制粒工艺流程

制粒工艺流程
制粒工艺流程

总的工序流程:领料→拆料→处理→投料→制软材(叫粘合剂)→制湿颗粒→干燥→整粒→称重混合(加草莓粉末香精)→储存一原辅料粉碎过筛

1.相关流程:预算领取物料>上报统计员拿取领料单>仓库领料至物净间点数(检查外包装袋

有无破损,如有破损应及时与仓库人员说明情况)> 拆外包装消毒放置原辅料存放间>过筛置备料间。(做好标识,并填写生产记录与管理记录)

2.头孢克肟颗粒使用原辅料过筛目数:头孢克肟过100目,甘露醇过60目,交联聚维酮

过60目。

3.如何提前预算领取的物料数量。

确保足够的备料量,需根据周生产计划量和岗位原辅料使用记录来确定,提前领取的物料数量。

4.在仓库领料需做的工作?

核对物料的批号、品名、数量、进库批号,并且拿相应的物料检验报告单。

5.拆除处包装,需检查物料处包装是否破损,物料颜色是否异常有变化的情况并及时反馈

给质检员或工艺员。

6.拆除外包装的物料需用3%的过氧化氢消毒物料外表面,并贴上物料卡,拉置原辅料存

放间。

7.原辅料粉碎过筛,应核对对处理物料所需筛网目数,物料品名,批号,数量更换品种必

须换筛网清洗摇摆机。

8.物料过筛后收率应不低于99.5%。

9.处理后的物料应将原始批号,进库批号,物料总重量报至工艺员处。

10.对于不合格的物料应放回到原包装或原物料桶内并做好密封与标识。

二.投料称量

11.(一)生产前的准备。

12.1.检查工作区已没有存在任何与本次生产无关的残留物或生产记录等,并已清洁消毒且

在有效期内。

13.2.检查生产区内的压差,温度,温度是否在规定范围内。

14.3.在工艺员领取本次需生产的指令单和所需记录。(记得复核指令单)

15.4.根据指令单,在生产门口挂上生产状态牌,并填写相应的产品名称,批号,规格,生

产日期。

16.5.生产前,用标准砝码校准秘需的衡器。

17.6.在需用生产的设备,衡器上换挂上生产状态牌(正在运行)

18.7.领取所需的生产用具,工具,容器等,并确认清洁消毒在有效期内。

19.8.根据指令单,领取已处理的原辅料,并核对品名,批号。

20.(二)操作

21.1.启动称量罩5分钟,开启地秤,待显示为0.00时,将600L IBC推上地秤,并除皮

(即显示0.00),翻起过板桥并固定好。

22.2.根据指令单核对物料品名,批号,然后用提升机投料至600L IBC中,根据指令单的

净重,准确称取,即百分百投料,所有的物料以去皮方式依次投入。

23.3.所有的称量操作都必须双人复核(如核对物料品名,批号,核对投料中每种物料在

地秤或电子台秤上显示的数值,都必须与指令单上的数值一致)

24.4.称量过程中所用的容器具应每种物料一个,不得混用,以避免造成交叉污染。

25.5.批记录和管理记录必须及时填好,(不得写备忘录或回忆录)

26.6.每一锅次称量完成后,在600L IBC的状态牌上标示清楚信息,产品名称,规格,批

号(次)和数量,最后才移至下一工序。

27.7.称量结束后,剩余的物料应及时盘点,并更新物料卡信息,填写实际的物料信息。

28.8.将日落黄铝色淀、阿斯帕坦等过40目筛到600L料斗内备用。

29.9.电子称使用。

30.(三)粘合剂的配制

31.1.计算所需的粘合剂数。(25%聚维酮溶液),聚维酮数=25%聚维酮溶液数*25%(0.25)

32.2.称取计算所得的聚维酮数,并用物料卡标示沫后移至配浆间,计算所需纯化水的量。

纯化水重量=25%聚维酮溶液重量—聚维酮重量

33.3.称取所需纯化水量,然后将聚维酮放置其中,并用搅浆机搅拌至均匀状态。

34.4.标示清楚所配粘合剂的信息,清洁干净容器的外表面

三.湿法制粒干燥

35.1.湿法制粒机的工序参数(预混合>喷浆>制软材)

36.2.沸腾干燥机在预热开始吸料过程物料温度控制在60到80度,进风温度应控制在80度;

吸完料后,物料温度达到(50度)时,进风温度设置为(55度),物料温度达到(50度)后,需干燥(25至30钟),物料干燥完出锅.

37.3.湿法制粒在加完粘合剂,制软材的过程需,取样观察(软材的粘湿度),判断是否需加(粘合

剂),制软材的时间控制在8到10分钟,如发现软材湿度过大,应尽量(缩短)制材时间.

38.4.摇摆机整粒后需检查筛网的(完整性).

39.5.物料干燥后振荡筛整粒时,需控制(物料均匀)的进入振荡筛,在振完每锅物料,需检查(磁

铁上是否贴有铁丝),判断是否存在烂筛网情况,观察纯颗粒是否均匀,颗粒过细,应及时与制软材人员沟通,振完一批次的最后一锅后,需把该批次的所有物料(细粉,头子,纯颗粒)清理干净。

四总混

40.1.将筛分好的纯颗粒和余料(细粉),移至称量间并称其净重,余料用200L IBC装置并

贴好中间产品卡,余料信息(产品名称,批号,数量),纯颗粒在600L IBC状态牌上标示清楚产品信息。

41.2.根据纯颗粒的净重和余料的净重,以及理论种香精数计算香精量。(香精量=理论香精

量*纯颗粒重量/(纯颗粒数+余料量)

42.3.称取计算得到的香精,并过60目筛网后加入到纯颗粒中,将本批次的所有纯颗粒(+

香精)移至2500混合间。

43.4.装好真空上料装置,然后将所有纯颗粒上到2500混合料斗内,混合5分钟(10转/分)

后,下料并称量中间体净重。(计算物料平衡,和取样)

44.

PSA制氮机简介

PSA制氮机简介 碳分子筛变压吸附(简称:PSA)制氮装置,是一种新型的空气分离的高新技术设备,以压缩空气为原料,碳分子筛为吸附剂,采用变压吸附流程制取氮气。在常温常压下,利用空气中的氧和氮在碳分子筛表面的吸附量的差异及氧和氮在碳分子筛中的扩散速率不同,通过可编程序控制器控制气动阀的启闭,实现加压吸附、减压脱附的过程,完成氧、氮分离,得到所需纯度氮气,氮气的纯度和产气量可按照客户要求调节。本公司生产的DFD系列普氮型制氮装置,氮气纯度为95%--99.999%,产气量为1Nm3 /h--3000Nm3 /h。 如果客户要求高纯度的氮气,则可以在DFD制氮装置后面配套我公司生产的加氢或加碳脱氧系列氮气纯化装置,纯度可以达到99.9999%,露点达到-70°C,氧含量为1ppm的高纯氮气。 PSA制氮机的特点 、成本低:PSA先进工艺是一种简便的制氮方法,开机后几分钟产生氮气,能耗低,氮气成本远远低于深冷法空分制氮和市场上的液氮。 2、性能可靠:进口微电脑控制,全自动操作,无需要特别训练的操作人员,只需按下启动开关,就可自动运转,达到连续供气。 3、氮气纯度稳定:完全由仪表监控、显示,确保所需氮气纯度。 4、选用优质进口分子筛:具有吸附容量大,抗压性能强,使用寿命长等特点。 5、高品质的控制阀门:优质的进口专用气动阀门可以保证制氮设备可靠地运转。 6、雄厚的技术力量和优良的售后服务:现场安装只需管道和电源,专业技术人员指导和定期回访,从而保证设备稳定可靠、长期运行。 PSA制氮机的应用领域 一.SMT行业应用

充氮回流焊及波峰焊,用氮气可有效抑止焊锡的氧化,提高焊接润湿性,加快润湿速度减少锡球的产生,避免桥接,减少焊接缺陷,得到较好的焊接质量。使用氮气纯度大于99.99或99.9%。 二.半导体硅行业应用 半导体和集成电路制造过程的气氛保护,清洗,化学品回收等。 三.半导体封装行业应用 用氮气封装、烧结、退火、还原、储存。维通变压吸附制氮机协助业类各大厂家在竞争中赢得先机,实现了有效的价值提升。 四.电子元器件行业应用 用氮气选择性焊接、吹扫和封装。科学的氮气惰性保护已经被证明是成功生产高品质电子元器件一个必不可少的重要环节。 五.化工、新材料行业行业应用 用氮气在化工工艺中创建无氧气氛,提高生产工艺的安全性,流体输送动力源等。石油:可应用于系统中管道容器等的氮气吹扫,储罐充氮、置换、检漏,可燃性气体保护,也应用于柴油加氢和催化重整。 六.粉末冶金,金属加工行业,热处理行业应用 钢、铁、铜、铝制品退火、炭化,高温炉窑保护,金属部件的低温装配和等离子切割等。 七.食品、医药行业行业应用 主要应用于食品包装、食品保鲜、食品储存、食品干燥和灭菌、医药包装、医药置换气、医药输送气氛等。 八.其他使用领域 制氮机除了使用在以上行业以外,在煤矿、注塑、钎焊、轮胎充氮橡、橡胶硫化等众多领域也得到广泛使用。随着科技的进步和社会的发展,氮气装置

工业制氮

氮气在石油和天然气工业上的应用 一.氮气在油田中的应用 随着石油工业的发展,石油储量在逐年下降,石油的开采越来越困难了。然而仍然有近2/3的原油因为一二次未能采出而被封锁在地下,现在人们正为此而全力探索新方法和新技术。向油层注氮以提高原油采收率,就是其中一项新技术。利用氮气自身特性进行油层压力保持、混相与非混相驱及重力泄油等技术,可大大提高采收率,对我国石油工业稳产、高产具有很大意义。 按传统作业方法进行一次采油和二次采油采出的原油只有原始地质原油储量的1/3,仍有2/3左右的原油被封闭在油层中。在美国靠传统的开采技术已采出大约1000亿桶原油,油层中仍还有近70%的原油约3000亿桶残留在地下。要想尽可能多的采出这部分原油,就必须不断采取提高采收率的新方法。一般来说,向油藏中注入流体包括液体和气体,就是这样一种新方法。与注液体相比,注气具有注入质量少与油层不混相等优点。注入气体有空气、天然气、二氧化碳和氮气等。由于注入空气可能会导致空气和地下天然气混合达到爆炸极限,而产生爆炸,历史上曾发生过这种悲剧,因此现在注空气已被禁止或严格控制使用。 本世纪60年代期间,以天然气作为提高采收率的主气源,后因天然气供应不足及价格升高等原因,人们又寻求用二氧化碳做气源。但二氧化碳气源通常在远离井场的地方,因此使用也不方便,而且二氧化碳在原油中有一定的溶解。70年代后期,开始转向资源丰富的氮气,因为空气中就含有大量的氮气(空气中含有78%的氮气,21%的氧气,1%的其它气体)而且与天然气和二氧化碳相比具有无腐蚀、适应性好、经济等优点。三者相比较氮气的价格为每立方米约合人民币 0.12-0.24元,天然气的价格为每立方米约合人民币0.46-1.38元,而二氧化碳的价格为每立方米约合人民币0.39-0.92元。目前,美国和加拿大每天向油层中注入高达一千四百多万立方米的氮气,用以提高原油的采收率。在美国实施注气的30个油田中,注氮气的就有25个。 从多油藏的角度看,油层注氮主要有如下几方面作用

PSA制氮机工作原理及工艺流程

PSA制氮机工作原理及工艺流程 一、基础知识 1.气体知识 氮气作为空气中含量最丰富的气体,取之不竭,用之不尽。它无色、无味,透明,属于亚惰性气体,不维持生命。高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。氮气(N2)在空气中的含量为78.084%(空气中各种气体的容积组分为:N2:78.084%、O2:20.9476%、氩气:0.9364%、CO2:0.0314%、其它还有H2、CH4、N2O、O3、SO2、NO2等,但含量极少),分子量为28,沸点:-195.8℃,冷凝点:-210℃。 2.压力知识 变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂——碳分子筛最佳吸附压力为0.75~0.9MPa,整个制氮系统中气体均是带压的,具有冲击能量。 二、PSA制氮工作原理: 变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色 碳分子筛的孔径分布特性使其能够实现O2、N2的动力学分离。这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。碳分子筛对O2、N2的分离作用是基于这两种气体的动力学直径的微小差别,O2分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率,N2分子的动力学直径较大,因而扩散速率较慢。压缩空气中的水和CO2的扩散同氧相差不大,而氩扩散较慢。最终从吸附塔富集出来的是N2和Ar的混合气。 由这两个吸附曲线可以看出,吸附压力的增加,可使O2、N2的吸附量同时增大,且O2的吸附量增加幅度要大一些。变压吸附周期短,O2、N2的吸附量远没有达到平衡(最大值),所以O2、N2扩散速率的差别使O2的吸附量在短时间内大大超过N2的吸附量。 变压吸附制氮正是利用碳分子筛的选择吸附特性,采用加压吸附,减压解吸的循环周期,使压缩空气交替进入吸附塔(也可以单塔完成)来实现空气分离,从而连续产出高纯度的产品氮气。 三、PSA制氮基本工艺流程 空气经空压机压缩后,经过除尘、除油、干燥后,进入空气储罐,经过空气进气阀、左吸进气阀进入左吸附塔,塔压力升高,压缩空气中的氧分子被碳分子筛吸附,未吸附的氮气穿过吸附床,经过左吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为左吸,持续时间为几十秒。左吸过程结束后,左吸附塔与右吸附塔通过上、下均压阀连通,使两塔压力达到均衡,这个过程称之为均压,持续时间为2~3秒。均压结束后,压缩空气经过空气进气阀、右吸进气阀进入右吸附塔,压缩空气中的氧分子被碳分子筛吸附,富集的氮气经过右吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为右吸,持续时间为几十秒。同时左吸附塔中碳分子筛吸附的氧气通过左排气阀降压释放回大气当中,此过程称之为解吸。反之左塔吸附时右塔同时也在解吸。为使分子筛中降压释放出的氧气完全排放到大气中,氮气通过一个常开的反吹阀吹扫正在解吸的吸附塔,把塔内的氧气吹出吸附塔。这个过程称之为反吹,它与解吸是同时进行的。右吸结束后,进入均压过程,再切换到左吸过程,一直循环进行下去。 制氮机的工作流程是由可编程控制器控制三个二位五通先导电磁阀,再由电磁阀分别控制八个气动管道阀的开、闭来完成的。三个二位五通先导电磁阀分别控制左吸、均压、右吸状态。左吸、均压、右吸的时间流程已经存储在可编程控制器中,在断电状态下,三个二位五通先导电磁阀的先导气都接通气动管道阀的关闭口。当流程处于左吸状态时,控制左吸的电磁阀

制氮装置工艺流程

工艺流程 膜制氮实际生产过程中,喷油螺杆压缩机产生的压缩空气,在排气温度和压力下 为油、水的饱和气体,在其后的工艺过程中,温度降低,会析出液态的油和水, 该液态的油和水会对膜性能造成伤害。因此,在选择好膜的前提下,还应该提供 一个完整的解决方案:膜系统的空气处理和控制系统。 空压机提供的压缩空气进入空气缓冲罐,再进入多级过滤器,包含活性碳过滤器 ---除去空气中的颗粒、油、水。洁净的空气进入膜进行氧氮分离,产生的氮气 进入到用户用气工段。一般地,进口的过滤器一般能将空气中的颗粒除到﹤ 0.01um,油﹤0.003ppm,完全能满足膜对空气质量的要求;在过滤器的中间还 有温度加热及控制器---保证膜在最佳的工作条件下工作;恒温的,洁净的空气 再进入膜进行分离,合格气体进入下道工序,不合格气体自动排放。因此,维 护膜系统时,其中的定期工作之一是检查过滤器的工作情况。 膜制氮工艺流程图示: 膜设备的特点: 和其它的现场制气方法比较,膜制氮具有 1.技术先进,是常温空气分离的最新技术; 2.没有噪音,完全静态运行,满足环保要求; 3.没有运动部件,设备维护保养少; 4.连续运行可靠性高、设备使用寿命长,可达10年以上; 5.增容简单,仅仅需要并联添加膜件即可; 6.和PSA比较,没有大的空气罐和氮气罐,体积小、重量轻,是移动制氮设备的不二选择; 7.氮气露点低、可达-60℃; 8.氮气没有任何灰尘、颗粒; 9.开停机方便迅速,操作简单,能在短时间产生合格氮气; 10.设备形式可以根据用户应用情况,有箱式、撬装式、集装箱式; 11.设备对土建没有任何特殊要求,安装费用低; 12.对环境无特殊要求,可在恶劣工况下运行;

细木工板的生产工艺流程

13.2.1.3细木工板的生产工艺流程 芯条占细木工板体积60%以上,与细木工板的质量有很大关系。 制造芯条的树种最好采用材质较软,木材结构均匀、变形小、干缩率小,而且木材弦向和径向干缩率差异较小的树种,易加工、芯条的尺寸、形状较精确,则成品板面平整性好,板材不易变形,重量较轻,有利于使用。 一般芯条含水率8%--12%,北方空气干燥可为6%--12%,南方地区空气湿度大,但不得超过15% 芯条的生产流程: 干板材双面刨多片锯横截锯芯条 (压刨) 芯条厚度:木芯板的厚度加上制造木芯板时板面刨平的加工余量。 芯条宽度:芯板的宽度一般为厚度1.5倍,最好不要超过2倍,一些质量要求很高的细木工板芯条宽度不能大于20mm芯条越宽,当含水率发生变化时,芯条变形就越大。 芯条长度:芯条越长,细木工板的纵向弯曲强度越高,然而芯条越长,木材利用率越低。 芯条的材质:芯条不允许有树脂漏,不允许腐朽,不允许有爬楞。

芯板的加工:使用芯条胶拼机 木芯板胶拼后,板面粗糙不平,通常采用压刨加工,芯条加工精度很高的机拼木芯板,可以用砂光加工来代替刨光。 13.2.2胶合板 以木材为主要原料生产的胶合板,由于其结构的合理性和生产过程中的精细加工,可大体上克服木材的缺陷大大改善和提高木材的物理力学性能,胶合板生产是充分合理地利用木材、改善木材性能的一个重要方法。 13.2.2.1定义: 胶合板是由木段旋切成单板或由木方刨切成薄木,再用胶粘剂胶合而成的三层或多层的板状材料,通常用奇数层单板,并使相邻层单板的纤维方向互相垂直胶合而成。 13.2.2.2胶合板的构成原则: 对称原则:对称中心平面两侧的单板,无论树种单板厚度、层数、制造方法、纤维方向和单板的含水率都应该互相对应,即对称原则胶合板中心平面两侧各对应层不同方向的应力大小相等。因此,当胶合板含水率变化时,其结构稳定,不会产生变形,开裂等缺陷;反之,如果对称中心平面两侧对应层有某些差异,将会使对称中心平面两侧单板的应力不相等,使胶合板产生变形、开裂。 奇数层原则:由于胶合板的结构是相邻层单板的纤维方向互相垂,又必须符合对称原则,因此它的总层数必定是奇数。如:三层板、五层板、七层板等;奇数层胶合板弯曲时最大的水平剪应力作用在中心单板上,使其有较大的强度;偶数层胶合板弯曲时最大的水平剪应力作用在胶层上而不是作用在单板上,易使胶层破坏,降低了胶合板强度。

制氮机说明书

PSA制氮机 使用说明书 北京海恩康科技有限公司

目录 一、简介 二、主要技术参数 三、工作原理与工艺流程 四、运输与安装 五、使用与操作 六、安全使用及注意事项 七、日常维护与保养 八、常见故障与分析 九、附图及附表 1、工艺流程图 2、电控原理图 3、外形图 4、流量计修正值表

一、简介 该设备是根据PSA变压吸附原理,利用碳分子筛独特的性能,从空气中分离出廉价的氮气。 该设备具有流程简单、结构紧凑、占地面积小、操作简便、随开随用、制氮成本低、安全可靠、耗电少、氮气纯度可调,产气压力高等显著特点,是一种理想的利用空气为原料制取氮气的空分设备。随着科学的进步及经济的发展,氮气的用途日益广泛,它在冶金、热处理、石油化工、食品、保鲜、医药工业、电子等诸多行业是必不可少的重要的保护气源之一。 二、主要技术参数 设备规格型号:PSA-490-5 1、产气量: 5 Nm3/h 2、氮气纯度:99.9-99.99 % 3、含氧量:≤0.5 % 4、气体露点:-40 ℃ 5、进出气口压差:≤0.1Mpa 6、吸附罐解吸方式:常压解吸 7、出口压力:≥0.5 Mpa 8、进口压力:≥0.8 Mpa 9、设备安装条件: ①环境:温度5-35℃相对湿度<75% ②电源:AC220V 50HZ 功率:制氮机:0.3 KW ③耗气量: 5 Nm3/min 含油量≤3mg/m3,温度<40℃,压力0.8 Mpa 三、工作原理与工艺流程 工作原理:碳分子筛是一种以煤或果壳为原料经特殊加工而成的黑色颗粒。其表面布满了无数的微孔。碳分子筛分离空气的原理,取决于空气中氧分子和氮分子在碳分子筛微孔中的不同扩散速度,或不同的吸附力或两种效应同时起作用。在吸附平衡条件下,碳分子筛对氧、氮分子吸附量接近。但在吸附动力学条件下,氧分子扩散到分子筛微孔隙中速度比氮分子扩散速度快得多。因此,通过适当的控制,在远离平衡条件的时间内,使氧分子吸附于碳分子筛的固相中,而氮分子则在气相中得到富集。同时,碳分子筛吸

制氮工艺流程

制氮工艺流程 氮气的最大来源、最低成本是空气,空气中的主要成分是氧气和氮气。它们各占约22%与78%。当然还有二氧化碳、水蒸汽及少量的惰性气体。因此,制氮机实质就是“空分”设备,只要把氧气与氮气分开则可。 制氮机应根据其氮气的纯度高低去选择,如纯度要求不高可选用分子筛制氮机,如纯度要求高,则选用冷冻法制氧机。 冷冻法制氮机是利用氧气和氮气的沸点不同(氧气沸点为-183℃,氮气沸点为-196℃),首先把空气预冷、净化(去除空气中的少量水分、二氧化碳、乙炔、碳氢化合物等气体和灰尘等杂质),然后进行压缩、冷却,使之成为液态空气。然后,利用氧和氮的沸点的不同,在精馏塔中把液态空气多次蒸发和冷凝,将氧气和氮气分离开来,得到纯氧(可以达到99.6%的纯度)和纯氮(可以达到99.9%的纯度)。如果增加一些附加装置,还可以提取出氩、氖、氦、氪、氙等在空气中含量极少的稀有惰性气体。由空气分离装置产出的氧气,经过压缩机的压缩,最后将压缩氮气装入高压钢瓶贮存。使用这种方法生产氮气,虽然需要大型的成套设备和严格的安全操作技术,但是产量高,每小时可以产出数干、万立方米的氧气,与氮气,而且所耗用的原料仅仅是不用买、不用运、不用仓库储存的空气,所以从1903年研制出第一台深冷空分制氮(氧)机以来,这种制氧方法一直得到最广泛的应用。 分子筛制氧法(吸附法):氧气进入吸附器内,当吸附器内氧气达到一定量(压力达到一定程度)时,即可打开出氧阀门放出氧气。经过一段时间,分子筛吸附的氮逐渐增多,吸附能力减弱,产出的氧气纯度下降,需要用真空泵抽出吸附在分子筛上面的氮,然后重复上述过程。这种制取氧的方法亦称吸附法。最近,利用吸附法制氧的小型制氧机已经开发出来,便于家庭使用,当然这也是制氮设备。 它是利用氮分子大于氧分子的特性,使用特制的分子筛把空气中的氧离分出来。首先,用压缩机迫使干燥的空气通过分子筛进入抽成真空的吸附器中,空气中的氮分子即被分子筛所吸空分制氧系统包括空压机系统、空冷系统、水冷系统、分子筛纯化系统、增压膨胀机系统、精馏塔系统、加压气化系统、氧气系统、氧压机系统、调压站系统空分制氧系统中精馏塔分离氮气与氧气的原理简介:精馏塔是一种采用精馏的方法,使各组份分离。从而得到高纯度组份的设备。 空气被冷却至接近液化温度后送入精馏塔的下塔,空气自下向上与温度较低的回流液体

深冷制氮的工艺流程说明

深冷制氮的工艺流程说明 ---- 深冷空气分离技术 深度冷冻法分离空气是将空气液化后,再利用氧、氮的沸点不同将它们分离。即,造成气、液浓度的差异这一性质,来分离空气的一种方法。因此必须了解气、混合物的一些基本特征:气-液相平衡时浓度间的关系:液态空气蒸发和冷凝的过程及精馏塔的精馏过程。 1. 空气的汽-液相的平衡,物质的聚集状态有气态、液态、固态。每种聚集态内部,具有相同的物理性质和化学性质并完全均匀的部分,称为相。空气在塔内的分离,一般情况下,物料精馏是在汽、液两相进行的。空气中氧和氮占到99.04%,因此,可近似地把空气当作氧和氮的二元混合物。当二元混合物为液态时,叫二元溶液。 氧、氮可以任意比例混合,构成不同浓度的气体混合物及溶液。把氧、氮溶液置于一封闭容器中,在溶液上方也和纯物质一样会产生蒸汽,该蒸汽是由氧、氮蒸汽组成的气态的相混合物。对于氧氮二元溶液当达到汽液平衡时,它的饱和温度不但和压力有关,而且和氧、氮的浓度有关。当压力为1at时,含氮为0%,2%,10%的溶液的沸点列于表1-5。从表可知,随着溶液中低沸点组分(氮)的增加,溶液的组和温度降低,这是氧-氮二元溶液的一个重要特性。 空气中含氩0.93%,其沸点又介于氧、氮之间。 在空气分离的过程中,氩对精馏的影响较大,特别是在制取高纯氧、氮产品时,必须考虑氩的影响。 一般在较精确的计算中,又将空气看作氧-氩-氮三元混合物,其浓度为氧20.95%,氩0.93%,氮78.09(按容积)。 三元系的汽液平衡关系,可根据实验数据表示在相平衡图上。确定三元系的汽液平衡状态时,必须给定三个独立参数,除给定温度、压力外,需再细定一个组分浓度(气相或液相)平衡状态才能确定。 2. 压力-浓度图和温度-浓度图在工业生产中,气液平衡一般在某一不变条件下进行的。在温度一定时可得如图1-13所示的压力-浓度的关系图(P-X图)。

雕刻制板流程

雕刻制板流程 特点:1、工艺简单、自动化程度高; 2、制板速度较慢; 3、制作精度较差; 4、因无锡层及阻焊工艺,焊接困难。 准备好: 1. 覆铜板;手动裁板机;双面线路板雕刻机;油墨固化机; 2.软件: protel 99 se ; 雕刻机软件 3.相关钻头 4. 3.175mm定位销钉四个或水彩笔(能画粗线就行) 步骤: 1.先把双面线路板雕刻机的底用洗底文件洗平底面 2.用protel 或DXP软件导出gerber文件: 3.打开雕刻机软件,导入gerber文件 DCM软件中,紫色为边框禁止布线层,蓝色为底层,红色为顶层,绿色为钻孔, 灰色为焊盘,橙色为雕刻路径 1.点软件里面的“定位”出现如下图 2. 3.设置如上图深度 4.再点G代码(相当做好的文件另存为)保存好 5.点软件里面的“隔离”出现如下图

6. 选择顶层和禁止布线层后在刀具选择里面选刀(选择刀是0.1还是0.2要看PCB图的线和线隙宽度一般能用0.2的优化尽量用0.2)点G代码生成的文件保存。但还要点底层G代码哦,因是双面板. 6.点上图的预览找到刚生成的雕刻文件 7. 8.如上图黄色线就是雕刻路经一定要这时判断是否所有地方都优化到了。如有地方 线两边没有黄色线,说明选择刀具太大得用0.1的制作文件。 9.再点钻孔出现如下图 10. 11.如上图中要注意的是选顶面加工还是底面加工和板厚问题 12.如您PCB图上只有底层有线路就选底层加工,如是双面板一般选顶面加工 13.割边这里不做说明,因为割边操作不当会把PCB板割坏。 4.雕刻机上操作

1.打开电源和主轴的开关后,液晶显示“是否回原点?”,按“确定”键回机床原点 2. 把铣底文件用U盘或USB连接线连接致PC机中,把雕刻机的零点定在机器的原点那后按XY轴清零. Z轴的话慢慢下降快到PVC底板时再按Z轴清零就好. 3.铣好底后, 用纤维纸胶带把板贴到雕刻机可雕框内(注意,如是长方型的图一定要按电脑上PCB图上的样子放好) 4.如做双面板的话.先钻完板上所有的孔(提前做好打孔文件). 再在四个角钻好孔的地方(一般是3.0的孔)用水彩笔从板上点到PVC底板上去.使PVC底板上有个印子. 3. 再在四个角上定好销钉 4.拿出板子进行抛光→(沉铜机)→预浸→水洗→烘干→活化→通孔→热固化抛光→镀铜→水洗→抛光→烘干。(总之就是使板上孔内壁都有铜) 5,再拿好镀好铜的板的正面(就是打孔时放的那样的面)用纤维纸胶带贴好..在板的左下角把XY轴定好零点,再调好Z轴的高度运行雕刻文件就可以雕正面了. 注意板贴好后把定位销钉拔出来。 6.雕好正面后又把定位销钉打入原位,再拿出板。 7.雕刻底面时,把板子X轴方向翻转(平常翻书一样翻转)对好PVC底板上画好的孔和定们销钉再运行铣底文件。注意板贴好后把定位销钉拔出来。 到现在板子的线路就出来了,可以进行焊接。 如学校配有激光打印机;腐蚀机; 线路板丝印机;曝光机;油墨固化机;显影机; 就可以再刷两层油墨,一层为感光阻焊油墨,另一层为感光阻焊油墨。目的阻焊层的作用:1让板子看得漂亮,2使板子线路部份的铜不被氧化。 完全做好的板如下图:

制氮机操作标准手册

KHN39-1000型制氮机操作标准手册 一、目的 为提高公司内制氮机操作人员数量,发现问题能够及时解决,保证各车间能够正常使用,延长制氮机使用寿命,特制订本标准操作手册。 二、适用范围 公司内车间设备员、负责人,公共系统监管人员。 三、术语解释 KHN39-1000型PSA制氮机:KHN型变压吸附氮气设备采用优质碳分子筛为吸附剂,利用PSA(全称PRESSURE SWING ADSORPTION)变压吸附原理,直接从压缩空气中获取氮气。氮气流量可达到10-2000Nm3/h,氮气纯度95~99.999%。在一定压力下,由于动力学效应,氧、氮在碳分子筛上的扩散速率差异较大,短时间内氧分子被碳分子筛大量吸附,氮分子气相富集,达到氧氮分离的目的。由于碳分子筛对氧的吸附容量随压力的不同而有明显的差异,降低压力即可解吸碳分子筛吸附的氧分子,以便碳分子筛再生,得到重复循环使用。 制氮系统有两只吸附塔,吸附塔中填充碳分子筛,一塔吸附氧,制取氮气,另一只塔解吸再生,排出上次吸附在碳分子筛表面的氧,每次吸附时间为58(预设)秒,切换前两只吸附塔同时均压,使压力相等,然后切换吸附塔,如此循环交替,连续产生高品质氮气。 空气压缩机 制氮机Array净化设备

空气压缩机 净化设备正面 净化设备背面 制氮机 工艺流程图 四、基本流程 控制面 板简介 制氮机开机前准备 制氮机的开、停机 制氮机的维护保养 油气分离器 活性炭过滤器 精密过滤器 除油过滤器 微热再生器 制氮机吸附筒 空气压缩机

五、工作指导 (一)制氮机控制面板简介 1、纯度报警指示灯:此灯亮时设备正在产出不合格氮气。(设备刚开机时有半小时左右氮气不合格但纯度有所上升属正常现象)。 2、合格氮气指示灯:此灯亮时说明设备氮气合格,并往管网内输送合格氮气。 3、启动/停止旋钮:当把本地/远程旋钮旋至“本地”时,旋至启动后,氮气设备启动,旋至停止则氮气设备停止。 4、本地/远程旋钮:旋至本地时为本地控制状态,旋至远程则为远程控制状态。 5、手动/自动排空功能:开机时旋转至“自动”,当氮气浓度达到99%以上时,旋转至“手动。 6、氮气分析仪:显示出口成品氮气瞬时纯度。 7、气缸报警指示灯:此灯亮时说明氮气筒内分子筛不足,需要补充分子筛。 8、触摸屏:显示氮气流量纯度、设备进出口压力、故障信息、故障报警、在线修改设备运行参数及维护提醒等功能。 氮气分析仪 触摸屏 合格氮气指示灯 气缸报警指示灯 本地/远程旋钮 手动/自动排空功能 纯度报警指示灯 启动/停止旋钮

生产印制电路板的工艺流程简介

生产印制电路板的工艺流程简介 工厂生产印制电路板的工艺大致为:绘图→照相制版→感丝网→落料→图形转移→蚀刻→钻孔→刻板→孔化→抛光→镀金镀银→阻焊→助焊→修边→印字符图→出厂检验等15道工序。现分别简介如下: ①照相制版将用户提供的印制电路板导电图形图制成照相底片(照相底片也称工作底片,是用来把导电图形转印到印制电路板或丝网板的正片或负片)。 ②感丝网对用户提供的助焊图及字符图做网架,为对印制电路板做助焊、阻焊处理和印制字符图做准备。 ③落料根据图纸提供的印制电路板外形尺寸备板。 ④图形转移将导电图形由照相底片转移到印制电路板上。一般由感光机完成,将导电图形感光到已落好料的敷铜板上。 ⑤蚀刻俗称烂板,将感光好的敷铜板置于三氧化铁(Fe2Cl3)溶液或其他蚀刻液中腐蚀掉不需要的铜箔。 ⑥整板去毛刺,整形,开异形孔,初检。 ⑦刻板将未腐蚀干净的导电条、工艺线等用手工法除去。 ⑧孔化孔化,全称引线孔金属孔化。即在双面板或多层板引线孔和过孔内壁和基板两面上用电化学方法沉积金属,实现两个外层电路和内外层电路之间的电气连接。 ⑨抛光烘干后的表面处理,去除表面氧化层。

⑩镀金镀银根据用户要求,采用电或化学镀金或镀银,再抛光两次,清洗烘干。 ⑥阻焊采用丝网印制法,将阻焊剂涂覆在除焊盘和过孔盘以外的区域上。 ⑥助焊采用丝网印制法,在焊盘和过孔盘上上助焊剂。 ⑩印字符图采用丝网印制法,在印制电路板元件面上印上字符图。 ⑩修边将制好的印制电路板对外轮廓按尺寸进行加工。 ⑩检验对印制电路板进行目视检验(10倍放大镜)、印制图形连通性检验、绝缘电阻测量、可焊性试验、电镀层检验和粘合强度检验等。感谢您的支持与配合,我们会努力把内容做得更好!

制氮机工艺流程新

中空纤维膜制氮系统工艺流程描述 概述 该套设备包括空气压缩机、空气缓冲罐(或冷冻式干燥机)和中空纤维膜制氮机三部分,下面逐一描述各个部分的功能和作用。 一、空气压缩机 该设备主要用来提供压缩空气源,根据我公司膜分离制氮机的技术要求,压缩空气的压力在12bar—13bar时氮气的回收效率最高,故需选用最大出口压力为12bar—13bar的空气压缩机。 二、空气缓冲罐(或冷冻式干燥机) 该设备的主要作用是用来缓冲来自空压机的压缩空气的压力,同时可以除去压缩空气中的部分油水,以减轻后面膜制氮机内部的三级过滤器的负载。一般来说,如果周围环境湿度很大时(如南方沿海地区)需选用冷冻式干燥机,否则选择空气缓冲罐就足够了。 三、中空纤维膜制氮机 该设备本身带有三级过滤装置、温度控制装置、在线式氧分析仪和电器控制装置,下面分别描述各个装置的功能。 A、三级过滤装置 1、粗过滤器 用于去除3um以上的固态与液态颗粒,使经过处理后的气体的气溶油含量小于5ppm w/w。 2、精细过滤器 进一步去除1 um以上的包括水、油气溶胶的颗粒,提供最大油含量小于1 ppm w/w的气体。 3、高效过滤器 用于滤除0.01um和更大的固态和液态颗粒,99.99+%油雾;残留油含量为 0.01ppm w/w。 B、PLC智能控制装置 包括温度控制显示、在线氧浓度分析显示、电器元件控制、产品气控制等。 空压机空气缓冲罐过滤器加热器膜组 (或冷干机) 中空纤维膜制氮机工艺流程简图

C、中空纤维膜组件描述 PRISM?中空纤维膜是利用某些高分子聚合物对不同气体透过速率不同的特性,选用适合的高分子材料制成中空纤维,在膜内外压差作用下实现对空气的氮氧分离,从而得到我们所需要的氮气。 中空纤维膜分离器就象一个列管式换热器,成千上万根中空纤维丝被封装在钢制容器中。在丝束的一端,中空纤维丝的中心孔都是敞开的。丝束间缝隙用环氧树脂来密封。压缩空气进入膜组,水蒸气、氧气等的渗透速率大,我们称之无“快气”,很快透过膜壁,被富集在低压外侧;氮气、氩气等的渗透速率小,我们称之为“慢气”,被富集在高压内侧,从而实现氮氧分离的目的。 由于中空纤维膜实现了对空气的选择性分离,从而使得空气分离变得简单、可靠、灵活。 1、简单:使用中空纤维膜制氮机,将有一定压力和温度的空气输入膜组一 端,从膜组的另一端即可得到氮气。用户可根据自己的需要来调整出口氮气的纯度(由95%-99.9%),简单易行;每根膜组具有一定的产气量,根据不同的气量需求选择不同的膜组数,如需增大气量,只需增加膜组数即可。简单的另一方面表现在操作维护上,任何一个工人在经过短期培训后即可维护设备,对使用者的素质要求较低。 2、可靠:整套系统在运行中除去空压机外没有任何移动部件,制氮机在静 态下运行,因此几乎不需要维修。对于选定出口氮气纯度,只要进气口压缩空气稳定,氮气纯度就不会发生任何变化。 3、灵活:整套膜制氮装置体积小、重量轻,可根据用户要求制成固定式、 移动式,无需基建投资,操作简单,纯度可调。

PSA制氮机的工艺流程

空气经空压机压缩后,经过除尘、除油、干燥后,进入空气储罐,经过空气进气阀、左吸进气阀进入左吸附塔,塔压力升高,压缩空气中的氧分子被碳分子筛吸附,未吸附的氮气穿过吸附床,经过左吸出气阀、氮气产出阀进入氮气储罐,这个过程称之为左吸,持续时间为几十秒。左吸过程结束后,左吸附塔与右吸附塔通过上、下均压阀连通,使两塔压力达到均衡,这个过程称之为均压,,持续时间为2-3秒。均压结束后,压缩空气经过空气进气阀、右吸进阀进入右吸附塔,压缩空气中的氧分子被碳分子筛吸附,富集的氮气经过右吸出气阀、氮气产气阀进入氮气储罐这个过程称之为右吸, 持续时间为60秒。同时左吸附塔中的碳分子筛吸附的氧气通过左排气阀降压释放回大气当中,此过程称之为解吸。反之左吸附时右塔同时也在解吸。为使分子筛中降压释放出的氧气完全排放到大气中,氮气通过一个常开的反吹阀吹扫正在解吸的吸附塔,把塔内的氧气吹出吸附塔。这个过程称之为反吹。它与解吸是用时进行的。右吸结束后,进入均压过程,再切换到左吸过程,一直循环进行下去。

一:开机步骤 1:打开冷干机的电源,预冷2-3分钟。 2:开启空压机,压缩空气经冷干机和过滤器处理后进入制氮机的空气缓冲罐,各压力表指示逐渐上升。 3:当空气缓冲罐的压力达到空压机设定的最高压力时,打开电控柜上的电源开关,既可进入正常的工作状态。 4打开放空阀等到纯度达到工艺要求后,关闭放空阀门待氮气储罐压力达到0.6Mpa,打开通往后级用气的阀,缓慢打供气阀,这时可观察倒流量计浮子上升,开度的流量示值要小于额定流量,流量控制为设备性能所要求值以内。 二:停机步骤 1:关闭制氮机的电源开关。 2:关闭冷干机的电源开关。。 3:关闭空压机的电源。 4:关闭进入制氮机的压缩空气阀门。 5:若长期不用时将系统各设备电源切断。 6:关闭氮气供气阀门,其他阀门不用关闭。若长期不用时才将各阀门关闭。 三:故障紧急停车步骤 1: 关闭制氮机的电源开关。 2:关闭流量计下的阀门。

变压吸附制氮机操作规程

第一章总述 一、制氮机原理简介 变压吸附法(简称PSA)是一种新的气体分离技术,其原理是利用分子筛对不同气体分子“吸附”性能的差异而将气体混合物分开。变压吸附(PSA)制氮机是一种新型高科技设备,它具有设备成本低,体积小、重量轻、操作简单、维护方便、运行费用小、现场制氮快捷、开关方便、无污染等优点,。本厂生产的PSA空分制氮设备广泛运用于石油化工、电炉炼钢、玻璃生产、造纸等行业和领域,设备运行稳定,安全可靠,深受广大用户的青睐。 三、制氮工作原理: 1、变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。碳分子筛是一种经过特殊的孔型处理工艺加工而成的,表面和内

部布满微孔的柱形颗粒状吸附剂.其孔型分布特性使其能够实现O2、N2的动力学分离。碳分子筛对O2、N2的分离作用是基于这两种气体的动力学直径的微小差别,O2分子在碳分子筛的微孔中有较快的扩散速率,N2分子扩散速率较慢。压缩空气中的水和CO2的扩散同氧相差不大,而氩扩散较慢。最终从吸附塔富集出来的是N2。 变压吸附制氮正是利用碳分子筛的选择吸附特性,采用加压吸附,减压解吸的循环周期,使压缩空气交替进入吸附塔(也可以单塔完成)来实现空气分离,从而连续产出高纯度的产品氮气。 四、制氮基本工艺流程: 制氮机基本工艺流程示意图 空气经空压机压缩后,经过除尘、除油、干燥后,进入空气储罐,经过空气进气阀、左吸进气阀进入左吸附塔,塔压力升高,压缩空气中的氧分子被碳分子筛吸附,未吸附的氮气穿过吸附床,经过左吸出气阀、氮气产气阀进入氮气储罐,这个过程称之为左吸,持续时间为几十秒。左吸过程结束后,左吸附塔与右吸附塔通过中间均压阀连通,

印刷制版的工艺过程

集资料——扫描图片——文字录入——图象设计——版面编程——输出菲林——打样——较对——成品 扫描仪技术指标 扫描仪的主要技术指标有:原稿种类、输入分辨率、扫描密度范围、有效输入灰度级、输入速度、输入数据格式、接口标准、输入幅面以入缩入倍率。 原稿种类是指透射或反射,阳图或阴图原稿等。 输入入分辨率是以每英寸分辨的像素点数来表示的,以DPI为单位。输入分辨率的高低直接的清晰度也就越高。反身原稿最高输入分辨率通常为600DPI-2400 DPI,透射原稿最高输入分辨率通常为300 DPI-8000 DPI。电脑创意软件的选择 目前,国内较多的电脑美术设计在微机平台上用IBMPC及它的兼容机来作三维和三维的徒刑和动画制作即视频制作。面Macintosh 机从一开始出现就是图形界面。多用于作平面设计与印前处理。但 也能做平面,MAC机也能作视频,最近IBM、APPLE、MOTOROLA三家联手推出了POWER PC,PC与MAC软件不能通用已成为历史。从软件上看,Windows3.1操作系统也实现了完全的图形用记界面,绝大部分以前仅在MAC机上运行的桌面出版软件也都有了Windows的版本,例如Photoshop软件,便同时有MAC版和PC版的,在两种机型上都能运用。 目前较为成熟的并投放应用的电脑创意软件(主要指桌面系统常用到的电脑创意软件)主要有以下几类: 1、图形绘画软件 较流行的图形处理软件有: (1)Adobe ILLUSTRATOR 具有文字输入和图标、标题字、字图以及各种图表的设计制作和编辑等优越的功能,是电脑设计师们常用的。 (2)Aldus Freehand 是美国Aldus公司推出的一个应用广泛的计算机图形设计软件,特别是在报纸和杂志的广告制作以及统计图形的制作方面深受欢迎。 (3)CorelDRAW: 由Corel公司推出的一个绘画功能很强大的软件,并且兼有图形绘画、图象处理、表格制能及制作支画等等许多功能。 2、图象编辑软件 较流行的图象编辑软件有:

变压吸附制氮机的工作原理及流程

变压吸附制氮机的工作 原理及流程 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

PSA制氮机工作原理及工艺流程 一、基础知识 1.气体知识 氮气作为空气中含量最丰富的气体,取之不竭,用之不尽。它无色、无味,透明,属于亚惰性气体,不维持生命。高纯氮气常作为保护性气体,用于隔绝氧气或空气的场所。氮气(N2)在空气中的含量为%(空气中各种气体的容积组分为:N2:%、O2:%、氩气:%、CO2:%、其它还有H2、CH4、N2O、 O3、SO2、NO2等,但含量极少),分子量为28,沸点:℃,冷凝点:-210℃。 2.压力知识 变压吸附(PSA)制氮工艺是加压吸附、常压解吸,必须使用压缩空气。现使用的吸附剂——碳分子筛最佳吸附压力为~,整个制氮系统中气体均是带压的,具有冲击能量。 二、PSA制氮工作原理: JY/CMS变压吸附制氮机是以碳分子筛为吸附剂,利用加压吸附,降压解吸的原理从空气中吸附和释放氧气,从而分离出氮气的自动化设备。碳分子筛是一种以煤为主要原料,经过研磨、氧化、成型、碳化并经过特殊的孔型处理工艺加工而成的,表面和内部布满微孔的柱形颗粒状吸附剂,呈黑色,其孔型分布如下图所示: 碳分子筛的孔径分布特性使其能够实现O2、N2的动力学分离。这样的孔径分布可使不同的气体以不同的速率扩散至分子筛的微孔之中,而不会排斥混合气(空气)中的任何一种气体。碳分子筛对O2、N2的分离作用是基于这两种气体的动力学直径的微小差别,O2分子的动力学直径较小,因而在碳分子筛的微孔中有较快的扩散速率,N2分子的动力学直径较大,因而扩散速率较慢。压缩空气中的水和CO2的扩散同氧相差不大,而氩扩散较慢。最终从吸附塔富集出来的是N2和Ar的混合气。 碳分子筛对O2、N2的吸附特性可以用平衡吸附曲线和动态吸附曲线直观表现出来: 由这两个吸附曲线可以看出,吸附压力的增加,可使O2、N2的吸附量同时增大,且O2的吸附量增加幅度要大一些。变压吸附周期短,O2、N2的吸附量远没有达到平衡(最大值),所以O2、N2扩散速率的差别使O2的吸附量在短时间内大大超过N2的吸附量。 变压吸附制氮正是利用碳分子筛的选择吸附特性,采用加压吸附,减压解吸的循环周期,使压缩空气交替进入吸附塔(也可以单塔完成)来实现空气分离,从而连续产出高纯度的产品氮气。 二、PSA制氮基本工艺流程:

线路板生产工艺流程

线路板生产流程(一) 多种不同工艺的PCB流程简介 *单面板工艺流程 下料磨边→钻孔→外层图形→(全板镀金)→蚀刻→检验→丝印阻焊→(热风整平)→丝印字符→外形加工→测试→检验 *双面板喷锡板工艺流程 下料磨边→钻孔→沉铜加厚→外层图形→镀锡、蚀刻退锡→二次钻孔→检验→丝印阻焊→镀金插头→热风整平→丝印字符→外形加工→测试→检验 *双面板镀镍金工艺流程 下料磨边→钻孔→沉铜加厚→外层图形→镀镍、金去膜蚀刻→二次钻孔→检验→丝印阻焊→丝印字符→外形加工→测试→检验 *多层板喷锡板工艺流程 下料磨边→钻定位孔→内层图形→内层蚀刻→检验→黑化→层压→钻孔→沉铜加厚→外层图形→镀锡、蚀刻退锡→二次钻孔→检验→丝印阻焊→镀金插头→热风整平→丝印字符→外形加工→测试→检验 *多层板镀镍金工艺流程 下料磨边→钻定位孔→内层图形→内层蚀刻→检验→黑化→层压→钻孔→沉铜加厚→外层图形→镀金、去膜蚀刻→二次钻孔→检验→丝印阻焊→丝印字符→外形加工→测试→检验 *多层板沉镍金板工艺流程 下料磨边→钻定位孔→内层图形→内层蚀刻→检验→黑化→层压→钻孔→沉铜加厚→外层图形→镀锡、蚀刻退锡→二次钻孔→检验→丝印阻焊→化学沉镍金→丝印字符→外形加工→测试→检验 一步一步教你手工制作PCB

制作PCB设备与器材准备 (1)DM-2100B型快速制板机1台 (2)快速腐蚀机1台 (3)热转印纸若干 (4)覆铜板1张 (5)三氯化铁若干 (6)激光打印机1台 (7)PC机1台 (8)微型电钻1个 (1)DM-2100B型快速制板机 DM一2100B型快速制板机是用来将打印在热转印纸上的印制电路图转印到覆铜板上的设备, 1)【电源】启动键一按下并保持两秒钟左右,电源将自动启动。 2)【加热】控制键一当胶辊温度在100℃以上时,按下该键可以停止加热,工作状态显示为闪动的“C”。再次按下该键,将继续进行加热,工作状态显示为当前温度;按下此键后,待胶辊温度降至100℃以下,机器将自动关闭电源;胶辊温度在100℃以内时,按下此键,电源将立即关闭。 3)【转速】设定键一按下该键将显示电机转速比,其值为30转/分)~80转/分)。按下该键的同时再按下"上"或"下"键,可设定转印速度。

制氮工艺流程

日照港岚山港区中区氮气站工程制氮工艺流程图 一、设备及管线内介质流向图 二、由空压机至氮气储罐工艺流程 ①空压机装置中的压缩机把流入的空气进行压缩后,除尘除油除水装置除去大部分的尘、油、水,然后进入空气缓冲罐(空压机与缓冲罐之间有一个DN80闸阀便于管线气体的开关,DN80止回阀指向缓冲罐单向导通便于压缩空气的收集); ②空气缓冲罐的作用是减缓压缩空气冲击力平缓压力波动值;使压缩空气平稳地通过压缩空气净化组件,以便充分除去油水杂质,减轻后续PSA 氧氮分离装置的负荷。 ③通过DN100变DN80 的变径将压缩空气输送到膜制氮机中的冷冻式

干燥机; ④膜制氮机中的冷冻式干燥机的作用是除水、精过滤器除油、除尘,并由在紧随其后的超精过滤器进行深度净化;通过冷冻式干燥机进入膜制氮机中的活性炭过滤器 ⑤活性炭过滤器的原理是装有专用碳分子筛的吸附塔共有A、B两只。当洁净的压缩空气进入A塔入口端经碳分子筛向出口端流动时,O2、CO2和H2O被其吸附,产品氮气由吸附塔出口端流出。经一段时间后,A塔内的碳分子筛吸附饱和。这时,A塔自动停止吸附,压缩空气流入B塔进行吸氧产氮,对并A塔分子筛进行再生。分子筛的再生是通过将吸附塔迅速下降至常压脱除已吸附的O2、CO2和H2O来实现的。两塔交替进行吸附和再生,完成氧氮分离,连续输出氮气。 ⑥最后进入氮气储罐,通过缓冲罐为用户提供氮气。 三、由液氮储罐到氮气储罐工艺流程(一般作为备用,当膜制氮机供不足情况下投入使用) ①运输来的液氮暂时储存于低温液氮储罐,液氮通过管线流入空温式汽化器; ②空温式汽化器原理是是利用空气自然对流加热换热管中的低温液体,使其完全蒸发成气体;是一种集空温式和加热式汽化功能、可替代加热汽化产品的高效节能换热设备; ③转换后的氮气进入氮气缓冲罐,通过缓冲罐为用户提供氮气。 注:工艺流程是根据设计图纸工艺部分,各设备性能参数编制。

控制板加工工艺流程

1、编带、预成型 2、刷胶(点红胶) 3、贴片、回流焊 4、机插 5、上手插线插件 6、过波峰焊-焊点上锡 7、剪脚 8、补焊 9、ICT检测 10、功能侧 11、外观检验 12、刷胶 13、烘干 14、包装运输 控制板加工工艺流程说明: 一、前工序 1、编带、预成型 根据不同的印制板上的位号,将已经编带好的电子元器件进行机插时先后顺序和不同位号需求不同的电子元器件进行重新编带。以便机插时可以根据不同的位号机插不同的物料。预成型主要是对手插线中的部分元器件进行预先的整形和成型。以提高手插时的工作效率。编带定员1人,预成型一般定员4-5人。 2、刷胶(点红胶) 对需要贴片的元器件对应的印制板上的位号用刷胶机或者点胶机进行上胶,以防止贴片后元器件掉落。定员1人。 3、贴片、回流焊 将刷胶后的印制板进行贴片和回流焊,回流焊使元器件在印制板上更加可靠。需要贴片的元器件一般都是贴片电阻、贴片电容等。贴片12小时产能一般在3000左右。定员1人。 4、机插 将贴片后的半成品进行机插,机插分为卧插和立插,先卧插后立插。主要是电阻、电容等进行机插。机插12小时产能一般在3600块左右。定员1人。 二、组装车间 此时一块控制板已经完成近一半的工作量,接下来的手插、波峰焊、剪脚、补焊、ICT 检测、功能测试、外观检查等工序都是在流水线上操作。 1、手插 此道工序是将贴片机插好的半成品控制板进行手插流水线的操作。将不能在贴片、机插车间完成的元器件在手插线进行手插,根据不同的控制板一般定员15-25人不等。 2、波峰焊 将已经完成贴片、机插、手插的控制板过波峰焊上锡。固定所有的元器件。定员1人3、剪脚 此工序是将波峰焊后控制板上元器件留出来的引脚剪掉,留出1.5-2.5MM的余量。定员1人。 3、补焊 此工序是检查元器件引脚有没有虚焊、漏焊的点,用焊锡丝进行修补。此工序根据不同的控制板一般定员在4-8人。

相关文档
最新文档