶诗美. 工程流体力学习题集(第1版). 北京:水利电力出版社,1985. 23.张也影, 王秉哲. 流体力学题解. 北京:北京理工大学出版社,1996. 24.程军等. 流体力学学习方法及解题指导. 上海:同济大学出版社,2004.9. 25.尚进. 工程流体力学. 北京:中国电力出版社(大连电力工业学校), 26.黄卫星等. 工程流体力学(过程装备与控制专业核心教材). 北京:化学工业出版社, 2001. 27.贺孔清. 工程流体力学. 东营: 石油大学出版社, 1995 28.赵毅山等. 流体力学. 上海:同济大学出版社,2004. 29.张兆顺, 崔桂香. 流体力学. 北京:清华大学出版社,1999. 30.孙文策. 工程流体力学. 大连:大连理工大学出版社, 1995. 31.丁祖荣.流体力学(高等教育“十五”国家级规划教材). 北京:高等教育出版社,2003.12. 32.陈卓如等编.工程流体力学(高等教育“九五”教育部重点教材). 北京:高等教育出版社,2004.1 33.孔珑主编.流体力学Ⅰ、流体力学Ⅱ、两相流体力学,北京,高等教育出版社,2003.9

工程流体力学课后习题答案72110

流体及其主要物理性质 7 相对密度0.89的石油,温度20oC 时的运动粘度为40cSt ,求动力粘度为多少? 解:89.0== 水 ρρ d ν=40cSt =0.4St =0.4×10-4 m 2 /s μ=νρ=0.4×10-4 ×890=3.56×10-2 Pa ·s 8 图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1,油的动力粘度μ=1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少? 解:233/10147.110 11147.1m N dy du ?=??==-μ τ 9 如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=? 解:A =πdL , μ=0.65P =0.065 Pa ·s , Δu =0.5m/s , Δy=(D-d)/2 ()N dy du A F 55.82 1096.11125 .010141096.1114.3065.0222=?-??????==---μ流体静力学 6油罐内装相对密度0.70的汽油,为测定油面高度,利用连通器原理,把U 形管内装上相对密度为1.26的甘油,一端接通油罐顶部空间,一端接压气管。同时,压气管的另一支 引入油罐底以上0.40m 处,压气后,当液面有气逸出时,根据U 形管内油面高差h =0.70m 来推算油罐内的油深H 为多少? 解:p -γ甘油Δh =p -γ汽油(H-0.4) H =γ甘油Δh/γ汽油+0.4=1.26×0.7/0.70+0.4=1.66m 7为测定油品重度,用如下装置,经过1管或2管输入气体,直至罐内油面出现气泡为止。用U 形管水银压力计分别量出1管通气时

工程流体力学课件

流体力学 绪论 第一章流体的基本概念 第二章流体静力学 第三章流体动力学 第四章粘性流体运动及其阻力计算 第五章有压管路的水力计算 第六章明渠定常均匀流 第九章泵与风机 绪论 一、流体力学概念 流体力学——是力学的一个独立分支,主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律。 1738年伯努利出版他的专著时,首先采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。 研究内容:研究得最多的流体是水和空气。 1、流体静力学:关于流体平衡的规律,研究流体处于静止(或相对平衡)状态时,作用于流体上的各种力之间的关系; 2、流体动力学:关于流体运动的规律,研究流体在运动状态时,作用于流体上的力与运动要素之间的关系,以及流体的运动特征与能量转换等。 基础知识:主要基础是牛顿运动定律和质量守恒定律,常常还要用到热力学知识,有时还用到宏观电动力学的基本定律、本构方程(反映物质宏观性质的数学模型)和物理学、化学的基础知识。 二、流体力学的发展历史

流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。古时中国有大禹治水疏通 江河的传说;秦朝李冰父子带领劳动人民修建的 马人建成了大规模的供水管道系统等等。 流体力学的萌芽:距今约2200年前,希腊学者阿基米德写的“论浮体”一文,他对静止时的液体力学性质作了第一次科学总结。建立了包括物理浮力定律和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。 15世纪,意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题;17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。 流体力学的主要发展: 17世纪,力学奠基人牛顿(英)在名著《自然哲学的数学原理》(1687年)中讨论了在流体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他针对粘性流体运动时的内摩擦力也提出了牛顿粘性定律。使流体力学开始成为力学中的一个独立分支。但是,牛顿还没有建立起流体动力学的理论基础,他提出的许多力学模型和结论同实际情形还有较大的差别。 之后,皮托(法)发明了测量流速的皮托管;达朗贝尔(法)对运动中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利(瑞士)从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。 欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国拉格朗日对于无旋运动,德国赫尔姆霍兹对于涡旋运动作了不少研究……。在上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘性流体。这种理论当然阐明不了流体中粘性的效应。 19世纪,工程师们为了解决许多工程问题,尤其是要解决带有粘性影响的问题。于是他们部分地运用流体力学,部分地采用归纳实验结果的半经验公式进行研究,这就形成了水力学,至今它仍与流体力学并行地发展。1822年,纳维(法)建立了粘性流体的基本运动方程;1845年,斯托克斯

32学时工程流体力学复习题与答案

32学时流体力学课复习题 一、填空题 1、流体是一种受任何微小的剪切力作用时都会产生连续变形的物质。 2、牛顿内摩擦定律=μ其中的比例系数称为动力黏性系数(动力粘度) 。 3、作用于流体上的力按其性质可以分为表面力力和质量力 4、水力学中,单位质量力是指作用在单位_质量_ 液体上的质量力。 5、单位质量力的量纲是L/T2。 6、对于不同的流体,体积弹性系数的值不同,弹性模量越大,流体越不易被压缩。 7、某点处的绝对压强等于该处的大气压强减去该处的真空度。 8、某点处的真空等于该处的大气压强减去该处的绝对压强。 9、某点处的相对压强等于该处的绝对压强减去该处的一个大气压。 10、根据粘性的大小,粘性流体的流动状态可分为层流和紊流。 11、根据流体是否有粘性,流体可分为粘性流体和理想流体。 12、根据流动参数随时间的变化,流体流动可分为定常流动和非定常流动。 13、连续性方程是质量守恒定律在流体力学上的数学表达形式。 14、总流伯努利方程是机械能守恒定律在流体力学上的数学表达形式。 15、计算局部阻力的公式为:;计算沿程阻力的公式为:。 16、相似条件包括几何相似、运动相似和动力相似。 17、沿程阻力主要是由于流体内摩擦力引起的,而局部阻力则主要是由于流动边界局部形状急剧变化引起的。 18、连续性方程表示控制体的__质量_____守恒。 19、液体随容器作等角速度旋转时,重力和惯性力的合力总是与液体自由面_垂直。 20、圆管层流中断面平均流速等于管中最大流速的1/2

二、简答题 1、简述液体与气体的粘性随温度的变化规律,并说明为什么? 答: 温度升高时液体的黏性降低,因为液体的粘性主要是分子间的内聚力引起的,温度升高时,内聚力减弱,故粘性降低,而造成气体粘性的主要原因在于气体分子的热运动,温度越高,热运动越强烈,所以粘性就越大 2、请详细说明作用在流体上的力。 作用在流体上的力按其性质可分为表面力和质量力,表面力是指作用在所研究流体表面上的力,它是由流体的表面与接触的物体的相互作用差生的,质量力是流体质点受某种力场的作用力,它的大小与流体的质量成正比 3、简述连续介质假说。 连续介质假设将流体区域看成由流体质点连续组成,占满空间而没有间隙,其物理特性和运动要素在空间是连续分布的。从而使微观运动的不均匀性、离散性、无规律性与宏观运动的均匀性、连续性、规律性达到了和谐的统一。(宏观无限小微观无限大) 4、何谓不可压缩流体?在什么情况下可以忽略流体的压缩性? 除某些特殊流动问题,工程实际中将液体看作是密度等于常数的不可压缩流体,当气体的速度小于70m/s 且压力和温度变化不大时也可近似地将气体当作不可压缩流体处理 5、流体静压力有哪两个重要特征? 特征一:在平衡的流体中,通过任意一点的等压面,必与该点所受的质量力互相垂直。 特征二:当两种互不相混的液体处于平衡时,它们的分界面必为等压面。 6、不同形状的敞开的贮液容器放在桌面上,如果液深相同,容器底部的面积相同,试问作用于容器底部的总压力是否相同?桌面上受到的容器的作用力是否相同?为什么? 容器底部的总压力=液体压强x面积,而压强由液深决定(同种液体),所以作用于容器底部的总压力相同; 桌面上所受力是整个储有液体容器的重力,桌面上受到的容器的作用力因容器总重量不同而不同。 本题目也有漏洞:不同形状的敞开的贮液容器,体积关系不能确定,其总重量不一定相同或也不一定不同。 7、相对平衡的液体的等压面形状与什么因素有关? 质量力(在平衡点流体中,通过任意一点的等压面必须与该店所受的质量力互相垂直) 8、静力学的全部内容适用于理想流体还是实际粘性流体?或者两者都可?为什么? 流体处于静止或相对静止状态时,各流体质点间没有相对运动,速度梯度等于零,切向应力也等于

流体力学第五章习题答案

第五章习题答案 选择题(单选题) 5.1 速度v ,长度l ,重力加速度g 的无量纲集合是:(b ) (a )lv g ;(b )v gl ;(c )l gv ;(d )2 v gl 。 5.2 速度v ,密度ρ,压强p 的无量纲集合是:(d ) (a )p v ρ;(b )v p ρ;(c )2pv ρ ;(d )2 p v ρ。 5.3 速度v ,长度l ,时间t 的无量纲集合是:(d ) (a ) v lt ;(b )t vl ;(c )2l vt ;(d )l vt 。 5.4 压强差p V ,密度ρ,长度l ,流量Q 的无量纲集合是:(d ) (a ) 2 Q pl ρV ;(b ) 2 l pQ ρV ;(c ) plQ ρ V ;(d 。 5.5 进行水力模型实验,要实现明渠水流的动力相似,应选的相似准则是:(b ) (a )雷诺准则;(b )弗劳德准则;(c )欧拉准则;(d )其他。 5.6 进行水力模型实验,要实现有压管流的动力相似,应选的相似准则是:(a ) (a )雷诺准则;(b )弗劳德准则;(c )欧拉准则;(d )其他。 5.7 雷诺数的物理意义表示:(c ) (a )粘滞力与重力之比;(b )重力与惯性力之比;(c )惯性力与粘滞力之比;(d )压力与粘滞力之比。 5.8 明渠水流模型实验,长度比尺为4,模型流量应为原型流量的:(c ) (a )1/2;(b )1/4;(c )1/8;(d )1/32。 5.9 压力输水管模型实验,长度比尺为8,模型水管的流量应为原型输水管流量的:(c ) (a )1/2;(b )1/4;(c )1/8;(d )1/16。 5.10 假设自由落体的下落距离s 与落体的质量m 、重力加速度g 及下落时间t 有关,试用 瑞利法导出自由落体下落距离的关系式。 解: ∵s Km g t α βγ = []s L =;[]m M =;[]2g T L -=;[]t T = ∴有量纲关系:2L M T L T α β βγ-=

工程流体力学答案

工程流体力学 习题详解 第一章 流体的物理性质 【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。 【解】 3340.4530.90610 kg/m 510 m V ρ-= ==?? 3 3 0.906100.9061.010w ρδρ?===? 【1-2】 体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到4.9×105Pa 时, 体积减少1升。求水的压缩系数和弹性系数。 【解】由压缩系数公式 105 10.001 5.110 1/Pa 5(4.91098000) p dV V dP β-=-==???- 911 1.9610 Pa 5.1 p E β= = =? 【1-3】温度为20℃,流量为60 m 3/h 的水流入加热器,如果水的体积膨胀系数βt =0.00055K -1,问加热到80℃后从加热器中流出时的体积流量变为多少? 【解】根据膨胀系数 1t dV V dt β= 则 211t Q Q dt Q β=+ 3600.00055(8020)6061.98 m /h =??-+= 【1-4】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=0.9807Pa·s ,求作用在平板单位面积上的阻 力。 【解】根据牛顿内摩擦定律 =du dy τμ 则 21 =0.980798.07N/m 0.01 τ? = 【1-5】已知半径为R 圆管中的流速分布为 r z u 习题1-4图 油 δ u y x

2 2=(1)r u c R - 式中c 为常数。试求管中的切应力τ与r 的关系。 【解】根据牛顿内摩擦定律 =du dy τμ 则 2222=[(1)]d r r c c dr R R τμμ-=- 第二章 流体静力学 【2-1】容器中装有水和空气,求A 、B 、C 和D 各点的表压力? 【解】 3434222 3232() ()()(2) MA MB MA MC MB MD MC p g h h p p g h h h gh p p gh p p g h h g h h ρρρρρρ=+=-++=-==-=-+=-+ 【2-2】如图所示的U 形管中装有水银与水,试求: (1)A 、C 两点的绝对压力及表压力各为多少? (2)求A 、B 两点的高度差h ? 【解】 (1) ()w 0.3a b A a p p g ρ=+? w 0.3MA p g ρ=? ()w H 0.30.1ab C a p p g g ρρ=+?+? w H 0.30.1MC p g g ρρ=?+? (2)选取U 形管中水银的最低液面为等压面,则 w H 0.3g gh ρρ?= 得 w H 0.3 22 cm h ρρ?== 【2-3】 在一密闭容器内装有水及油,密度分别为ρw 及ρo ,油层高度为h 1,容器底部装有水银液柱压力计,读数为R ,水银面与液面的高度差为h 2,试导出容器上方空间的压力p 与读 数R 的关系式。 【解】选取压力计中水银最低液面为等压面,则 1w 21()o H p gh g h R h gR ρρρ+++-= 得 1w 21()H o p gR gh g h R h ρρρ=--+- 题2-1图 ? ?A ?B ?C p a h 1 h 2 h 3 h 4 空气 空气 D 题2-2图 p a C p a 30cm 10cm h A B 水 水银 水 油 ? p h 1 h 2 R 题2-3图

工程流体力学及水力学实验报告(实验总结)

工程流体力学及水力学实验报告实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测 压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当P B <0时,试根据记录数据,确定水箱内的真空区域。 ,相应容器的真空区域包括以下三部分: (1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。 (2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。 (3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。 3.若再备一根直尺,试采用另外最简便的方法测定γ 。 最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂 直高度h和h 0,由式,从而求得γ 。 4.如测压管太细,对测压管液面的读数将有何影响? 设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算 式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm, =0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0。于是有(h、d单位为mm) 一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。 如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。 5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面? 不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。 6.用图1.1装置能演示变液位下的恒定流实验吗? 关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒

工程流体力学课后习题答案_袁恩熙_流体力学第三章作业(1)

3.1一直流场的速度分布为: U=(4x 2+2y+xy)i+(3x-y 3+z)j (1) 求点(2,2,3)的加速度。 (2) 是几维流动? (3) 是稳定流动还是非稳定流动? 解:依题意可知, V x =4x 2+2y+xy ,V y =3x-y 3+z ,V z =0 ∴a x = t V x ??+ v x X V x ??+v y Y V x ??+v z Z V x ?? =0+(4x 2+2y+xy)(8x+y)+(3x-y 3+z)(2+x) =32x 3+16xy+8x 2y+4x 2y+2y 2+x y 2+6x-2 y 3+2z+3 x 2-x y 3+xz 同理可求得, a y =12 x 2+6y+3xy-9x y 2+3 y 5-3 y 2z a z =0 代入数据得, a x = 436,a y =60, a z =0 ∴a=436i+60j (2)z 轴方向无分量,所以该速度为二维流动 (3)速度,加速度都与时间变化无关,所以是稳定流动。 3.2 已知流场的速度分布为: k z yj yi x 2223+-=μ (1)求点(3,1,2)的加速度。 (2)是几维流动? 解:(1)由 z u z y u y x u x t u x x x x x u u u a ????????+++=

z u z y u y x u x t u y y y y y u u u a ????????+++= z u z y u y x u x t u z z z z z u u u a ????????+++= 得: 0202 2 2+?+?+=x y x xy y x a x 0)3(300+-?-+=y a y z z a z 420002?+++= 把点(3,1,2)带入得加速度a (27,9,64) (2)该流动为三维流动。 3-3 已知平面流动的速度分布规律为 ()() j y x x i y x y u 2 22222+Γ++Γ=ππ 解:() () 2 22 22,2y x x u y x y u y x +Γ= +Γ= ππ 流线微分方程:y x u dy u dx = 代入得: ()() 2 22 222y x x dy y x y dx +Γ= +Γππ C y x ydy xdx x dy y dx =-?=-?=220 3.4 截面为300mm ×400mm 的矩形风道,风量为2700m 3/h ,求平均流速。如风道出口截面收缩为150mm ×400mm 求该截面的平均流速。 解:因为v=q A /A 所以v 1=q A /A 1=2700/(300x400x10-6)=22500m/h=6.25m/s V 2=q A /A 2=2700/(150x400x10-6)=45000m/h=12.5m/s 3.5 渐缩喷嘴进口直径为50mm ,出口直径为10mm 。若进口流速为3m/s ,求喷嘴出口流速为多少?

水力学工程流体力学

水力学工程流体力学 实验指导书及实验报告 专业农田水利班级 学号姓名 河北农业大学城乡建设学院水力学教研室

目录 (一)不可压缩流体恒定流能量方程(伯诺里方程)实验 (1) (二)不可压缩流体恒定流动量定律实验 (4) (三)雷诺实验 (8) (四)文丘里实验 (10) (五)局部水头损失实验 (14) (六)孔口与管嘴出流实验 (18)

(一)不可压缩流体恒定流能量方程(伯诺里方程)实验 一.实验目的要求: 1.掌握流速、流量、压强等动水力学水力要素的实验两侧技术; 2.验证恒定总流的能量方程; 3.通过对动水力学诸多水力现象的实验分析研究,进一步掌握有压管流中动水力学的能量转换特性。 二.实验装置: 本实验的装置如图1.1所示,图中: 1.自循环供水器; 2.实验台; 3.可控硅无级调速器; 4.溢流板; 5.稳水孔板; 6.恒压水箱; 7.测压计; 8.滑动测量尺; 9.测压管;10.实验管道;11.测压点;12.毕托管;13.实验流量调节阀。 三.实验原理:

在实验管路中沿管内水流方向取n 个过水断面,可以列出进口断面(1)至断面(i )的能量方程式(2,3,,i n =??????) 1i z + +=z +++22 1 1 1122i i i w i p v p v h g g 取121n a a a ==???=,选好基准面,从已设置的各断面的测压管中读出z+ p 值,测出通过 管路的流量,即可计算出断面平均流速v 及2 2v g ,从而即可得到各断面测管水头和总水头。 四.实验方法与步骤: 1.熟悉实验设备,分清各测压管与各测压点,毕托管测点的对应关系。 2.打开开关供水,使水箱充水,待水箱溢流后,检查泄水阀关闭时所有测压管水面是否齐平,若不平则进行排气调平(开关几次)。 3.打开阀13,观察测压管水头线和总水头线的变化趋势及位置水头、压强水头之间的相互关系,观察当流量增加或减少时测管水头的变化情况。 4.调节阀13开度,待流量稳定后,侧记各测压管液面读数,同时测记实验流量(与毕托管相连通的是演示用,不必测记读数)。 5.再调节阀13开度1~2次,其中一次使阀门开度最大(以液面降到标尺最低点为限),按第4步重复测量。 五.实验成果及要求: 实验台号No 1.把有关常数记入表1.1 表1.1 有关常数记录表 水箱液面高程0?= cm,上管道轴线高程s ?= cm 。 注:(1)打“*”者为毕托管测点(测点编号见图1.2) (2)2、3为直管均匀流段同一断面上的二个测压点,10、11为弯管非均匀流段同一断面上的二个测点。 2.量测(z+ p )并记入表1.2。

工程流体力学习题及答案(李良)

工程流体力学习题 第一部分 流体及其物理性质 1、按连续介质的概念,流体质点是指: A 、流体的分子; B 、流体内的固体颗粒; C 、几何的点; D 、几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。 2、与牛顿内摩擦定律有关的因素是: A 、压强、速度和粘度; B 、流体的粘度、切应力与角变形率; C 、切应力、温度、粘度和速度; D 、压强、粘度和角变形。 3、在研究流体运动时,按照是否考虑流体的粘性,可将流体分为: A 、牛顿流体及非牛顿流体; B 、可压缩流体与不可压缩流体; C 、均质流体与非均质流体; D 、理想流体与实际流体。 4、理想液体的特征是: A 、粘度为常数 B 、无粘性 C 、不可压缩 D 、符合RT p ρ=。 5、 流体运动黏度υ的国际单位是: A 、m 2/s ; B 、N/m 2; C 、 kg/m ; D 、N·s/m 2。 6、液体黏度随温度的升高而____,气体黏度随温度的升高而_____。 A 、减小,升高; B 、增大,减小; C 、减小,不变; D 、减小,减小 7、下列说法正确的是: A 、液体不能承受拉力,也不能承受压力 B 、液体不能承受拉力,但能承受压力 C 、液体能承受拉力,但不能承受压力 D 、液体能承受拉力,也能承受压力。 8、下列流体哪个属牛顿流体: A 、汽油; B 、纸浆; C 、血液; D 、沥青。 9、液体的黏性主要来自于液体: A 、分子热运动; B 、分子间内聚力; C 、易变形性; D 、抗拒变形的能力。 10、 流体是 一种物质。 A 、不断膨胀直到充满容器的; B 、实际上是不可压缩的; C 、不能承受剪切力的; D 、在任一剪切力的作用下不能保持静止的。 11、 简答题 (1) 连续介质假设 (2) 牛顿流体 (3) 流体微团 12、 如图所示为压力表校正器。器内充满压缩系数为βp =4.75×10-10 1/Pa 的

工程流体力学习题及答案

工程流体力学习题及答案(1) 1 某种液体的比重为3,试求其比容。 (答:3.3×10-4米3/公斤) 2 体积为5.26米3的某种油,质量为4480公斤,试求这种油的比重、密度与重度。 (答:0.85;851公斤/米3;8348牛/米3) 3 若煤油的密度为0.8克/厘米3,试求按工程单位计算的煤油的重度、密度与比容。 (答:800公斤力/米3;81.56公斤力·秒2/米4;1.25×10-3米3/公斤力) 4 试计算空气在温度t=4℃,绝对压力P=3.4大气压下的重度、密度与比容。 (答:42.4牛/米3;4.33公斤/米3;0.231米3/公斤) 5 试计算二氧化碳在温度为t=85℃,绝对压力P=7.1大气压下的重度、密度与比容。 (答:104牛/米3;10.6公斤/米3;0.09厘米3/公斤 ) 6 空气在蓄热室内于定压下,温度自20℃增高为400℃,问空气的体积增加了多少倍? (答:1.3倍) 7 加热炉烟道入口烟气的温度900=t 入℃,烟气经烟道及其中设置的换热器后,至烟道出 口温度下降为500=t 出℃,若烟气在0℃时的密度为28.10 =ρ公斤/米3,求烟道入口与出口处烟气的密度。 (答:298.0=ρ人公斤/米3;452.0=ρ出 公斤/米3) 8 试计算一氧化碳在表压力为0.3大气压、温度为8℃下的重度。 (答:15.49牛/米3) 9 已知速度为抛物线分布,如图示 y=0,4,8,12,17厘米处的速度梯度。又若气体的绝 对粘性系数为1013.25-?=μ牛·秒/米3,求以上各处气体的摩擦切应力。 9 题图 10 夹缝宽度为h ,其中所放的很薄的大平板以定速v 移动。若板上方流体的粘性系数为μ,

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学(水力学)闻德第五章-实际流体动力学基础课后答案

工程流体力学闻德课后习题答案 第五章 实际流体动力学基础 5—1设在流场中的速度分布为u x =2ax ,u y =-2ay ,a 为实数,且a >0。试求切应力τxy 、τyx 和附加压应力p ′x 、p ′y 以及压应力p x 、p y 。 解:0y x xy yx u u x y ττμ??? ?==+= ????? 24x x u p a x μ μ?'=-=-?,24y y u p a y μμ ?'=-=?, 4x x p p p p a μ '=+=-,4y y p p p p a μ'=+=+ 5-2 设例5-1中的下平板固定不动,上平板以速度v 沿x 轴方向作等速运动(如图所示),由于上平板运动而 引起的这种流动,称柯埃梯(Couette )流动。试求在这种流动情况下,两平板间的速度分布。 (请将d 0d p x =时的这一流动与在第一章中讨论流体粘性时的流动相比较) 解:将坐标系ox 轴移至下平板,则边界条件为 y =0,0X u u ==;y h =,u v =。 由例5-1中的(11)式可得 2 d (1)2d h y p y y u v h x h h μ=-- (1) 当d 0d p x =时,y u v h =,速度u为直线分布,这种特殊情况的流动称简单柯埃梯流动或简单剪切 流动。它只是由于平板运动,由于流体的粘滞性

带动流体发生的流动。 当d 0d p x ≠时,即为一般的柯埃梯流动,它是由简单柯埃梯流动和泊萧叶流动叠加而成,速度分布为 (1)u y y y p v h h h =-- (2) 式 中 2d () 2d h p p v x μ=- (3) 当p >0时,沿着流动方向压强减小,速度在整个断面上的分布均为正值;当p <0时,沿流动方向压强增加,则可能在静止壁面附近产生倒流,这主要发生p <-1的情况. 5-3 设明渠二维均匀(层流)流动,如图所示。若忽略空气阻力,试用纳维—斯托克斯方程和连续性方程,证明过流断面上的速度分布为 2sin (2) 2x g u zh z r q m =-,单宽流量 3 sin 3gh q r q m =。

相关文档
最新文档