原子荧光问题总结 实战经验

原子荧光问题总结 实战经验
原子荧光问题总结 实战经验

原子荧光问题总结

1,问:我做Se时的空白在90左右,而做汞和砷空白就到了600左右,差好大啊,这个值是否合理啊,多少是可以接受的范围啊,谢谢;那么空白高得原因怎么样来排查啊

答:除了汞的空白在300左右,其余的元素灯大约在100左右;调节负高压和灯电流能降低荧光值。一般负高压降低20V荧光值降低一倍;另:空白确实有点高。不知道大家遇到过没有,环境温度高的时候空白就高,大概在8月份,由于有通风橱,空调也不凉了,结果空白特别高,后来到了10月份,空白就下来了。

注:关于空白值,是根据仪器不同而不同的。用一个厂家的仪器空白值比较接近,不同厂家的仪器就没有可比性了。再者,像问题中的空白值不同,如果灯电流,负高压给的相同的话,有可能是灯的问题。不同的灯强度不同,所以空白值就有所不同。再者,空白值是个相对的概念,不能确切的说多大的空白值是好的,只要你的净强度值够就行。

2,问:海光AFS2202用了4年多,是教学仪器,为什么点火炉丝今年容易烧断,是什么原因导致炉丝烧断呢。一般灯电流最大采用80mA

答:一个可能是炉丝抻的太开了,还有一个可能就是酸度太大了(环境的酸度),被腐蚀了。和灯电流没有关系。检查一下玻璃丝棉。

注:这种属于小问题了,一般炉丝是不那么容易烧断的,可能接触不好,接触点老化所致。

3,问:主要问题:同一个样品多次检测,重复性很差,通常都是逐渐降低,不知道是什么原因,请老师们帮忙看看!(注:仪器用的是北京瑞利AF-610A)答:重复性太差是因为载气的流量不够。仪器的背后有个次级减压阀,固定的0.05MPa,我的仪器由于种种原因没有调上去,导致仪器前面流量调节失去作用,只能在300ml/min左右,通过调节后,流量可以上到需要的水平,重复性就好了很多了。

注:瑞利的仪器我没用过,不过重现性反应的是仪器的整体水平,仪器的稳定性是个综合的指标,进样系统,载气大小,屏蔽气大小,气液分离器的好坏,实验室的温度等等都能影响到仪器的稳定性。

4,问:我今天做hg,发现预热的时间短了的话荧光一直是负的.还有一直曲线配不好,我是自动配置,配了1ppb,然后设置了0.1,0.2,0.5,1.0四个点.后来配置1ppm还是不行.不知道怎么回事.还有荧光老是负值怎么回事(仪器北京吉天AFS9230的荧光)

答:检查下看元素灯是否打开,光电系统是否正常。排除这两个原因在找其他原因,或者硼氢化钾(钠)配置是否有问题。看看点火炉丝是否断了,我也出现过这样的情况

注:可以先换其他灯做试试仪器有没有问题,在用同样的还原剂灯电流负高压的情况下去试其他灯。有可能是没点着火,因为一个ppm的荧光值应该很高的。

5,请教,在原子荧光测定时,有没有荧光强度值最低和最高的限制.就是说我的空白荧光值在什么范围最好,测定中荧光强度值超过多少,测定将不准确,如何判定呢?

答:建议用仪器公司提供的条件,标准系列浓度,一般不会出现很奇怪的值的

注:荧光测的都是净荧光值,空白高低并没有多大的关系。再者,荧光都是使用标准曲线法进行测量的,通过与标准曲线的比对,然后得出被测样品的浓度。如果被测样品高于你配的系列,那测量就不准了。

6,【讨论】氢化物发生中是氢气和氩气在燃烧么?

其实这个看似简单的问题,却一直被广大厂家忽视。因为厂家写的是氩氢火焰,造成用户认为是氩气和氢气在燃烧。

这是错误的。燃烧就是一个电子得失过程,氢气和氩气,确实没有电子得失的可能。应是氢气和氧气在燃烧。但是为何叫氢氩焰,是个问题。再者,应是应当是氧气和氢化物、氢气在燃烧。

7,【求助】汞灯点不着怎么办?我用的AFS-830,今天开机(之前n久没用过)发现汞灯不亮,换了个灯还是不亮,用打火器也不管用。怎么办呢?灯坏了不会一点都不亮吧?

答:1把其它灯如As灯放在该道试试,若亮说明灯座无问题

2用灯盒内的海绵擦灯外壳几下(通电状态下).

3仔细察看灯外壳是否有破损.

在东北的冬天比较多这种现象的

用绸布擦拭一下就好了

8,弱弱地问一下,NaOH或KOH的作用?

作用有以下几点:1)NaBH4强还原剂,只有在碱性环境下稳定,所以配置过

程中需要加入一定量的相同离子的碱,保持溶液的碱性,另外在氢化物反应阶段可以中和过量的载夜(酸),防止产生过量的氢气,造成气相干扰。准确地说,起还原作用的是硼氢化钠与盐酸的反应产物--活性氢。氢氧化钠的作用有2:1提供硼氢化钠稳定存在的环境;2与载流液中的盐酸组成载气控制体系,酸度过大则氢气量过高会“稀释”砷化氢,降低响应值;酸度过低则影响砷化氢形成。2)配置的先后顺序:要先溶解氢氧化钠(钾)再溶硼氢化钾

9,问:硫脲的化学性质和作用究竟是什么

答:化学性质如下:硫脲可以看成是脲分子中的氧被硫取代所生成的化合物。它可由硫氰酸铵加热得到。

硫脲为白色菱形晶体,熔点180℃,能溶于水。

硫脲性质与脲相似,例如能与强酸生成盐,但不如脲盐稳定;在酸、碱存在下,容易发生水解:

硫脲可发生互变异构成为烯醇式的异硫脲,异硫脲的化学性质比较活泼,是硫脲的主要反应形式。例如,硫脲易生成S-烷基衍生物,也易氧化形成二硫键。

脲则主要以酮型存在,所以脲就不易发生上述反应。

硫脲是一个重要的化工原料,可用来生产甲硫氧嘧啶等药物。药剂上又可用作抗氧化剂。

在荧光分析中的作用:硫脲为还原剂,硫脲-抗坏血酸也为还原剂(混合),有关验证表明,单用硫脲没有用硫脲-抗坏血酸混合还原剂的效果佳。

另外,硫脲还对Cu2+、Co3+、Ni2+等离子有掩蔽作用。

维C是起到稳定作用的!

10. 原子荧光通信失败的原因和解决方法

通讯失败的原因有以下几种可能:

(1)、主机电源开关未打开

(2)、开机顺序不对

(3)、主机电路不正常

(4)、通讯接口(RS232电缆及插头)有问题

(5)、软件有问题

可以通过以下方法解决:

(1)、打开电源开关

(2)、重新复位,即按顺序重新开启微机、主机

(3)、检查接口是否正确、电缆是否正常、插头接触良好否

(4)、重新安装操作软件

(5)、维修电路

11,处理测砷样品的问题

测砷时,国标中对固体的前处理有两种方法,其中一种是灰化法。我的问题是灰化法中先后加入的硝酸镁溶液与氧化镁固体都起什么作用?

答:1.加入的硝酸镁在加热的情况下可以分解成氧化镁,氧化镁除了保温传热以外,更起到防止砷挥发的作用,因为灼烧中升华出的三氧化二砷能被他固定下了。因此,在灰化样品前,应将氧化镁粉末仔细、均匀的覆盖在全部样品干渣的表面。(氧化镁是碱性氧化物,三氧化二砷是酸性氧化物)

2.砷与加入的硝酸镁和氧化镁生成不挥发的焦砷酸镁,氧化镁还能减少坩埚对样品的吸留

12,问:原子荧光怎样才能测准样品中的铅

做原子荧光测定样品中的铅时,标液中荧光值出现今天高,明天低的现象,而且有时数值差异很大。请教:怎样配制载流和还原剂中的酸碱度才能使测定结果较好?

答:1.原子荧光测定,我做的比较多的是汞砷硒,样品多为土壤,植株,水系,畜产品。在检测过程中,发现原子荧光试剂和配置的溶剂都比较重要,大家都购买的时候,不仅要注意纯度,更要检测一下试剂的空白。

首先说明,我使用得试剂都是国产,从上海国药集团试剂公司购买。

盐酸:这个常用,必须是GR,建议检测10%盐酸汞空白。还有就是盐酸不能混瓶使用,就是一瓶用了一大半,把它和另一瓶合用。

硼氢化钾(钠),它关系到砷硒的检测,纯度为95%(国产)。有时候,作汞没有问题,作砷硒就出不来信号,仔细看看仪器气液分离树那里没有气泡产生,没有反应,可能就是硼氢化钠失效了,无法产生大量的氢气。请注意,该试剂怕潮,平时最好放置在干燥皿内。我发现有一种小瓶100g的好用,黄白包装的,一直用到完都好用。有一种500g大瓶装小半瓶,也是100克的,不好用,刚开始没事,后来效果就差了。溶液当天配置,冷藏最多用3天,我一般现配现用。氢氧化钾(氢氧化钠)用来保护硼氢化钠,GR,我一般配置还原剂后加几块固体,现配先用不需要加很多如0.5%,加一点就够了。但是装还原剂最好使用小口瓶,和空气接触面小的寿命长一点,受污染也小。

还原剂浓度由试样来定,载流酸浓度由还原剂浓度来定,最后废液呈酸性。例如单独测定汞,还原剂可以配置成0.2%硼氢化钠,酸也就0.5%够了;如测定砷,硼氢化钠需要配置到2%,酸就要到5%。一句话,只要硼氢化钠可以满足标准曲线最高点,把溶液浓度放宽一倍即可,而酸只要能够保证废液呈酸性。废液为何要呈酸性?如果不是酸性,硼氢化钠会在管道压力最低处沉积,而后堵塞,当你看到管路内液体要停顿好长一段时间再冲上去的时候,下一次它们就冲到你脑门上了,呵呵。

硫脲:AR就可以了,我买了500g一大瓶,慢慢用。

Vc,国产的只有AR,不过纯度也够食用了。开瓶后不能久存,会被空气氧化的。一般我是把硫脲和Vc按照1:3混合,用碾钵碾碎,在测定前半小时用最小号

药匙每个样品和标准曲线加一点点,充分振荡还原,效果明显而且快,呵呵就是费试剂和野蛮,不知有没有同道。

一般作硒我也使用Vc还原,感觉快,比盐酸好。

标准溶液:购买。

汞中间液(和保护液)我配的是0.02%重铬酸钾(0.5%盐酸)溶液,试样消解完了就用它来定容,测定砷硒再加上面讲的固体还原剂,简单。最好一天内消解测定,注意自身防护。

2.一般我是把硫脲和Vc按照1:3混合,用碾钵碾碎,在测定前半小时用最小号药匙每个样品和标准曲线加一点点,充分振荡还原,效果明显而且快,呵呵就是费试剂和野蛮,不知有没有同道。[/quote]

感觉不严谨,应该是配成溶液,加入相同体积溶液

用药匙不准

13,原子荧光法测重金属消解水样的方法

答:测定汞砷,取50ml具塞比色管取水样5-10ml,加入1:1王水5ml,沸水浴2h,期间每隔半小时晃动一次,取出冷却,加入10%硫脲和10%抗坏血酸5ml,使用0.5%重铬酸钾(2%盐酸)定容至25ml,上机检测。

重铬酸钾是要加的,否则汞损失很大,另外,水样消解后最好当天上机,否则也会有损失的。

砷硒前处理后就不用加重铬酸钾,但是要加还原剂和抗干扰剂.

14,问:原子荧光法测汞过程中要注意哪些问题?

答:1.标准溶液要配制准确,最好现用现配.

2.载流和还原剂的浓度要合适(我用的是载流盐酸5%,硼氢化钾1%,氢氧化钠0.5%).

3.还原剂不要有沉淀。

4.元素灯要预热。

5.所有的管路要使用正确直径的的管子,我以前出过这个问题,结果所有的峰的是半个。

6.仪器的灯电流不要设的太高了(这和测别的元素不太一样,测汞时不是形成气态的氢化物),20左右。

7.要用纯水和优级纯的酸.

15,荧光仪信号小的原因

1.原子化器的高度

2.硼氢化钾的浓度及稳定性

3.蠕动泵及管路的连接与老化程度(是否有漏气)

4.反应器中能否看到酸液(样品溶液)与硼氢化钾作用.

硼氢化钾没有到反应块的话肯定是没有信号的。如有明显的气泡产生,则看看别的方面。

5.HCL的设置情况(位置--灯电流)

6.观察火焰的情况

7.硼氢化钾和样品溶液能否都能进入反应环

8.水封没有

9.灯的位置和光电倍增管的位置调节。

16,问:怎么处理倒吸?

答:最近在打开原子荧光时,发现载气管中总会有水倒吸进去,开机步骤都没有错,搞不清楚怎么回事?

载气压力设置,根据仪器说明书是0.2-0.3MP.

气瓶压力可以开大一点,仪器内部有稳压阀的。检查一下气路管子呢。还有,关机时候先松开泵再关闭气瓶。但压力也不要设置超过0.4MPa.仪器里面的管路是透明那种的,压力开的太大容易吹爆了.

蠕动泵松了

放松蠕动泵后,是不是上面的储液槽中还有没用完的载流没有倒掉,顺着管路倒流回来?

这个问题就简单了,开气瓶,把泵运转但是不要压紧夹块,先运转后再上夹块,或者,把废液桶清空,把废液管剪短,把泵抬高一点

17,问:样品加5ML硝酸过夜,再加5ML过氧化氢消解,加的过氧化氢多起到什么作用呢?

答:双氧水有氧化酸解作用,而且基本无“残留”,消解含有机质多的样品是可以使用的。

原子物理知识点总结

原子物理 一、波粒二象性 1、热辐射:一切物体均在向外辐射电磁波.这种辐射与温度有关。故叫热辐射. 特点:1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种波长的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与温 度有关。 2)温度一定时,不同物体所辐射的光谱成分不同。 2、黑体:一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。若某种物体,在热辐射的同时能够完全吸收入射的各种波长的电磁波,而不发生反射,这种物体叫做黑体(或绝对黑体)。在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如,空腔壁上的小孔. 热辐射特点吸收反射特点 一般物体辐射电磁波的情况与温度,材 料种类及表面状况有关既吸收,又反射,其能力与材料的种类及入射光波长等因素有关 黑体辐射电磁波的强度按波长的 分布只与黑体温度有关完全吸收各种入射电磁波,不反射 黑体辐射的实验规律: 1)温度一定时,黑体辐射的强度,随波长分布有一个极大值。 2)温度升高时,各种波长的辐射强度均增加。 3)温度升高时,辐射强度的极大值向波长较短方向移动。 4、能量子:上述图像在用经典物理学解释时与该图像存在严重的不符(维恩、瑞利的解释)。普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值ε叫做能量子.ν εh =) 10 63 .6 (34叫普朗克常量 s J h? ? =-.由量子理论得出的结果与黑体的辐射强度图像吻合的非常完美,这印证了该理论的正确性.

5光电效应:在光的照射下,金属中的电子从金属表面逸出的现象.发射出来的电子叫光电子。光电效应由赫兹首先发现。 爱因斯坦指出: ① 光的能量是不连续的,是一份一份的,每一份能量子叫做一个光子.光子的能量为 ε=h ν,其中h=6。63×10-34 J ·s 叫普朗克常量,ν是光的频率; ② 当光照射到金属表面上时,一个光子会被一个电子吸收,吸收的过程是瞬间的(不超过10-9 s ).电子在吸收光子之后,其能量变大并向金属外逃逸,从而产生光电效应现象; ③ 一个电子只能吸收一个光子,不会有一个电子连续吸收多个光子的情况,该过程需要克服金属内部原子束缚做功(逸出功W 0,其大小与金属材料有关),然后才有可能从金属表面飞出。因此在只有当一个光子能量较大时,电子才会将其吸收并从金属内部飞出,否则电子无法克服原子束缚从金属中逸出。由能量守恒可得光电效应方程: 0W h E k -=ν ④ 决定能否发生光电现象的决定因素是极限频率而不是光的强度。光的强度只会影响从金属中逸出的电子数目。能使某种金属发生光电效应的最小频率叫做该种金属的截止频率(极限频率).截止频率的大小与金属种类有关。光的强度:单位时间内垂直照射到金属表面单位面积上入射光中光子总数目. 若ν≥c ν,无论光照强度如何也会有光电效应现象产生 若ν<c ν,则无论怎样增加光照强度,也不会有光电效应产生 知识拓展之光电管的伏安特性曲线:在光照条件不变时,若正向电压升高,则电路中的光电流会随之变大,当正向电压调到某值后电路中的电流不再增加,该电流叫饱和电流。饱和电流大小反映了入射光的强度(光子数目)。在光照条件不变时,若反向电压升高,则电路中的光电流会随之变小,当反向电压达到某值后,电路中的电流变为零,这个电压叫遏止电压。遏止电压只与入射光频率有关. e W e h U c 0 -=ν0(W h E k -=ν由) 得出和00W h eU E eU c k c -=-=-ν

物理选修3---5第十八章:原子结构知识点汇总

物理选修3---5第十八章:原子结构知识点汇总 (训练版) 知识点一、电子的发现和汤姆生的原子模型: 1、电子的发现: 1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而 发现了电子。电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。 2、汤姆生的原子模型: 1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。这就是汤姆生的枣糕式原子模型。 知识点二、α粒子散射实验和原子核结构模型 1、α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成 ①实验装置的组成:放射源、金箔、荧光屏 1

②实验现象: a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动, 不发生偏转。 b. 有少数α粒子发生较大角度的偏转 c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。 2、原子的核式结构模型: 由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。 1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质 量,带负电荷的电子在核外空间绕核旋转。原子核半径小于1014-m,原子轨道半径约1010-m。 3、卢瑟福对实验结果的解释 电子对α粒子的作用忽略不计。 因为原子核很小,大部分α粒子穿过原子时离原子核很远,受到较小的库仑斥力,运动几乎不改变方向。 极少数α粒子穿过原子时离原子核很近,因此受到很强的库仑斥力,发生大角度散射。

高二化学选修三《原子结构》知识点总结归纳 典例导析

原子结构 【学习目标】 1、根据构造原理写出1~36号元素原子的电子排布式; 2、了解核外电子的运动状态; 3、掌握泡利原理、洪特规则。 【要点梳理】 要点一、原子的诞生 我们所在的宇宙诞生于一次大爆炸。大爆炸后约2小时,诞生了大量的氢、少量的氦及极少量的锂。其后,经过或长或短的发展过程,氢、氦等发生原子核的融合反应,分期分批地合成了其他元素。(如图所示) 要点二、能层与能级 1.能层 (1)含义:在含有多个电子的原子里,由于电子的能量各不相同,因此,它们运动的区域也不同。通常能量最低的电子在离核最近的区域运动,而能量高的电子在离核较远的区域运动。根据多电子原子核外电子的能量差异可将核外电子分成不同的能层(即电子层)。如钠原子核外有11个电子,第一能层有2个电子,第二能层有8个电子,第三能层有1个电子。 要点诠释:电子层、次外层、最外层、最内层、内层 在推断题中经常出现与层数有关的概念,理解这些概念是正确推断的关键。为了研究方便,人们形象地把原子核外电子运动看成分层运动,在原子结构示意图中,按能量高低将核外电子分为不同的能层,并用符号K、L、M、N、O、P、Q……表示相应的层,统称为电子层。一个原子在基态时,电子所占据的电子层数等于该元素在周期表中所处的周期数。倒数第一层,称为最外层;从外向内,倒数第二层称为次外层;最内层就是第一层(K 层);内层是除最外层外剩下电子层的统称。以基态铁原子结构示意图为例:铁原子共有4个电子层,最外层(N层)只有2个电子,次外层(M层)共有14个电子,最内层(K层)有2个电子,内层共有24个电子。 2.能级 (1)含义:在多电子原子中,同一能层的电子,能量也可能不同,这样同一能层就可分成不同的能级(也可称为电子亚层)。能层与能级类似于楼层与阶梯之间的关系。在每一个能层中,能级符号的顺序是ns、np、nd、nf……(n代表能层)

高二物理原子和原子核知识点总结备课讲稿

高二物理原子和原子核知识点总结 一、原子结构知识点: 1、电子的发现和汤姆生的原子模型: (1)电子的发现: 1897年英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。 电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。 (2)汤姆生的原子模型: 1903年汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。 2、α粒子散射实验和原子核结构模型 (1)α粒子散射实验:1909年,卢瑟福及助手盖革手吗斯顿完成 ①装置: ②现象: a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。 b. 有少数α粒子发生较大角度的偏转 c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。 (2)原子的核式结构模型: 由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。

1911年,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。 原子核半径小于10-14m,原子轨道半径约10-10m。 3、玻尔的原子模型 (1)原子核式结构模型与经典电磁理论的矛盾(两方面) a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。 b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。 (2)玻尔理论 上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设: ①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。 ②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即 hv=E2-E1 ③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道半径跟电了动量mv的乘积等于h/2π的整数倍,即

原子物理知识点总结全

原子物理知识点总结全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的______________模型. 2.物理学家________用___粒子轰击金箔的实验叫__________________。 3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4.实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D.α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。如图1-1所示表示了原子核式结构模型的α粒子散射图景。图中实线表示α粒子的运动轨迹。其中一个α粒子在从a 运动到b 、再运动到c 的过程中(α 粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾: ⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的. ⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列__________的能量状态中,在这些状态中原子是_______的,电子虽然绕核运动,但不向外辐射能量.这些状态叫做________. ⑵ 跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于______子的不同轨道.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 3.氢原子的能级公式和轨道公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级公式为:______________; 对应的轨道公式为:12r n r n 。其中n 称为量子数,只能取正整数.E 1=-13.6eV ,r 1=0.53×10-10m . 原子的最低能量状态称为_______,对应电子在离核最近的轨道上运动; 图1-1 a b c 原子核 α粒子

原子物理知识点讲解

一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频...............率.,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最.....大初动能与入射光的强度无关.............,只随着入射光频率的增大..而增大..。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③ 入射光照到金属上时,光电子的发射几乎是瞬时的............,一般不超过10-9 s ;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、 光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U 0。回路中的光电流随着反向电压的增加而减小,当反 向电压U 0满足:02 max 2 1eU mv =,光电流将会减小到零,所以遏止电压与入射光的频率有关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv 的整数倍,hv 称为一个能量量子。即能量是一份一份的。其中v 辐射频率,h 是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。hv =ε,其中:h 是普朗克常量,v 是光的频率。

高中物理原子与原子核知识点总结

高中物理原子与原子核知识点总结(必修三) 载自:搜高考网.soogk. 原子、原子核这一章虽然不是重点,但是高考选择题也会涉及到,其实只要记住模型和方程式,就不会在做题上出错,下面的一些总结希望对大家有所帮助. 卢瑟福根据α粒子散射实验提出了原子的核式结构学说,玻尔把量子说引入到核式结构模型之中,建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程。 整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、粒子、光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。 4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。 1.汤姆生模型(枣糕模型) 汤姆生发现电子,使人们认识到原子有复杂结构。从而打开原子的大门. 2.卢瑟福的核式结构模型(行星式模型)卢瑟福α粒子散射实验装置,现象,从而总结出核式结构学说 α粒子散射实验是用α粒子轰击金箔,实验现象:结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转.这说明原子的正电荷和质量一定集中在一个很小的核上。

卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。 由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m。 而核式结构又与经典的电磁理论发生矛盾:①原子是否稳定,②其发出的光谱是否连续 3.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数)玻尔补充三条假设 ⑴定态--原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量。 (本假设是针对原子稳定性提出的) ⑵跃迁--原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定)(本假设针对线状谱提出) ( ) 辐射(吸收)光子的能量为hf=E初-E末 氢原子跃迁的光谱线问题[一群氢原子可能辐射的光谱线条数为 ]。

原子物理知识点总结全

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的 ______________模型. 2.物理学家________用___粒子轰击金箔的实验叫 __________________。 3. 实验结果:绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转;极少数的α粒子甚至被____. 4. 实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存 在着对 α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比 α粒子大很多的物体运动时,受到该物体很大的斥 力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小 的核,叫 ________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋 转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B . 极少数α粒子穿过金箔时有较大的偏转 ,有的甚至被反 弹 C.绝大多数α粒子穿过金箔时有较大的 偏转 D. α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模 型。如图 1-1所示表示了 原子核式结构模型的 α粒子散射图景。图中实 线表示 α粒子的运动轨迹。其中一个 c α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下 列判断正确的是 ( ) a b A .α粒子的动能先增大后减小 原子核 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 α粒子 D .电场力对α粒子先做正功后做负功 图1-1 二玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾:⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的.⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列 __________的能量状态中,在 这些状态中原子是 _______的,电子虽然绕核运动, 但不向外辐射能量.这些状态叫做 ________. ⑵跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于 ______子的不同轨道 .原子的定态是不连续的,因此电子的可能轨道也是不 连续的. 3.氢原子的能级公式和轨道 公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级 公式为 :______________; 对应的轨道公式为: r n n 2 r 1。其中n 称为量子数,只能取正.E1=-13.6eV ,r1=0.53×10-10m .

高中物理原子与原子核知识点总结

高中物理原子与原子核知识点总结(必修三)载自:搜高考网.soogk. 原子、原子核这一章虽然不是重点,但是高考选择题也会涉及到,其实只要记住模型和方程式,就不会在做题上出错,下面的一些总结希望对大家有所帮助. 卢瑟福根据a粒子散射实验提出了原子的核式结构学说,玻尔把量子说引入到核式结构模型之中,建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程。 整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、粒子、光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。 4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。 1.汤姆生模型(枣糕模型)汤姆生发现电子,使人们认识到原子有复杂结构。从而打开原子的大门. 2.卢瑟福的核式结构模型(行星式模型)卢瑟福a粒子散射实验装置,现象,从而总结出核式结构学说 a粒子散射实验是用a粒子轰击金箔,实验现象:结果是绝大多数a 粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数a粒子发生了较大的偏转.这说明原子的正电荷和质量一定集中在一个很小的核上。卢瑟福由a粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。

由a粒子散射实验的实验数据还可以估算出原子核大小的数量级是10T5m。 而核式结构又与经典的电磁理论发生矛盾:①原子是否稳定,②其发出的光谱是否连续 3.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数)玻尔补充三条假设 ⑴定态一原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量。 (木假设是针对原子稳定性提出的) ⑵跃迁一原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定)(本假设针对线状谱提出)()辐射(吸收)光子的能量为hf=E初-E末 氢原子跃迁的光谱线问题[一群氢原子可能辐射的光谱线条数为]o (即:光子和原于作用而使原子电离) 2光子能量小于电子跃迁到无穷远处(电离)需要的能量时,则只有能量等于两个能级差的光子才能被吸收。 (受跃迁条件限:只适用于光于和原于作用使原于在各定态之间跃迁的情况)。 ⑤氢原子吸收外来电子能量时一一可以部分吸收外来碰撞电子的能量(实物粒子作用而使原子激发)。 因此,能量大于某两个能级差的电子均可被氢原子吸收,从而使氢原子跃迁。 E51=13. 06 E41=12. 75 E31=12. 09 E21=10. 2;(有规律可

新人教版九年级上册化学[原子的结构 知识点整理及重点题型梳理]

新人教版九年级上册初中化学 重难点有效突破 知识点梳理及重点题型巩固练习 原子的结构 【学习目标】 1.了解原子是由质子、中子和电子构成的;知道不同种类原子的区别。 2.初步了解相对原子质量的概念,并能利用相对原子质量进行简单的计算。 3.记住两个等量关系:核电荷数=质子数=核外电子数;相对原子质量≈质子数+中子数。 【要点梳理】 要点一、原子的构成(《原子的构成》) 1.原子是由下列粒子构成的: 原子由原子核和核外电子(带负电荷)构成,原子核由质子(带正电荷)以及中子(不带电)构成,但并不是所有的原子都是由这三种粒子构成的。例如:普通的氢原子核内没有中子。 2.原子中的等量关系:核电荷数=质子数=核外电子数 在原子中,原子核所带的正电荷数(核电荷数)就是质子所带的电荷数(中子不带电),每个质子带1个单位正电荷,每个电子带一个单位负电荷,原子整体是呈电中性的粒子。 3.原子内部结构揭秘—散射实验(如下图所示): 1911年,英国科学家卢瑟福用一束平行高速运动的α粒子(α粒子是带两个单位正电荷的氦原子)轰击金箔时,发现大多数α粒子能穿透金箔,而且不改变原来的运动方向,但是也有一小部分α粒子改变了原来的运动路径,甚至有极少数的α粒子好像碰到了坚硬不可穿透的质点而被弹了回来。实验结论:

(1)原子核体积很小,原子内部有很大空间,所以大多数α粒子能穿透金箔; (2)原子核带正电,α粒子途经原子核附近时,受到斥力而改变了运动方向; (3)金原子核的质量比α粒子大得多,当α粒子碰到体积很小的金原子核被弹了回来。 【要点诠释】 1.原子是由居于原子中心带正电的原子核和核外带负电的电子构成,原子核又是由质子和中子构成,质子带正电,中子不带电;原子核所带正电荷(核电荷数)和核外电子所带负电荷相等,但电性相反,所以整个原子不显电性。 2.区分原子的种类,依据的是原子的质子数(核电荷数),因为不同种类的原子,核内的质子数不同。要点二、相对原子质量 1.概念:以一种碳原子质量的1/12为标准,其他原子的质量跟它相比较所得到的比,就是这种原子的相对原子质量(符号为Ar)。根据这个标准,氢的相对原子质量约为1,氧的相对原子质量约为16。 2.计算式: 【要点诠释】 1.相对原子质量只是一个比值,单位是“1”(一般不读也不写),不是原子的实际质量。 2.每个质子和每个中子的质量都约等于1个电子质量的1836倍,即电子质量很小,跟质子和中子相比可以忽略不计。原子的质量主要集中在质子和中子(即原子核)上。 3.在相对原子质量计算中,所选用的一种碳原子是碳12,是含6个质子和6个中子的碳原子,它的质量的1/12约等于1.66×10-27 kg。 4.几种原子的质子数、中子数、核外电子数及相对原子质量比较:

高中物理原子与原子核知识点总结

高中物理原子与原子核知识点总结 1.汤姆生模型(枣糕模型) ()发现电子,使人们认识到原子有复杂结构。从而打开人们认识原子的大门. 2.核式结构模型:()通过α粒子散射实验,总结出核式结构学说。由α粒子散射实验的实验数据还可以估算出()大小的数量级是()。 核式结构与经典的电磁理论发生矛盾:①原子是否稳定,②其发出的光谱是否连续 3.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数)玻尔补充三条假设 ⑴定态--原子只能处于一系列不连续的能量状态(称为定态),电子虽然绕核运转,但不会向外辐射能量。 ⑵跃迁--原子从一种定态跃迁到另一种定态,要辐射(或吸收)一定频率的光子(其能量由两定态的能量差决定),辐射(吸收)光子的能量为() 氢原子跃迁的光谱线问题[一群氢原子从n激发态原子跃迁到基态时可能辐射的光谱线条数为()。 ⑶能量和轨道量子化----定态不连续,能量和轨道也不连续; 氢原子的激发态和基态的能量(最小)与核外电子轨道半径间的关系是:() 【说明】氢原子跃迁 ① 轨道量子化r n=n2r1(n=1,2.3…)r1=0.53×10-10m

能量量子化:E1=-13.6eV ② ③氢原子跃迁时应明确: 一个氢原子直接跃迁向高(低)能级跃迁,吸收(放出)光子 ( 某一频率光子 ) 一群氢原子各种可能跃迁向低(高)能级跃迁放出(吸收)光子 (一系列频率光子) ④氢原子吸收光子时——要么全部吸收光子能量,要么不吸收光子 A光子能量大于电子跃迁到无穷远处(电离)需要的能量时,该光子可被吸收。(即:光子和原子作用而使原子电离) B光子能量小于电子跃迁到无穷远处(电离)需要的能量时,则只有能量等于两个能级差的光子才能被吸收。 ⑤氢原子吸收外来电子能量时——可以部分吸收外来碰撞电子的能量因此,能量大于某两个能级差的电子均可被氢原子吸收,从而使氢原子跃迁。 ⑶玻尔理论的局限性。由于引进了量子理论(轨道量子化和能量量子化),玻尔理论成功地解释了氢光谱的规律。

原子物理知识点总结全

原 子 物 理 一、卢瑟福的原子模型-—核式结构 1.1897年,_________发现了电子.他还提出了原子的______________模型。 2。物理学家________用___粒子轰击金箔的实验叫__________________。 3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4。实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D 。α粒子穿过金箔时都有较大的偏转。 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。如图1—1所示表示了原子核式结构模型的α粒子散射图景.图中实线表示α粒子的运动轨迹。其中一个 α粒子在从a 运动到b 、再运动到c 的过程中(α粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾: ⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的. ⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列__________的能量状态中,在这些状态中原子是_______的,电子虽然绕核运动,但不向外辐射能量.这些状态叫做________. ⑵ 跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________。 ⑶轨道假说:原子的不同能量状态对应于______子的不同轨道.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 3.氢原子的能级公式和轨道公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级公式为:______________; 对应的轨道公式为:12r n r n =。其中n 称为量子数,只能取正整数。E 1=-13。6eV ,r 1=0。53×10-10 m . 原子的最低能量状态称为_______,对应电子在离核最近的轨道上运动; 原子的较高能量状态称为_______,对应电子在离核较远的轨道上运动. 4.氢原子核外的电子绕核运动的轨道与其能量相对应 核外电子绕核做圆周运动的向心力,来源于库仑力(量子化的卫星运动模型) 由r v m r e k F 222 ==库得动能r ke mv E k 2 22121==, 即r 越大时,动能________。 又因为12r n r n =,21 n E E n = 即量子数n 越大时,动能_______,势能______,总能量_______. 5.用玻尔量子理论讨论原子跃迁时释放光子的频率种数 氢原子处于n=k 能级向较低激发态或基态跃迁时,可能产生的光谱线条数的计算公式为:2 ) 1(2 -= =k k C N k 例1:氢原子的核外电子从距核较近的轨道跃迁到距核较远的轨道的过程中 ( ) A .原子要吸收光子,电子的动能增大,原子的电势能增大 图1-1 c 原子核 α粒子

高中化学选修3 物质结构与性质 全册知识点总结

高中化学选修3知识点总结 主要知识要点: 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。

2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。 (3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E (5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。

原子物理知识学知识题目解析(褚圣麟)

1.原子的基本状况 1.1解:根据卢瑟福散射公式: 2 02 22 442K Mv ctg b b Ze Ze αθ πεπε== 得到: 21921501522 12619 079(1.6010) 3.97104(48.8510)(7.681010) Ze ctg ctg b K ο θαπεπ---??===??????米 式中2 12K Mv α=是 α粒子的功能。 1.2已知散射角为θ的α粒子与散射核的最短距离为 2202 1 21 ()(1)4sin m Ze r Mv θ πε=+ , 试问上题α粒子与散射的金原子核之间的最短距离m r 多大? 解:将1.1题中各量代入m r 的表达式,得: 2min 202 1 21()(1)4sin Ze r Mv θπε=+ 1929 619479(1.6010)1910(1)7.6810 1.6010sin 75ο --???=???+???143.0210-=?米 1.3 若用动能为1兆电子伏特的质子射向金箔。问质子与金箔。问质子与金箔原子核可能达到的最小距离多大?又问如果用同样能量的氘核(氘核带一个e +电荷而质量是质子的两倍,是氢的一种同位素的原子核)代替质子,其与金箔原子核的最小距离多大?

解:当入射粒子与靶核对心碰撞时,散射角为180ο。当入射粒子的动能全部转化为两粒子间的势能时,两粒子间的作用距离最小。 根据上面的分析可得: 22 0min 124p Ze Mv K r πε==,故有: 2 min 04p Ze r K πε= 192 9 13619 79(1.6010)910 1.141010 1.6010 ---??=??=???米 由上式看出:min r 与入射粒子的质量无关,所以当用相同能量质量和相同电量得到核代替质子时,其与靶核的作用的最小距离仍为131.1410-?米。 1.4 钋放射的一种α粒子的速度为71.59710?米/秒,正面垂直入射于厚度为710-米、密度为41.93210?3/公斤米的金箔。试求所有散射在90οθ>的α粒子占全部入射粒子数的百分比。已知金的原子量为197。 解:散射角在d θθθ+之间的α粒子数dn 与入射到箔上的总粒子数n 的比是: dn Ntd n σ= 其中单位体积中的金原子数:0//Au Au N m N A ρρ== 而散射角大于090的粒子数为:2'dn dn nNt d ππ σ=?=?

原子结构知识点总结

选修3-5知识点 第十八章原子结构 电子的发现 一、阴极射线 1876 年,德国物理学家戈德斯坦认为管壁上的荧光是由于玻璃受到的阴极发出的某种射线的撞击而引起的,并把这种未知射线称之为阴极射线。 二、电子的发现 1、汤姆逊发现电子,认为阴极射线的粒子是 电子且带负电,电子是原子的做成部分,是比原子更基本的物质单元。 2、密立根“油滴实验”测出电子电荷量: 3、密立根“油滴实验”发现是电荷是量子化的,即任何带电体倍。 4、电子的质量为: 5、质子质量与电子质量的比值为: 原子的核式结构模型 1、汤姆孙的西瓜模型:原子是一个球体,正电荷均匀分布在整个球体内,电子镶嵌其中。 一、卢瑟福的α粒子散射实验——利用碰撞中动量守恒原理

1、α粒子是从放射性物质(如铀和镭)中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质量的4 倍.电子质量的7300倍。 2、核式结构模型 ①在原子的中心有一个很小的核,叫做原子核。 ②原子的全部正电荷和几乎全部质量都集中在原子核里。 ③带负电的电子在核外空间绕着核旋转。 二、原子核的电荷与尺度 1、原子核的电荷等于核外电子数 2、原子核的半径10-15m,原子的半径10-10m,原子内十分空旷。 氢原子光谱 一、光谱 1、光谱是用光栅或棱镜可以把各种颜色的光按波长展开,获得波长(频率)和强度分布的记录。有时只是波长成分的记录。 2、有些光谱是一条条的亮线,我们把它们叫做谱线。 3、光谱可分为两类:线状谱和连续谱。 ①线状谱:由一条条分立的谱线(亮线)组成。 ②连续谱:由谱线(亮线)粘在一起的光带。

4、特征谱线(亮线):各种原子的发射光谱都是线状谱,原子只发出几种特定频率的光。不同原子的亮线位置不同,不同原子的发光频率(颜色)是不一样的。 5、每种原了都有自己的特征谱线,我们就可以利用它来鉴别物质和确定物质的组成成分。这种方法称为光谱分析。 二、氢原子光谱的实验规律 1、光是由原子内部电子的运动产生的。 2、氢原子是最简单的原子,其光谱也最简单。 3、——巴耳末公式 n的两层含义: ①每一个n值分别对应一条谱线。

原子物理知识点总结

、波粒二象性 1、热辐射: 一切物体均在向外辐射电磁波。这种辐射与温度有关。故叫热辐射。 特点: 1)物体所辐射的电磁波的波长分布情况随温度的不同而不同;即同时辐射各种 波长 的电磁波,但某些波长的电磁波辐射强度较强,某些较弱,分布情况与 温度有关。 2)温度一定时,不同物体所辐射的光谱成分不同。 2、黑体: 一切物体在热辐射同时,还会吸收并反射一部分外界的电磁波。若某种物体,在 热辐射的同时能够完全吸收入射的各种波长的电磁波, 而不发生反射, 这种物体叫做黑体 ( 或 绝对黑体 )。在自然界中,绝对黑体实际是并不存在的,但有些物体可近似看成黑体,例如, 空腔壁上的小孔。 注意,黑体并不一定是黑色的。 热辐射特点 吸收反射特点 一般物体 辐射电磁波的情况与温度, 材 料种类及表面状况有关 既吸收,又反射,其能力与材 料的种类及入射光波长等因 素 有关 黑体 辐射电磁波的强度按波长的 分布只与黑体温度有关 完全吸收各种入射电磁波, 不 反射 黑体辐射的强度,随波长分布有一个极大值。 各种波长的辐射强度均增加。 辐射强度的极大值向波长较短方向移动。 4、能量子 :上述图像在用经典物理学解释时与该图像存在严重的不符 (维恩、 瑞利的解释) 普朗克认为能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值 ε 叫做能 量子. h (h 6.63 10 34 J s 叫普朗克常量 ) 。 由量子理论得出的结果与黑体的辐射强度 图像吻合的非常完美,这印证了该理论的正确性。 原子物理 黑体辐射的实验规 律: 1)温度一定 时, 2)温度升高

5 光电效应: 在光的照射下,金属中的电子从金属表面逸出的现象。 射出 来的电子叫光电子。光电效应由赫兹首先发现。 爱因斯坦指出 : ① 光的能量是不连续的, 是一份一份的, 每一份能量子叫做一个光 子. 光子的能量为 ε= h ν ,其中 h= 6.63× 10- 34 J · s 叫普朗克常量, ν是光的频率; ② 当光照射到金属表面上时, 一个光子会被一个电子吸收, 吸收的过程是瞬间的 (不 -9 超过 10-9 s )。电子在吸收光子之后,其能量变大并向金属外逃逸,从而产生光电效应现象; ③ 一个电子只能吸收一个光子, 不会有一个电子连续吸收多个光子的情况, 该过程需 要克服金属内部原子束缚做功(逸出功 W 0,其大小与金属材料有关),然后才有可能从金 属表面飞出。因此在只有当一个光子能量较大时,电子才会将其吸收并从金属内部飞出, 否则电子无法克服原子束缚从金属中逸出。 由能量守恒可得 光电效应方程 : E k h W 0 ④ 决定能否发生光电现象的决定因素是极限频率而不是光的强度。 光的强度只会影响 从金属中逸出的电子数目。 能使某种金属发生光电效应的最小频率叫做该种金属的截止频率 (极限频 率 ).截止频率的大小与金属种类有关。光的强度:单位时间内垂直照射到金属表面 单位面积上入射光中光子总数目。 若ν≥ c ,无论光照强度如何也会有光电效应现象产生 若ν< c ,则无论怎样增加光照强度,也不会有光电效应产生 知识拓展之 光电管的伏安特性曲线: 在光照条件不变时, 若正向电压升高, 则电路中的光电 流会随之变大, 当正向电压调到某值后电路中的电流不再增加, 该电流叫饱和电流。 饱和电 流大小反映了入射光的强度(光子数目)。在光照条件不变时,若反向电压升高,则电路中 的光电流会随之变小, 当反向电压达到某值后, 电路中的电流变为零, 这个电压叫遏止电压。 遏止电压只与入射光频率有关。 h W 0 e e (由E k h W 0 和 eU c 0 E k 得出 eU c h W 0) U c

相关文档
最新文档