铝合金型材性能

铝合金型材性能
铝合金型材性能

第二节铝合金材料

铝合金材料是幕墙工程大量使用的材料,幕墙金属杆件以铝合金建筑型材为主(占95%以上)。幕墙面板也大量使用单层铝板、铝塑复合板等。

一.牌号与状态

GB/T16474—1996《变形铝及铝合金牌号表示方法》规定了变形铝及铝合金的牌号表示方法。这个标准是根据变形铝及铝合金国际牌号注册协议组织推荐的国际四位数字体系牌号命名方法制定的,这是国际上比较通用的牌号命名方法。

这个标准包括国际四位数字体系牌号和四位字符体系牌号两种牌号的命名方法。按化学成份,已在国际牌号注册组织命名的铝及铝合金,直接采用国际四位数字体系牌号,国际牌号注册组织未命名的铝及铝合金,则按四位字符体系牌号命名。

牌号的第一位数字表示铝及铝合金的组别,如表2-14所示。

基础状态代号用一个英文大写字母表示。基础状态分为五种,如表2-15所示。

表2-15 基础状态代号、名称及说明与应用

细分状态代号采用基础状态代号后跟一位或多位阿拉伯数字表示。

1.H的细分状态

在字母H后面添加两位阿拉伯数字(称作H××状态)表示H的细分状态。

A.H后面的第一位数字表示获得该状态的基本处理程序,如下所示:

H1—单纯加工硬化状态。适用于未经附加热处理,只经加工硬化即获得所需强度的状态。

H2—加工硬化及不完全退火的状态。适用于加工硬化程度超过成品规定要求后,经不完全退火,使强度降低到规定指标的产品。对于室温下自然时效软化的合金,H2与对应的H3具有相同的最小极限抗拉强度值;对于其它合金,H2与对应的H1具有相同的最小极限抗拉强度值,但延伸率比H1稍高。

H3—加工硬化及稳定化处理的状态。适用于加工硬化后经低温热处理或由于加工过程中的受热作用致使其化学性能达到稳定状态的产品。H3状态仅适用于在室温下逐渐时效软化(除非经稳定化处理)的合金。

H4—加工硬化及涂漆处理的状态。适用于加工硬化后,经涂漆处理导致了不完全退火的产品。

B.H后面的第2位数字表示产品的加工硬化程度。数字8表示硬状态。通常采用O状态的最小

抗拉强度与表2-16规定的强度差值之和,来规定H×8状态的最小抗拉强度值。对于O(退火)和H×8状态之间的状态,应在H×代号后分别添加从1到7的数字来表示,在H×后添加数字9表示比H×8加工硬化程度更大的超硬状态。各种H××细分状态代号及对应的加工硬化程度如表2-17所示。

2

在字母T后面添加一位或多位阿拉伯数字表示T×的细分状态。

A.在T后面添加0~10的阿拉伯数字,表示的细分状态(称作T状态)如表2-18所示。

T后面的数字表示对产品的基本处理程序。

表2-18 T×细分状态代号说明与应用

(称作T×××状态),表示经过了明显改变产品特性(如力学性能、抗腐蚀性能等)的特定工艺处理的状态,如表2-19所示。

3.原状态代号相应的新代号见表2-20。

表2-20

二.铝合金建筑型材

铝合金建筑型材是铝合金玻璃幕墙的主材,目前使用的主要是6061(30号锻铝)和6063、6063A(31号锻铝)高温挤压成型、快速冷却并人工时效(T5)[或经固溶热处理(T6)]状态的型材,经阳极氧化(着色)、或电泳涂漆、粉末喷涂、氟碳化喷涂表面处理。

GB/T5337—2000对铝合金建筑型材的质量作了规定。

1.化学成份

国家标准《变形铝及铝合金化学成份》GB/T3190—1996的规定见表2一21 。

表2一21

学性能、满意的表面质量和外观装饰效果,必须严格控制合金化学成份。

6063合金的化学元素含量范围比较宽,由于各元素在合金中所起的作用不同,因此必须考虑合金中各元素的含量及其互相关系的搭配,才能保证获得较为理想的各项性能及较好的经济效益。

主要合金元素是镁、硅,主要强化相是M g2S i。要保证合金中的M g2S i总量不少于0.75%,且M g2S i得到充分溶解,合金力学性能就完全能满足GB/T5237—2000标准中的要求。M g2S i在基体铝中的溶解度是与合金中镁的含量有关的,M g2S i中镁、硅质量可分比1.73:1,如果M g2/S i>1.73,镁过剩,过剩的镁将显著降

低M g2S i在固态铝中的溶解度,削弱M g2S i的强化效果;M g/S<1.73,硅过剩,对M g2S i的溶解度影响很小,基本不会削弱M g2S i的强化效果。

铁是主要什质元素,是对氧化着色质量影响最大的元素,随着铁元素的升高,阳极氧化膜的光泽度暗,透明度减弱,铝型材表面的光亮度显著降低,影响美观,含铁高的型材是不宜氧化着色的。

另外,由于铁、硅形成的化合物有较强的热缩性,容易使铸锭产生裂纹,特别是F eS i时,则产生熔点较高的包晶反应,提高了脆性区的温度下限,能降低热裂倾向。

因此,应首先控制好镁、硅、铁三元素的含量及相互关系,既保证合金中能够形成足够的M g2S i强化相,又保证有一定量的硅过剩,且过剩量小于合金中铁含量,合金中的铁含量还不能影响到氧化着色的质量。这样,使得合金既有一定强度,又降低了产生裂纹的倾向,同时,氧化着色的质量也不会降低。

其他什质元素虽然对铝型材性能的影响相对小一些,但也不可忽视。除铜以外的其他什质元素含量超过规定值时,都对铝型材的表面质量有不同程度的影响。

铜虽然对提高合金的强度有一定作用,但对耐蚀性有不利影响,锰、铬对提高合金的耐蚀性有帮助,锰还可以提高合金的强度,铬则有抑制M g2S i相在晶界的折出,能延缓自然时效过程,提高人工时效后的强度的作用,但锰、铬含量高时,会使铝型材氧化膜色泽偏黄,着色效果差。钛在铝合金中起细化晶粒,减少热裂倾向,提高伸长率的作用,但含量超过0.10%时也会对铝型材的着色质量有较大的影响。这几种什质元素的含量应控制在规定的0.10%以下,才不会对铝型材的性能有太大影响。

综合考虑6063合金比较理想的化学成份为:(%)

M g:0.45—0.55;S i:0.35—0.45;M g/S i=1.3—1.4;F e:0.15—0.20

Z n<0.10 T i<0.10 C u<0.10 M n<0.10 C r<0.10

按照这个化学成份,M g+S i≥0.80%,且过剩的硅量小于铁含量,铁、锌、铜、钛、锰、铬的含量也较低,对氧化的质量不会有太大的影响。可以保证合金有良好的挤压性能,又可以保证型材有良好的力学性能和氧化膜质量及表面质量,同时也不会造成合金元素的浪费。

4.铝合金建筑型材物理性能

铝合金建筑型材物理性能见表2-22。

5.材质标准

GB/T5237.1—2000对铝合金建筑型材—基材的质量作了规定。

①型材的合金牌号、表面处理应符合表2-23的规定。

②化学成分

型材的化学成分应符合表2-21的规定。

③型材尺寸允许偏差分为普精级、高精级和超高精级,分别见表2-24~2-26。

表2-25 高精级mm

④型材的角度允许偏差:型材角度允许偏差应符合表2-27的规定,并在图样或合同中注明,末注明时6061合金按普精级执行,6063、6063A合金按高精级执行。

2-28的规定。末注明级别时,6061合金按普精级执行,6063、6063A使金按高精级执行。

为每25mm的弦长上允许的最大值不超过0.13mm,不足25mm的部分按25mm计算。当横截面园弧形部分的园心角大于900时,则应按900园心角的弦长加上其余数园心角的弦长来确定。要求检查曲面间隙的型材,要在图纸或合同中注明。检查曲面间隙的标准样板由需方提供。

图2—1图2—2

⑦型材的弯曲度:型材的弯曲度是将型材放在平台上,借自重使弯曲达到稳定时,沿型材长度方向测量得到的型材底面与平台最大间隙(ht),或用300mm长直尺沿型材长度方向靠的型材表面上测得的间隙最大值(hs),如图2-3所示.图中L为定尺长度.。型材的弯曲度应符合表2-29的规定。.弯曲度的精度等级要在合同中注明。未注明时6063T5、6063A T5型材按高精级执行。其余按普精级执行。

表2-29

沿型材的长度方向,测量型材与平台底面之间的最大距离N,如图2-4所示。.从N值中扣除该处弯曲值即为扭拧度。

扭拧度按型材外接园直径分档,以型材每毫米宽度上允许扭拧的毫米数表示,公称长度小于等于6m 的型材应符合表2-30的规定。大于6m时,双方协商。扭拧度精度等级要在合同中注明,未注明时6063T5、6063T5、6063A T5型材按高精级执行,其余按普精级执行。

N值为2mm,

弯曲值为1mm,则扭拧值为1mm,型材每毫米宽扭拧值为1/81=0.0123,查表2-30,允许扭拧值为0.017,即实际扭拧度小于允许扭拧度,为合格。

⑨园角半径允许偏差:

型材园角如图2-5所示。需方要求有偏差时,在图样中注明,允许偏差参照表2-31的规定。

图2-4 图2-5

(1)型材要求定尺时,应在合同中注明,公称长度小于等于6m,允许偏差为+15mm;长度大于6m时,允许偏差双方协商确定。

(2)以倍尺交货的型材,其总长度允许偏差为+20mm,需要加锯余量时,应在合同中注明。

(3)不定尺型材的交货长度为1~6m。

11.端头切斜度允许偏差

型材端头切斜度不应超过20。

12.力学性能:型材的室温力学性能应符合表2-32的规定。

2

2 . 淬火自然时效的型材室温力学性能是常温时效1个月的数值。常温时效不足1个月进行拉伸试验时,试样

应进行快速处理,其室温纵向力学性能符合表2-18的规定。

3 . 维氏硬度、韦氏硬度和拉伸试验只做1项,仲裁试验为拉伸试验。

13.外观质量

(1)型材表面应整洁,不允许有裂纹、起皮、腐蚀和气泡等缺陷存在。

(2)型材表面上允许有轻微的压坑、碰伤、擦伤存在,其允许深度见表2—33。模具压痕见表2-34。饰

面要在图纸中注明,未注明时按非装饰面执行。

表2—33

6.铝合金建筑型材表面处理的技术要求。

①阳极氧化、着色型材。GB/T5237.2—2000对阳极氧化膜的质量规定如下:

(1)基材质量、产品的化学成份、力学性能应符合GB/T5237.1的规定。

(2)产品的尺寸允许偏差(包括氧化膜在内)应符合GB/T5237.1的规定。

(3) 阳极氧化膜的厚度级别应按表2—35 的规定执行。

表2—35

表2—36

(6) 电解着色、有机着色的型材,其氧化膜颜色,应符合供需双方协商认可的实物标样及允许偏差。非装饰面上允许有轻微的颜色不均,不均度由供需双方协商。

(7) 阳极氧化膜的耐蚀性采用铜加速醋酸盐雾试验(cass)和滴碱试验、耐磨性落砂检测,结果应符合表2—37的规定。

少应达到1级,有机着色膜色差至少应达到2级。具体色差级别应根据颜色的不同,由供需双方协商确定。

(9) 外观质量

产品表面不允许有电灼伤、氧化膜脱落等影响使用的缺陷。距型材端头80mm以内允许局部无膜或电灼伤。

②电泳涂漆型材。GB/T5237.3—2000对电泳涂漆复合膜的质量作了规定。

(1)基材质量应符合GB/T5237.1的规定。

(2)电泳涂漆型材去除膜层后的化学成份、室温力学性能应符合GB/T5237.1的规定。

(3)电泳涂漆型材尺寸允许偏差(包括复合膜在内)应符合GB/T5237.1的规定。

(4)厚度应符合表2—38的规定。

表2—38μm

注:在苛刻、恶劣环境条件下的室外用建筑构件应采用A级的型材,在一般环境条件下的室外用建筑构件车辆用构件,可采用B级的型材

(5)阳极氧化膜的耐蚀性、漆膜的附着力和硬度以及复合膜的耐蚀性和耐碱应符合表2—39的规定。

注:表中所指的阳极氧化膜系指型材在涂漆前经阳极氧化处理所形成的氧化膜,其耐蚀性的要求应在加工过程中予以保证,并作定期检查,不作为产品最终检验的项目。

(6) 颜色、色差

颜色、色差应符合供需双方确定的实物标样及允许偏差。

(7) 人工加速耐候性

复合膜经氙灯照射人工加速老化试验后,应无粉化现象(0级),失光程度至少达到1级(失光率≤15%),变色程度至少达到1级。

(8) 耐沸水性

在≥95度的去离子水中煮沸5小时,漆膜表面不应有皱纹、裂纹、气泡、脱落及变色。

(9) 外观质量

涂漆前型材的外观质量应符合GB/T5237.2的有关规定。涂漆后的涂膜应均匀、整洁、不允许有皱纹、裂纹、气泡、流痕、夹什物,发粘和漆膜脱落等影响使用的缺陷。但在电泳型材端头80mm范围内允许局部无漆膜。

③粉末喷涂型材。GB/T5237.4—2000对粉末喷涂质量作了规定。

(1)喷粉型材的牌号和状态规格应符合GB/T5237.1的规定。涂层种类为热固性饱和聚酯粉末涂层。(2)基材质量:喷粉型材用基材应符合GB/T5237.1的规定。

(3)尺寸允许偏差:喷粉型材去掉涂层后,尺寸允许偏差应符合GB/T5237.1的规定。产品因涂层引起的尺寸变化应不影响装配和使用。

(4)喷粉型材的化学成份、力学性能:喷粉型材去掉涂层后,其化学成份,室温力学性能应符合

GB/T5237.1的规定.。

(5)预处理:基材喷涂前,其表面应进行预处理,以提高基体与涂层的附着力。化学转化膜应有一定的厚度,当采用铬化处理时,铬化转化膜的厚度应控制在200~1300毫克/平方米范围内(用重量法测定)。(6)外观质量:喷粉型材装饰面上涂层应平滑、均匀、不允许有皱纹、流痕、鼓泡、裂纹、发粘等影响使用的缺陷。允许有轻微的桔皮现象,其允许程度应由供需双方商定的实物标样表明。

(7)涂层性能

(7.1)光泽:涂层的600光泽值应与合同规定值一致。光泽值≥80个光泽单位的高光产品,其允

许偏差为±10个光泽单位,其它产品允许偏差为±7个光泽单位。

(7.2)颜色和色差:涂层颜色应与合同规定的色板基本一致。使用仪器测定时,单色粉末的涂层与标准色板间的色差ΔE*ab≤1.5,同一批产品之间的色差Δ*ab≤1.5 。

(7.3)涂层厚度:装饰面上涂层最大局部厚度≤120μm ,最小局部厚度≥40μm 。

注:由于挤压型材横截面形状的复杂性,致使型材某些表面(如内角、横沟等)的涂层厚度低于规定

值是允许的,但不允许出现露底现象。

(7.4)压痕硬度:涂层经压痕试验,其抗压痕性≥80 。

(7.5)附着力:涂层经划格试验其附着力达到0级。

(7.6)耐冲击性:涂层经正面冲击试验后无开裂或脱落现象,但在凹面的周边处允许有细小皱纹。

(7.7)杯突试验:涂层经压陷深度为6mm的杯突试验后,无开裂或脱落现象。

(7.8)抗弯曲性:涂层经曲率半径为3mm ,弯曲1800的试验后,无开裂或脱落现象。

(8).耐化学稳定性

(8.1)耐灰浆性:涂层经灰浆试验后,其表面不应有脱落和其它有明显变化。

(8.2)耐盐酸性:涂层经盐酸试验后,目视检查表面不应有气泡或其它明显变化。

(8.3)耐溶剂性:经二甲苯试验后,应无软化和其它明显变化。.

(9).耐盐雾腐蚀性:在带有交叉划痕的试板上,经1000h乙酸盐雾试验(ASS试验)后,先对交叉划线两侧各2.0mm以外部分的涂层进行目测检查,其涂层不应有腐蚀现象。再按GB/T9286—1998中的7.2.6条进行试验,在离划线2.0mm以外部分,不应有涂层脱落现象.。也可采用120h铜加速乙酸盐雾试验(CASS试验),其保护等级≥9.5级。仲裁时,采用乙酸盐雾试验(ASS试验)。

(10).耐湿热性:涂层经1000h试验后,变化≤1级。

(11).人工加速耐候性:涂层经250h氙灯照射人工加速老化试验后,不应产生粉

化现象(0级),失光率和变色色差至少达到一级。经供需双方商定,可采用其它人工加速老化试验,其具体要求应由供需双方商定并在合同中注明。荧光紫外线辐射法加速性能好,特别适用于生产检验,采用时应注意与氙灯照射法的对比关系。

(12).耐沸水性:涂层经耐沸水试验后,不应有气泡、皱纹、水斑或脱落等缺陷,

允许色泽稍有变化。

④氟碳漆喷涂型材。GB/T5237.5—2000对氟碳漆喷涂质量作了规定。

(1)喷漆型材的合金牌号、状态、规格应符合GB/T5237.1的规定,涂层种类应符合表—40的规定。

表2—40

(2)基材质量:喷粉型材所用的基材应符合GB/T5237.1的规定。

(3)喷漆型材的化学成份和室温力学性能:

喷漆型材去掉涂层后,其化学成份、室温力学性能应符合GB5237.1的规定。

(5)预处理:型材喷涂前,其表面应有进行铬化处理,以提高基体与涂层的附着力。化学转化膜应有一定的厚度,当采用铬化处理时,铬化转化膜的厚度应控制在200—1300mg/m2范围内(用重量法测定)。

(5)尺寸允许偏差:喷漆型材去掉漆膜后的尺寸允许偏差应符合GB/T5237.1的规定。产品因涂层引起的尺寸变化应不影响装配和使用。

(6)涂层性能:

(6.1)光泽:涂层的600光泽值应与合同规定一致,其允许偏差为±5个光泽单位。

(6.2)颜色和色差:涂层颜色应与合同规定的标准色板基本一致。使用仪器测定时,单色涂层与标准色板间的色差ΔE*ab≤1.5 ,同一产品之间的色差ΔE*ab≤1.5。

(6.3)涂层厚度

(6.3.1)喷漆型材装饰面上的漆膜厚度应符合表2—41的规定

(6.4)硬度

涂层经铅笔划痕试验,硬度≥1H.。

(6.5)附着力

涂层的干式、湿式和沸水附着力均达到0级。

(6.6)耐冲击性

涂层正面经冲击试验后应无开裂或脱落现象,在凹面的周边处允许有细小皱纹。

(6.7)耐磨性

涂层经落砂试验后,其磨耗率应≥1.6L/μm。

(6.8)耐化学稳定性

(6.8.1)耐盐酸性

涂层经盐酸试验后,目视检查表面不应有气泡或其它明显变化。

(6.8.2)耐硝酸性

涂层经硝酸试验后,颜色变化ΔE*ab≤6。

(6.8.3)耐溶剂性

经丁酮试验后,漆膜应无软化及其它明显变化。

(6.8.4)耐洗涤剂

涂层经洗涤剂试验后,其表面不应有气泡、脱落或其它明显变化.

(6.8.5)耐灰浆性

涂层经灰浆试验后,其表面不应有脱落或其它明显变化.

(6.9) 耐盐雾性

在带有交叉划痕的试板上,经1500h中性盐雾试验(NSS试验)后,先对交叉划线两侧各2.0mm 以外部份进行目视检查,其涂层不应有腐蚀现象。在按GB/T9286—1988中的7.2.6条规定进行试验,在离划线2.0mm以外部份,不应有涂层脱落现象。

也可采用120h铜加速乙酸盐雾试验(CASS试验)的方法,其保护等级R≥9.5级。仲裁时,采用中性盐雾试验(NSS试验)。

(6.10)耐湿热性

涂层经3000h湿热试验后,其变化不大于1级。

(6.11)人工加速耐候性

涂层经500h氙灯照射人工加速老化试验后,不应产生粉化现象(0)级,失光率和变色色差至少达到1级。经供需双方商定,也可采用其它人工加速老化试验方法进行试验,其具体要求应由供需双方商定并在合同中注明。荧光紫外线辐射法加速性能好,特别适用于生产检验,采用时应注意与氙灯照射法的对比关系。

(7)外观质量

喷漆型材装饰面上的涂层应平滑、均匀、不允许有流痕、皱纹、气泡、脱落及其它影响使用的缺陷。

结构用铝合金材料力学性能

附录A 结构用铝合金材料力学性能 常见结构用铝合金板、带材力学性能(标准值)可按表A-1采用,结构用铝合金棒、管、型材力学性能(标准值)可按表A-2采用。结构用铝合金板、带、棒、管、型材的化学成分可按表A-3采用。 表A-1 结构用铝合金板、带材力学性能标准值

注:1. 伸长率标准值中,A适用于厚度不大于12.5mm的板材,A适用于厚度大于12.5mm的板材。502. 表中焊接折减系数的数值适用于材料焊接后存放的环境温度大于10℃,存放时间大于3d(6XXX系列)或30d(7XXX系列)的情况。 3. 表中焊接折减系数的数值适用于厚度不超过15mm的MIG焊,以及3xxx系列、5xxx系列合金和8011A合金厚度不超

过6mm的TIG焊。对于6xxx系列和7xxx系列合金厚度不超过6mm的TIG焊,焊接折减系数的数值必须乘以0.8。当厚度超过上述规定,如无试验结果或国内外相关规范规定,3xxx系列、5xxx系列合金和8011A合金焊接折减系数的数值必须乘以0.9,6xxx系列和7xxx系列合金焊接折减系数的数值必须乘状态不需进行上述折减。O焊)。对于TIG(0.64焊)或MIG(0.8以. 表A-2 结构用铝合金棒、管、型材力学性能标准值

适用于厚度(或直的板(或棒)材,A注:1. 伸长率标准值中,A适用于厚度(或直径)不大于12.5mm50 12.5mm的板(或棒)材。径)大于系6XXX(2. 表中焊接折减系数的数值适用于材料焊接后存放的环境温度大于10℃,存放时间大于3d 系列)的情况。列)或30d(7XXX8011A系列合金和MIG焊,以及3xxx系列、5xxx3. 表中焊接折减系数的数值适用于厚度不超过15mm的焊接折减系数的7xxx系列合金厚度不超过6mmTIG焊,合金厚度不超过6mm的TIG焊。对于6xxx系列和系列合。当厚度超过上述规定,如无试验结果或国内外相关规范规定,3xxx系列、5xxx的数值必须乘以0.8系列合金焊接折减系数的数值必须乘0.9,6xxx系列和7xxx金和8011A合金焊接折减系数的数值必须乘以TIG焊)。对于O状态不需进行上述折减。以0.8(MIG焊)或0.64(

铝合金的典型机械性能

铝合金的典型机械性能(Typical Mechanical Properties) 铝合金牌号 及状态拉伸强度(25°C MPa)屈服强度(25°C MPa)硬度500kg力10mm球延伸率 1.6mm(1/16in)厚度 5052-H112 175 195 60 12 5083-H112 180 211 65 14 6061-T651 310 276 95 12 7050-T7451 510 455 135 10 7075-T651 572 503 150 11 2024-T351 470 325 120 20 铝合金的典型物理性能(Typical Physical Properties) 铝合金牌号及状态热膨胀系数 (20-100℃) μm/m?k熔点范围 (℃)电导率20℃(68℉) (%IACS) 电阻率20℃(68℉) Ωmm2/m 密度(20℃)(g/cm3) 2024-T351 23.2 500-635 30 0.058 2.82 5052-H112 23.8 607-650 35 0.050 2.72 5083-H112 23.4 570-640 29 0.059 2.72 6061-T651 23.6 580-650 43 0.040 2.73 7050-T7451 23.5 490-630 41 0.0415 2.82 7075-T651 23.6 475-635 33 0.0515 2.82 铝合金的化学成份(Chemical Composition Limit Of Aluminum ) 合金 牌号硅Si 铁Fe 铜Cu 锰Mn 镁Mg 铬Cr 锌Zn 钛Ti 其它铝 每个合计最小值 2024 23.2 0.5 3.8-4.9 0.3-0.9 1.2-1.8 0.1 0.25 0.15 0.05 0.15 余量5052 25 0.4 0.1 0.1 2.2-2.8 0.15-0.35 0.1 -- 0.05 0.15 余量5083 23.8 0.4 0.1 0.3-1.0 4.0-4.9 0.05-0.25 0.25 0.15 0.05 0.15 余量6061 23.6 0.7 0.15-0.4 0.15 0.8-1.2 0.04-0.35 0.25 0.15 0.05 0.15 余 量 7050 23.5 0.15 20.-2.6 0.1 1.9-2.6 0.04 5.7-6.7 0.06 0.05 0.15 余量7075 23.6 0.5 1.2-2.0 0.3 2.1-2.9 0.18-0.28 5.1-6.1 0.2 0.05 0.15 余 量 美铝典型应用领域 用途 2024 5052 5083 6061 7050 7075 农业 -- ● -- ● -- -- 航空器● -- -- ●●● 模具 -- ● -- ● -- ● 机械设备●● -- ●●● 五金零件 -- -- -- ● -- -- 建筑 -- ● -- ● -- --

铝合金的牌号性能与应用

铝合金的牌号、状态和性能 1 铝及铝合金的分类 纯铝比较软,富有延展性,易于塑性成形。如果根据各种不同的用途,要求具有更高的强度和改善材料的组织和其他各种性能,可以在纯铝中添加各种合金元素,生产出满足各种性能和用途的铝合金。 铝合金可加工成板、带、条、箔、管、棒、型、线、自由锻件和模锻件等加工材(变形铝合金),也可加工成铸件、压铸件等铸造材(铸造铝合金)。 纯铝—1×××系,如1000合金 非热处理型合金Al-Mn系合金—3×××系,如3003合金 Al-Si系合金—4×××系,如4043合金变形铝合金Al-Mg系合金—5×××系,如5083合金 Al-Cu系合金—2×××系,如2024合金 热处理型合金Al-Mg-Si系合金—6×××系,如6063合金铝及Al-Zn-Mg系合金—7×××系,如7075合金铝合金Al-其它元素—8×××系,如8089合金 纯铝系 非热处理型合金Al-Si系合金,如ZL102合金 Al-Mg系合金,如ZL103合金 铸造铝合金Al-Cu-Si系合金,如ZL107合金 Al-Cu-Mg-Si系合金,如ZL110合金 热处理型合金Al-Mg-Si系合金,如ZL104合金 Al-Mg-Zn系合金,如ZL305合金

2 变形铝合金分类、牌号和状态表示法 3. 1 变形铝合金的分类 变形铝合金的分类方法很多,目前,世界上绝大部分国家通常按以下三种方法进行分类。 ⑴按合金状态图及热处理特点分为可热处理强化铝合金和不可热处理强化铝合金两大类。不可热处理强化铝合金(如:纯铝、Al-Mn、Al-Mg、Al-Si系合金)和可热处理强化铝合金(如:Al-Mg-Si、Al-Cu、Al-Zn-Mg系合金)。 ⑵按合金性能和用途可分为:工业纯铝、光辉铝合金、切削铝合金、耐热铝合金、低强度铝合金、中强度铝合金、高强度铝合金(硬铝)、超高强度铝合金(超硬铝)、锻造铝合金及特殊铝合金等。 ⑶按合金中所含主要元素成分可分为:工业纯铝(1×××系),Al-Cu合金(2×××系),Al-Mn合金(3×××系),Al-Si合金(4×××系),AL-Mg合金(5×××系),Al-Mg-Si 合金(6×××系),Al-Zn-Mg合金(7×××系),Al-其它元素合金(8×××系)及备用合金组(9×××系)。 这三种分类方法各有特点,有时相互交叉,相互补充。在工业生产中,大多数国家按第三种方法,即按合金中所含主要元素成分的4位数码法分类。这种分类方法能较本质的反映合金的基本性能,也便于编码、记忆和计算机管理。我国目前也采用4位数码法分类。 3.3 中国变形铝合金状态代号及表示方法 根据GB/T16475–1996标准规定,基础状态代号用一个英文大写字母表示。细分状态代号采用基础状态代号后跟一位、两位或多位阿拉伯数字表示。 3.3.1基础状态代号 3.3.2 细分状态代号 HXX状态 H后面的第一位数字表示获得该状态的基本处理程序 H1 ——单纯加工硬化状态 适用于未经附加热处理,只经加工硬化即获得所需强度的状态。

(完整word版)2219铝合金力学性能及生产加工工艺

2219铝合金具有比强度高,低温和高温力学性能好,断裂韧度高,抗应力腐蚀性能好等特点,适用于在高温315℃下工作的结构件、高强度焊接件,在航天和航空得到广泛的应用。2219铝合金属于可热处理强化形变形铝合金,在固溶时效处理之后,铝合金的力学性能得到很大提高。 一、化学成分 2219 铝合金管材的化学成分应符合 GB/T3190《变形铝及铝合金化学成分》国标的规定,具体化学成分见表 1。 表 1 2219铝合金的化学成分 Cu Mn Si Zr Fe Mg Zn V Ti Al 5.8~ 6.80.2~0.4≤0.20.1~0.25≤0.3≤0.020.100.05~0.150.02~0.1Ba 二、2219铝合金的主要性能 不同热处理状态下的2219铝合金在20°C 时的体积电导率为44/%IACS(O态)、28/%IACS(T31、T37、T351 态)、30/%IACS(T62、T81、T87、T851 态);不同状态的 2219 铝合金在20 °C 时的电阻率为39/nΩ·m(O 态)、62/nΩ·m(T31、T37、T351 态)、57/nΩ·m(T62、T81、T87、T851 态);各种状态下的2219 铝合金在20 °C 时的电阻温度系数均为0.1/ nΩ·m·K-1。其中T3 表示经过热处理之后再冷加工处理,最后自然时效到基本稳定的状态,第二位数字表示经过热处理之后进行冷加工的变形量。T62 适用于退火态或者自由加态的材料,经过固溶热处理之后,进行人工时效的产品。T8 表示经过固溶热处理之后进行经冷加工,最后人工时效的状态,第二位数字代表冷加工时,对材料进行的变形量。此外,在上述所述热处理状态的代号后面添加“51”,表示产品进行了消除应力处理。 2219-O热处理状态下的抗拉强度、屈服强度、延伸率以及弹性模量分别为175 MPa、75 MPa、18 %以及73 GPa;2219-T42 热处理状态下的抗拉强度、屈服强度、延伸率以及弹性模量分别为360 MPa、185 MPa、20 %以及73 GPa;2219-T31和2219-T351热处理状态下的抗拉强度、屈服强度、延伸率以及弹性模量分别为360 MPa、250 MPa、17 %以及73 GPa;2219-T37 热处理状态下的抗拉强度、屈服强度、延伸率以及弹性模量分别为395 MPa、315 MPa、11%以及73 GPa;2219-T62 热处理状态下的抗拉强度、屈服强度、延伸率以及弹性模量分别为415 MPa、290 MPa、10%以及73 GPa;2219-T81 和2219-T851 热处理状态下的抗拉强度、屈服强度、延伸率以及弹性模量分别为455 MPa、350 MPa、10 %以及73 GPa;2219-T87 热处理状态下的抗拉强度、屈服强度、延伸率以及弹性模量分别为475 MPa、395 MPa、10 %以及73 GPa。 三、加工工艺 a.铝合金型材生产包括熔铸、挤压和氧化三个过程。 1、熔铸是铝材生产的首道工序。主要过程为:(1)配料:根据需要生产的具体合金牌号,计算出各种合金成分的添加量,合理搭配各种原材料。(2)熔炼:将配好的原材料按工艺要求加入熔炼炉内熔化,并通过除气、除渣精炼手段将熔体内的杂渣、气体有效除去。(3)铸造:熔炼好的铝液在一定的铸造工艺条件下,通过深井铸造系统,冷却铸造成各种规格的圆铸棒。 2、挤压:挤压是型材成形的手段。先根据型材产品断面设计、制造出模具,利用挤压机将加热好的圆铸棒从模具中挤出成形。 3、氧化:挤压好的铝合金型材,其表面耐蚀性不强,须通过阳极氧化进行表面处理以增加铝材的抗蚀性、耐磨性及外表的美观度。其主要过程为:(1)表面预处理:用化学或物理的方法对型材表面进行清洗,裸露出纯净的基体,以利于获得完整、致密的人工氧化膜。还可以

铝合金型材性能

第二节铝合金材料 铝合金材料是幕墙工程大量使用的材料,幕墙金属杆件以铝合金建筑型材为主(占95%以上)。幕墙面板也大量使用单层铝板、铝塑复合板等。 一.牌号与状态 GB/T16474—1996《变形铝及铝合金牌号表示方法》规定了变形铝及铝合金的牌号表示方法。这个标准是根据变形铝及铝合金国际牌号注册协议组织推荐的国际四位数字体系牌号命名方法制定的,这是国际上比较通用的牌号命名方法。 这个标准包括国际四位数字体系牌号和四位字符体系牌号两种牌号的命名方法。按化学成份,已在国际牌号注册组织命名的铝及铝合金,直接采用国际四位数字体系牌号,国际牌号注册组织未命名的铝及铝合金,则按四位字符体系牌号命名。 牌号的第一位数字表示铝及铝合金的组别,如表2-14所示。 基础状态代号用一个英文大写字母表示。基础状态分为五种,如表2-15所示。 表2-15 基础状态代号、名称及说明与应用 细分状态代号采用基础状态代号后跟一位或多位阿拉伯数字表示。 1.H的细分状态 在字母H后面添加两位阿拉伯数字(称作H××状态)表示H的细分状态。 A.H后面的第一位数字表示获得该状态的基本处理程序,如下所示: H1—单纯加工硬化状态。适用于未经附加热处理,只经加工硬化即获得所需强度的状态。 H2—加工硬化及不完全退火的状态。适用于加工硬化程度超过成品规定要求后,经不完全退火,使强度降低到规定指标的产品。对于室温下自然时效软化的合金,H2与对应的H3具有相同的最小极限抗拉强度值;对于其它合金,H2与对应的H1具有相同的最小极限抗拉强度值,但延伸率比H1稍高。 H3—加工硬化及稳定化处理的状态。适用于加工硬化后经低温热处理或由于加工过程中的受热作用致使其化学性能达到稳定状态的产品。H3状态仅适用于在室温下逐渐时效软化(除非经稳定化处理)的合金。 H4—加工硬化及涂漆处理的状态。适用于加工硬化后,经涂漆处理导致了不完全退火的产品。 B.H后面的第2位数字表示产品的加工硬化程度。数字8表示硬状态。通常采用O状态的最小

6061铝合金

6061铝合金 6061属热处理可强化合金,具有良好的可成型性、可焊接性、可机加工性能,同时具有中等 强度,在退火后仍能维持较好的操作性. 6061合金的主要合金元素是镁与硅,并形成Mg2Si相。若含有一定量的锰与铬,可以中和铁的坏作用;有时还添加少量的铜或锌,以提高合金的强度,而又不使其抗蚀性有明显降低;导电材料中还有少量的铜,以抵销钛及铁对导电性的不良影响;锆或钛能细化晶粒与控制再结晶组织;为了改善可切削性能,可加入铅与铋。在Mg2Si固溶于铝中,使合金有人工时效硬化功能。 6061-T651是6061合金的主要合金,是经热处理预拉伸工艺生产的高品质铝合金产品,其强度虽不能与2XXX系或7XXX系相比,但其镁、硅合金特性多,具有加工性能极佳、优良的焊接特点及电镀性、良好的抗腐蚀性、韧性高及加工后不变形、材料致密无缺陷及易于抛光、上色膜容易、氧化效果极佳等优良特点。 时效硬化:经固溶处理或形变加工的金属材料在室温或较高温度保持而使强度和硬度明显提高的现象。 固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却(水冷),以得到过饱和固溶体的热处理工艺。 不完全人工时效:采用比较低的时效温度或较短的保温时间, 获得优良的综合力学性能, 即获得比较高的强度, 良好的塑性和韧性, 但耐腐蚀性能可能比较低。 完全人工时效:采用较高的时效温度和较长的保温时间, 获得最大的硬度和最高的抗拉强度, 但伸长率较低。 稳定化处理:为使工件在长期服役的条件下形状和尺寸变化能够保持在规定范围内的热处理。 典型用途 一、板带的应用广泛应用于装饰、包装、建筑、运输、电子、航空、航天、兵器等各行各业。 二、航空航天用铝材用于制作飞机蒙皮、机身框架、大梁、旋翼、螺旋桨、油箱、壁板和起落架支 柱,以及火箭锻环、宇宙飞船壁板等。 三、交通运输用铝材用于汽车、地铁车辆、铁路客车、高速客车的车体结构件材料,车门窗、货架、 汽车发动机零件、空调器、散热器、车身板、轮毂及舰艇用材。 四、包装用铝材全铝易拉罐制罐料主要以薄板与箔材的形式作为金属包装材料,制成罐、盖、瓶、 桶、包装箔。广泛用于饮料、食品、化妆品、药品、香烟、工业产品等包装。 五、印刷用铝材主要用于制作PS版,铝基PS版是印刷业的一种新型材料,用于自动化制版和印刷。 六、建筑装饰用铝材铝合金因其良好的抗蚀性、足够的强度、优良的工艺性能和焊接性能,主要广 泛用于建筑物构架、门窗、吊顶、装饰面等。如各种建筑门窗、幕墙用铝型材、铝幕墙板、压型板、花纹板、彩色涂层铝板等。 七、电子家电用铝材主要用于各种母线、架线、导体、电气元件、冰箱、空调、电缆等领域。规格: 圆棒、方棒代表用途包括航天固定装置、电器固定装置、通讯领域,也广泛应用于自动化机械零件、精密加工、模具制造、电子及精密仪器、SMT、PC板焊锡载具等等。 一、6061铝合金元素 6061铝合金的主要合金元素是镁与硅,并形成Mg2Si相。若含有一定量的锰与铬,可以中和铁的坏作用;有时还添加少量的铜或锌,以提高合金的强度,而又不使其抗蚀性有明显降低;导电材料中

铝合金知识大全---分类_化学成分_性能

一铝的基本特性与应用范围 二铝及铝合金的分类 纯铝比较软,富有延展性,易于塑性成形。如果根据各种不同的用途,要求具有更高的强度和改善材料的组织和其他各种性能,可以在纯铝中添加各种合金元素,生产出满足各种性能和用途的铝合金。 铝合金可加工成板、带、条、箔、管、棒、型、线、自由锻件和模锻件等加工材(变形铝合金),也可加工成铸件、压铸件等铸造材(铸造铝合金)。

纯铝— 1×××系,如1000合金 非热处理型合金 Al-Mn系合金— 3×××系,如3003合金 Al-Si系合金— 4×××系,如4043合金变形铝合金 Al-Mg系合金— 5×××系,如5083合金 Al-Cu系合金— 2×××系,如2024合金 Al-Mg-Si系合金— 6×××系,如6063合金铝及热处理型合金 Al-Zn-Mg系合金—7×××系,如7075合金铝合金 Al-其它元素— 8×××系,如8089合金 纯铝系 非热处理型合金 Al-Si系合金,如ZL102合金 Al-Mg系合金,如ZL103合金 铸造铝合金 Al-Cu-Si系合金,如ZL107合金 Al-Cu-Mg-Si系合金,如ZL110合金 热处理型合金 Al-Mg-Si系合金,如ZL104合金 Al-Mg-Zn系合金,如ZL305合金

3 变形铝合金分类、牌号和状态表示法 3. 1 变形铝合金的分类 变形铝合金的分类方法很多,目前,世界上绝大部分国家通常按以下三种方法进行分类。 ⑴按合金状态图及热处理特点分为可热处理强化铝合金和不可热处理强化铝合金两大类。不可热处理强化铝合金(如:纯铝、Al-Mn、Al-Mg、Al-Si系合金)和可热处理强化铝合金(如:Al-Mg-Si、Al-Cu、Al-Zn-Mg 系合金)。 ⑵按合金性能和用途可分为:工业纯铝、光辉铝合金、切削铝合金、耐热铝合金、低强度铝合金、中强度铝合金、高强度铝合金(硬铝)、超高强度铝合金(超硬铝)、锻造铝合金及特殊铝合金等。 ⑶按合金中所含主要元素成分可分为:工业纯铝(1×××系),Al-Cu合金(2×××系),Al-Mn合金(3×××系),Al-Si合金(4×××系),AL-Mg合金(5×××系),Al-Mg-Si合金(6×××系),Al-Zn-Mg 合金(7×××系),Al-其它元素合金(8×××系)及备用合金组(9×××系)。 这三种分类方法各有特点,有时相互交叉,相互补充。在工业生产中,大多数国家按第三种方法,即按合金中所含主要元素成分的4位数码法分类。这种分类方法能较本质的反映合金的基本性能,也便于编码、记忆和计算机管理。我国目前也采用4位数码法分类。 3. 2 中国变形铝合金的牌号表示法 根据GB/T16474 — 1996“变形铝及铝合金牌号表示方法”,凡化学成分与变形铝及铝合金国际牌号注册协议组织(简称国际牌号注册组织)命名的合金相同的所有合金,其牌号直接采用国际四位数字体系牌号,未与国际四位数字体系牌号的变形铝合金接轨的,采用四位字符牌号(但试验铝合金在四位字符牌号前加X)命名,并按要求注册化学成分。 四位字符体系牌号的第一、三、四位为阿拉伯数字,第二位为英文大写字母(C、I、L、N、O、P、Q、Z字母除外)。牌号的第一位数字表示铝及铝合金的组别,如1×××系为工业纯铝,2×××为Al-Cu系合金,3×××为Al-Mn系合金,4×××为Al-Si系合金,5×××为Al-Mg系合金,6×××为Al-Mg-Si系合金,7×××为Al-Zn-Mg系合金,8×××为Al-其它元素合金,9×××为备用合金组。 除改型合金外,铝合金组别按主要合金元素来确定,主要合金元素指极限含量算术平均值为最大的合金元素。当有一个以上的合金元素极限含量算术平均值同为最大时,应按Cu、Mn、Si、Mg、Mg2Si、Zn、其它元素的顺序来确定合金组别。牌号的第二位字母表示原始纯铝或铝合金的改型情况,最后两位数字用以标识同一组中不同的铝合金或表示铝的纯度。 我国的变形铝及铝合金表示方法与国际上较通用的方法基本一致。 3.3 中国变形铝合金状态代号及表示方法 根据GB/T16475–1996标准规定,基础状态代号用一个英文大写字母表示。细分状态代号采用基础状态代号后跟一位、两位或多位阿拉伯数字表示。 3.3.1

7055铝合金材料性能

一,AA 7055铝合金材料性能摘要 7055铝合金是目前最先进的商用高强高韧铝合金,具备极高的强度、较好的韧性以及良好的抗应力腐蚀性,具有广泛的应用前景。材料在复杂的服役环境中可能受到各种不同载荷的作用,对材料在不同加载条件下力学行为的研究是完善材料开发、应用以及进行新材料及结构设计的基础。目前,国内对7055铝合金的研究尚处于起步阶段,对于这类新型高性能铝合金在不同加载条件下的力学行为研究仍然十分匮乏,同时,目前也没有一个被广泛接受的本构模型能对该类材料在大的温度和应变率范围内力学行为进行准确描述。另外,作为目前研究材料动态力学行为最为常用的实验设备——分离式霍普金森压杆(SHPB)和分离式霍普金森拉杆(SHTB),在实验方法和实验技术上尚未形成完善、统一的标准,有待进一步的研究和发展,譬如SHPB实验中实现预定应变率的实验参数选取问题,以及SHTB实验中的试样连接方式等。 基于以上背景,本文首先针对SHPB和SHTB实验方法开展了研究和改进工作;然后,较为系统地研究了美国铝业公司生产的AA 7055-T77铝合金在不同温度和应变率下的力学性能及行为,结合微观组织分析对其部分机理进行了初步研究,根据实验结果对Johnson-Cook本构模型进行了修正,并对本构模型的适用性进行了检验和讨论;最后,为评估AA 7055铝合金的高速撞击特性,对AA 7055铝合金和参考材料在高速撞击下的厚板成坑行为进行了研究和对比分析。本文主要的研究内容如下: 第一,基于一维应力波理论推导出一个应变率预估公式,以预估公式为核心,提出了一种可方便实现预定应变率的SHPB实验方案设计方法,并通过数值仿真与实验对该方法进行了演示和验证。 第二,设计了一种用于SHTB装置的楔形卡口式试样连接方式,并通过数值仿真及实验测试证明了这种卡口式连接方式是有效可行的。 第三,利用Gleeble热模拟试验机对AA 7055铝合金在不同温度下的低应变率单轴压缩性能进行了测试,温度范围为300~750K,加载应变率分别为0.0005s-1、0.01s-1和1s-1;利用SHPB 及改进试样连接方式的SHTB装置对其在常温下的动态压缩性能和动态拉伸性能进行了研究,应变率测试范围为:动态压缩时900~5000s-1,动态拉伸时500~1600s-1;获得了AA 7055铝合金在以上加载条件下的应力应变关系和力学行为。 第四,基于AA 7055铝合金的实验结果,提出了一个包含临界转变温度 哈尔滨工业大学工学博士学位论文 的温度效应附加函数、一个耦合温度的应变率效应函数和一个包含有效应变的分段应变硬化函数,综合以上结果,提出了一个具有上述特征的修正Johnson-Cook模型。利用该修正模型对7050-T7451铝合金在较大的温度和应变率范围内的流动应力进行了预测,得到的结果与实验结果符合的较好;同时,该修正模型高温下简化形式对AA 7055铝合金在本文研究范围内的流动应力预测结果与实验结果符合得较好,得到的结果均优于Johnson-Cook模型。说明本文提出的修正Johnson-Cook模型对于铝合金材料具有较好的适用性。 第五,对45%体积分数SiCp/2024Al复合材料、2024铝合金及2A12铝合金也进行了部分测试,获得了这3种参考材料的部分力学性能和材料参数。参考材料的实验结果以及文献中的实验数据表明,本文提出的温度效应附加函数同样适用于参考材料以及部分其它材料。 第六,在单次动态压缩的基础上,利用SHPB对AA 7055铝合金和2024铝合金进行不同次数的循环动态压缩测试,通过对宏观应力应变关系和微观组织变化综合分析,研究了AA 7055铝合金动态压缩时剪切局部化的发展过程。发现了铝合金动态压缩时试样内部剪切局部化的形成机理和发展规律。 最后,利用二级轻气炮系统研究了AA 7055铝合金、45%体积分数SiCp/2024Al复合材料和

铝合金的牌号、状态和性能

1铝的基本特性与应用范围 铝是元素周期表中第三周期主族元素,原子序数为13,原子量为26.9815。 铝具有一系列比其他有色金属、钢铁、塑料和木材等更优良的特性,如密度小,仅为2.7 g / cm3,约为铜或钢的1/3;良好的耐蚀性和耐候性;良好的塑性和加工性能;良好的导热性和导电性;良好的耐低温性能,对光热电波的反射率高、表面性能好;无磁性;基本无毒;有吸音性;耐酸性好;抗核辐射性能好;弹性系数小;良好的力学性能;优良的铸造性能和焊接性能;良好的抗撞击性。此外,铝材的高温性能、成型性能、切削加工性、铆接性以及表面处理性能等也比较好。因此,铝材在航天、航海、航空、汽车、交通运输、桥梁、建筑、电子电气、能源动力、冶金化工、农业排灌、机械制造、包装防腐、电器家具、日用文体等各个领域都获得了十分广泛的应用,下表列出了铝的基本特性及主要应用领域。 铝的基本特性及主要应用领域

3 变形铝合金分类、牌号和状态表示法 3. 1变形铝合金的分类 变形铝合金的分类方法很多,目前,世界上绝大部分国家通常按以下三种方法进行分类。 ⑴按合金状态图及热处理特点分为可热处理强化铝合金和不可热处理强化铝合金两大类。不可热处理强化铝合金(如:纯铝、Al-Mn、Al-Mg、Al-Si系合金)和可热处理强化铝合金(如:Al-Mg-Si、Al-Cu、Al-Zn-Mg 系合金)。 ⑵按合金性能和用途可分为:工业纯铝、光辉铝合金、切削铝合金、耐热铝合金、低强度铝合金、中强度铝合金、高强度铝合金(硬铝)、超高强度铝合金(超硬铝)、锻造铝合金及特殊铝合金等。 ⑶按合金中所含主要元素成分可分为:工业纯铝(1×××系),Al-Cu合金(2×××系),Al-Mn合金(3×××系),Al-Si合金(4×××系),AL-Mg合金(5×××系),Al-Mg-Si合金(6×××系),Al-Zn-Mg合金(7×××系),Al-其它元素合金(8×××系)及备用合金组(9×××系)。 这三种分类方法各有特点,有时相互交叉,相互补充。在工业生产中,大多数国家按第三种方法,即按合金中所含主要元素成分的4位数码法分类。这种分类方法能较本质的反映合金的基本性能,也便于编码、记忆和计算机管理。我国目前也采用4位数码法分类。 3. 2中国变形铝合金的牌号表示法 根据GB/T16474 —1996“变形铝及铝合金牌号表示方法”,凡化学成分与变形铝及铝合金国际牌号注册协议组织(简称国际牌号注册组织)命名的合金相同的所有合金,其牌号直接采用国际四位数字体系牌号,

6005A铝合金力学性能标准整理分析.doc

6005, 6005A 供货状态: T5、T6 室温力学性能要求(取样部位的公称壁厚小于时,不测断后伸长率。 ): 拉伸性能 硬度 a 合金 抗拉强度 规定非比例延 断后伸长率 /% 试样 维氏 韦氏 供应状态 壁厚 /mm 伸强度 / 厚度 硬度 硬度 牌号 (R m )/(N/mm 2) A 50mm (N/mm 2) A /mm HV HW 不小于 T5 ≤ 260 240 — 8 — — — 实心 ≤ 5 270 225 — 6 — — — > 5~10 260 215 — 6 — — — 6005 型材 > 10~25 250 200 8 6 — — — T6 空心 ≤ 5 255 215 — 6 — — — 型材 > 5~15 250 200 8 6 — — — a 硬度仅供参考。 (二) GB/T 6892— 2006 一般工业用铝及铝合金挤压型材 车辆型材指适用于铁道、地铁、轻轨等轨道车辆车体结构及其他车辆车体结构的型材。 6005, 6005A 供应状态: T6 型材的室温纵向拉伸力学性能: 抗拉强度 规定非比例延 断后伸长率 /% 牌号 状态 壁厚 /mm m 伸强度 Mpa b R /Mpa A 50mm 不小于 T5 ≤ 260 215 — 7 T4 ≤ 25 180 90 15 13 6005 实心 ≤ 5 270 225 — 6 > 5~10 260 215 — 6 6005A 型材 T6 > 10~25 250 200 8 6 空心 ≤ 5 255 215 — 6 型材 > 5~15 250 200 8 6 a 表示原始标距( L 0)为 S 0 的断后伸长率。 b 壁厚不大于的型材不要求伸长率。 (三) GB/T 10623—2008 金属材料 力学性能试验术语 A 伸长率:原始标距 L 0 的伸长与原始标距之比的百分率。 Rp 规定非比例延伸强度:非比例延伸率等于引伸计标距( L e )规定百分率时的应力。 注:使用的符号应附以下脚标注说明所规定的百分率,例如: 。 (四) GB/T 3191— 2010 铝及铝合金挤压棒材

一般工业用铝及铝合金挤压型材

一般工业用铝及铝合金挤压型材 范围 本标准规定了一般工业用铝及铝合金挤压型材的要求、试验方法、检验规则和标志、包装、运输、贮存及合同内容等。 本标准适用于一般工业用铝及铝合金挤压型材。 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。GB/T 228 金属材料室温拉伸试验方法 GB/T 3190 变形铝及铝合金化学成分 GB/T 3199 铝及铝合金加工产品包装、标志、运输、贮存 GB/T 3246.1 变形铝及铝合金制品显微组织检验方法 GB/T 3246.2 变形铝及铝合金制品低倍组织检验方法 GB/T 6519 变形铝合金产品超声波检验方法 GB/T 6987(所有部分)铝及铝合金化学分析方法 GB/T 7999 铝及铝合金光电(测光法)发射光谱分析方法 GB/T 12966 铝合金电导率涡流测试方法 GB/T 14846 铝及铝合金挤压型材尺寸偏差 GB/T 16865 变形铝、镁及其合金加工制品拉伸试验用试样 GB/T 17432 变形铝及铝合金化学成分分析取样方法 YS/T XXXX 铝及铝合金热处理规范 要求 产品分类 型材分类 型材按用途分类如表1所示。 标记示例 a)用6005A合金制造的、供应状态为T6、型材代号为ELGDX-15的地铁型材,标记为: 车辆型材6005A-T6 ELGDX-15 GB/T 6892-2XXX b)用6063合金制造的、供应状态为T5、型材代号为EL1755的电器用型材,标记为: 型材6063-T5 EL1755 GB/T 6892-2XXX 化学成分

铝合金牌号、状态、性能和应用

铝合金的牌号、状态和性能 1铝的基本特性与应用范围 铝是元素周期表中第三周期主族元素,原子序数为13,原子量为26.9815。 铝具有一系列比其他有色金属、钢铁、塑料和木材等更优良的特性,如密度小,仅为2.7 g / cm3,约为铜或钢的1/3;良好的耐蚀性和耐候性;良好的塑性和加工性能;良好的导热性和导电性;良好的耐低温性能,对光热电波的反射率高、表面性能好;无磁性;基本无毒;有吸音性;耐酸性好;抗核辐射性能好;弹性系数小;良好的力学性能;优良的铸造性能和焊接性能;良好的抗撞击性。此外,铝材的高温性能、成型性能、切削加工性、铆接性以及表面处理性能等也比较好。因此,铝材在航天、航海、航空、汽车、交通运输、桥梁、建筑、电子电气、能源动力、冶金化工、农业排灌、机械制造、包装防腐、电器家具、日用文体等各个领域都获得了十分广泛的应用,下表列出了铝的基本特性及主要应用领域。 铝的基本特性及主要应用领域

2 铝及铝合金的分类 纯铝比较软,富有延展性,易于塑性成形。如果根据各种不同的用途,要求具有更高的强度和改善材料的组织和其他各种性能,可以在纯铝中添加各种合金元素,生产出满足各种性能和用途的铝合金。 铝合金可加工成板、带、条、箔、管、棒、型、线、自由锻件和模锻件等加工材(变形铝合金),也可加工成铸件、压铸件等铸造材(铸造铝合金)。 纯铝— 1×××系,如1000合金 非热处理型合金 Al-Mn系合金— 3×××系,如3003合金 Al-Si系合金— 4×××系,如4043合金变形铝合金 Al-Mg系合金— 5×××系,如5083合金 Al-Cu系合金— 2×××系,如2024合金 热处理型合金 Al-Mg-Si系合金— 6×××系,如6063合金铝及 Al-Zn-Mg系合金—7×××系,如7075合金铝合金 Al-其它元素— 8×××系,如8089合金 纯铝系 非热处理型合金 Al-Si系合金,如ZL102合金 Al-Mg系合金,如ZL103合金 铸造铝合金 Al-Cu-Si系合金,如ZL107合金 Al-Cu-Mg-Si系合金,如ZL110合金 热处理型合金 Al-Mg-Si系合金,如ZL104合金 Al-Mg-Zn系合金,如ZL305合金

6005铝合金材料力学性能研究

6005铝合金材料力学性能研究 采用万能材料试验机,对典型车用的6005铝合金材料进行准静态拉伸试验。输出载荷-变形量关系,获得应力-应变曲线,进而分析材料的弹性模量、极限强度、极限应变、屈服强度和延展率等力学性能。 标签:6005铝材;准静态拉伸;应力-应变曲线;力学性能 1 概述 车辆用6005铝合金属于Al-Mg-Si系中等强度铝合金。由于其优良的挤压成形性、耐腐蚀性和良好的焊接性,在国外被广泛用于高速列车、地铁列车、双层列车和客货汽车车体所需的薄壁、中空的大型铝合金壁板型材以及其它工业用结构型材。在我国,铝合金大型材已研制成功并投入生產,随着我国交通运输业的发展,6005铝合金在高速、轻型铝合金列车和地铁列车以及轻型客货汽车上的应用必将越来越多[1-3]。 6005具有较高的工艺性能。万普华等人对6005铝合金试样进行了水淬和水淬并深冷处理,来观察金相组织、抗拉强度等对6005铝合金力学性能的影响[4]。张健等人利用热塑性试验研究了6005A铝合金的热裂纹敏感性[5],张大新等人将6005铝合金铸态试样和挤压制品试样在不同温度固溶加热后淬火处理,制备金相组织,用混合酸溶液侵蚀后在金相显微镜下观察金相组织[6]。 文章主要就6005铝合金材料的力学性能性能通过万能材料试验机开展了系统的实验研究。测定试件在准静态拉伸时,材料的应力应变曲线;提取加载曲线中的屈服点、强度极限;同时,测量实验前后试件实验段(即试件的标距段)的长度变化,計算断裂伸长率和断面收缩率。 2 准静态拉伸试验 2.1 试件及仪器 运用Instron 5969标准电子万能拉伸试验机对6005铝材进行了准静态拉伸试验。试件参照GB/T228.1-2010《金属材料拉伸试验第一部分:室温试验方法》[7]制作。板状试件的尺寸示意图如图1所示。本试验采用比例试件,形状为板状,其厚度为4mm,平行长度为55mm,总长度128 mm。 2.2 试验结果 将试验试件在室温(10~35℃)环境下,试验试件及试验用夹头安装在试验机上,试件轴线应与力的作用线重合,将引伸计连接在试件上。试验机匀速进行拉伸,加载速率为10mm/min,测试试件在拉伸过程中的载荷-变形量的关系。针对横向切取和纵向切取材料,分别进行五次试验。试验过程如图2所示。

一般工业用铝及铝合金挤压型材

一般工业用铝及铝合金 挤压型材 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

一般工业用铝及铝合金挤压型材 范围 本标准规定了一般工业用铝及铝合金挤压型材的要求、试验方法、检验规则和标志、包装、运输、贮存及合同内容等。 本标准适用于一般工业用铝及铝合金挤压型材。 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 228 金属材料室温拉伸试验方法 GB/T 3190 变形铝及铝合金化学成分 GB/T 3199 铝及铝合金加工产品包装、标志、运输、贮存 GB/T 变形铝及铝合金制品显微组织检验方法 GB/T 变形铝及铝合金制品低倍组织检验方法 GB/T 6519 变形铝合金产品超声波检验方法 GB/T 6987(所有部分)铝及铝合金化学分析方法 GB/T 7999 铝及铝合金光电(测光法)发射光谱分析方法 GB/T 12966 铝合金电导率涡流测试方法 GB/T 14846 铝及铝合金挤压型材尺寸偏差 GB/T 16865 变形铝、镁及其合金加工制品拉伸试验用试样

GB/T 17432 变形铝及铝合金化学成分分析取样方法 YS/T XXXX 铝及铝合金热处理规范 要求 产品分类 型材分类 型材按用途分类如表1所示。 标记示例 a)用6005A合金制造的、供应状态为T6、型材代号为ELGDX-15的地铁型材, 标记为: 车辆型材 6005A-T6 ELGDX-15 GB/T 6892-2XXX b)用6063合金制造的、供应状态为T5、型材代号为EL1755的电器用型材,标记 为: 型材 6063-T5 EL1755 GB/T 6892-2XXX 化学成分 5005A、5051A、6101B、6106、6261、6463、6463A、6081、7049A、7178合金牌号的产品化学成分应符合表2规定,其他牌号的产品化学成分应符合GB/T 3190的规定。

一般工业用铝及铝合金挤压型材

一般工业用铝及铝合金挤压型材 1 范围 本标准规定了一般工业用铝及铝合金挤压型材的要求、试验方法、检验规则和标志、包装、运输、贮存及合同内容等。 本标准适用于一般工业用铝及铝合金挤压型材。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 228 金属材料室温拉伸试验方法 GB/T 3190 变形铝及铝合金化学成分 GB/T 3199 铝及铝合金加工产品包装、标志、运输、贮存 GB/T 变形铝及铝合金制品显微组织检验方法 GB/T 变形铝及铝合金制品低倍组织检验方法 GB/T 6519 变形铝合金产品超声波检验方法 GB/T 6987(所有部分)铝及铝合金化学分析方法 GB/T 7999 铝及铝合金光电(测光法)发射光谱分析方法 GB/T 12966 铝合金电导率涡流测试方法 GB/T 14846 铝及铝合金挤压型材尺寸偏差 GB/T 16865 变形铝、镁及其合金加工制品拉伸试验用试样 GB/T 17432 变形铝及铝合金化学成分分析取样方法 YS/T XXXX 铝及铝合金热处理规范 3 要求 3.1 产品分类 3.1.1 型材分类 型材按用途分类如表1所示。 表1 型材类别可供合金 车辆型材5052、5083、6061、6063、6005A、6082、6106、7003、7005 其他型材1050A、1060、1100、1200、1350、2A11、2A12、2017、2017A、2014、2014A、2024、3A21、3003、3103、5A02、5A03、5A05、5A06、5005、5005A、5051A、5251、5052、5154A、5454、5754、5019、5083、5086、6A02、6101A、6101B、6005、6005A、6106、6351、6060、6061、6261、6063、6063A、6463、6463A 、6081、6082、7A04、7003、7005、7020、7022、7049A、7075、7178 注:车辆型材指适用于铁道、地铁、轻轨等轨道车辆车体结构及其他车辆车体结构的型材。 3.1.2 标记示例

铝合金、低碳钢、铸铁三种材料力学性能的异同资料

三种材料力学性能的异同 姓名:学号:班号: 摘要: 通过静态拉伸实验测定三种金属和合金材料的力学性能,对实验数据进行分析计算,并对比三种材料力学性能的异同。 关键词:低碳钢、铝合金、铸铁、力学性能,引伸计 引言:力学实验是材料、机械、力学相关课程的重要部分,无论是理论的产生、公式的验证、材料性能的测定等,都离不开实验。通过实验,不仅巩固了理论知识,还可以熟悉和训练实验技能,培养严肃认真的精神和良好的科学习惯。因此力学实验是材料、力学、机械类课程实践教学的重要环节。此次便是通过实验,分析、总结,归纳实验数据和结果,更深入了解和认识低碳钢、铝合金、铸铁的力学性能;为深入专业课程学习奠定基础;同时初步掌握力、变形测试技术及数据处理能力、培养解决实际问题的科研动手能力。 一、实验目的和内容 1、熟悉实验设备(试验机和引伸计等)测定金属材料的拉伸时力学性能参数, 如测定低碳钢的屈服极限,强度极限,延伸率和截面收缩率等指标; 2、观察实验中现象(如断口和颈缩现象),并比较金属材料在拉伸时的变形及破坏形式。 3、比较不同金属材料在拉伸时的力学性能特点。 二、实验名称 拉伸试验 三、实验设备 1. WDW-3050电子万能试验机(50mm引伸计) 2. 50分度游标卡尺 四、试件 d0 1、拉伸试验所采用的试件 试件采用三种材料:低碳钢、和铸铁。低碳钢 和铝合金属于塑性材料;铸铁属于脆性材料。试件 的外形如图所示。

1.测定屈服极限σs 、强度极限σb 可根据相应的载荷除以横截面原始面积而得到,即: 0s s A P = σ, 0b b A P =σ 2.测定断后伸长率δ和断面收缩率ψ 断后伸长率和断面收缩率分别用下式进行计算: %100_001?= L L L δ, %100_0 10?=A A A ψ 其中: L 0—试件标距原长。 L 1—试件拉断后的标距长度,可将拉断后的试件对紧,然后测量。 A 0—试件横截面的原始面积。 A 1—试件拉断后颈缩处的最小横截面面积。 注:本实验的辅助器械是50mm 引伸计,用以测量应变。在铝合金及低碳钢的实验中采用了这种引伸计,而在铸铁的实验中,出于对引伸计的保护,并未加挂引伸计。 六、实验方法及步骤 1、 先用游标卡尺测量试件中间等直杆两端及中间这三个横截面处的直径:在每一横截面内沿互相垂直方向各测量一次并取平均值。用所测得的三个平均值中最小的值作为试件的初始直径d 0,并按d 0计算试件的初始横截面面积A 0。 再根据试件的初始直径d 0 计算试件的标距l 0,并用游标卡尺在试件中部等直杆段内量取试件标距l 0 。 2、先将试件悬空安装在试验机的下夹头内,再利用工作台移动上夹头到适当位置,然后用夹头将试件上下端夹紧。 3、调整好相机(DH 相机)位置和焦距。 4、打开实验软件,先点联机按钮,然后设置参数。点击试样录入按钮,输入试验编号及试样参数等。点击参数设置按钮,输入试验开始点、横梁速度及方向等。 5、选择试验编号和实验曲线,将负荷与位移清零。 6、点击“试验开始”按钮,开始式样,同时仔细观察试样在试验过程中的各种现象。 7、试件被拉断后取下试件,量取拉断后的标距和颈缩处的直径。 8、查看并保存数据。 9、实验结束后,点击“脱机”按钮,关闭实验软件。然后关闭试验机及计算机。

相关文档
最新文档