二氧化碳的捕集与封存技术

二氧化碳的捕集与封存技术
二氧化碳的捕集与封存技术

863计划资源环境技术领域重点项目

“二氧化碳的捕集与封存技术”课题申请指南

一、指南说明

全球气候变暖已成为国际热点问题,二氧化碳因具有温室效应被普遍认为是导致全球气候变暖的重要原因之一。如何减少二氧化碳排放,降低大气中二氧化碳浓度,是人类面临的共同难题。研究开发具有我国自主知识产权的、经济高效的二氧化碳捕集与封存技术,推动二氧化碳减排,对于实现我国社会经济可持续发展和营造良好的国际环境具有重要意义。

本项目针对二氧化碳减排的迫切需求,瞄准国际技术前沿,研发吸附、吸收等二氧化碳捕集技术,探索二氧化碳封存技术,为我国二氧化碳减排提供科技支撑,项目下设3个课题。

二、指南内容

课题一、二氧化碳的吸收法捕集技术

研究目标:

研发先进实用的CO2高效吸收溶剂、吸收塔填料以及新型高效吸收分离设备和分离技术,发展CO2吸收分离过程模拟和集成优化新技术,通过关键技术的突破,着重研究解决CO2捕集的高能耗和高费用问题,进行中间试验并进行技术经济与风险评价,形成具有自主知识产权的吸收法捕集CO2的技术方案。

研究内容:

(1)新型高效吸收溶剂的研制

针对燃煤电厂等工业的CO2排放源,采用分子模拟、分子设计和

实验研究相结合的方法开发高性能、低能耗和低腐蚀性的化学、物理及化学物理耦合吸收溶剂。测定其中CO2的吸收溶解度和吸收-解吸动力学,建立相应的溶解度和动力学模型,研究吸收性能和溶剂分子结构的定量关系,根据不同气体情况研制和优化溶剂体系,并进行硫、碳一体化脱除、以及膜—吸收耦合等新技术的探索性研究。

(2)特大型吸收设备强化和过程优化

通过先进的实验测量技术、计算流体力学模拟和实验相结合的方法,研究特大型分离设备强化的途径,研制高效吸收塔填料等塔内构件;发展CO2吸收分离过程模拟优化技术,研究节能降耗的新流程,继而形成吸收法捕集CO2的集成技术方案及开发平台。进行中间试验,获取工艺和能耗数据,进行技术经济与风险评价。

主要考核指标:

(1)针对燃煤电厂等工业的CO2排放源,研发1~2项具有自主知识产权的、国际先进水平的高效吸收溶剂。

(2)研发1~2项具有自主知识产权的、国际先进水平的高效吸收塔填料。

(3)通过过程模拟优化和中间实验,形成1~2种具有自主知识产权的吸收法捕集CO2的新技术。

(4)中间试验规模和指标:

常压(1bar),试验规模为吸收塔径≥200mm,气体处理量≥60万标准立方米/年,对溶剂的指标要求是在气体含8-15%的CO2的情况下对CO2的循环吸收量≥50~60克/升;

中高压(≥20bar),试验规模为吸收塔径≥60mm,气体处理量≥60万标准立方米/年,对溶剂的指标要求是在气体含30~40%CO2的情况下对CO2的吸收量≥37~50克/升;

试验总体技术经济指标为:CO2捕集率≥90%,CO2的捕集成本比现有吸收技术的可比成本下降20%以上。

(5)申请发明专利2~3项。

课题实施年限:

2008年5月至2010年12月

课题经费来源及构成

本课题国拨专项经费控制额不超过700万元,要求承担单位自筹或配套研究经费不少于350万元。

课题二、二氧化碳的吸附法捕集技术

研究目标:

研究开发高效节能的CO2吸附材料,发展CO2吸附分离过程模拟和优化新技术。通过关键技术的突破着重解决CO2捕集的高能耗和高费用问题,进行中间试验并进行技术经济与风险评价,形成具有自主知识产权的吸附法捕集CO2的技术方案。

研究内容:

(1)新型高效吸附材料的制备筛选和基础物性研究

针对燃煤电厂等工业过程产生的气体中CO2的捕集问题,通过分子模拟、分子设计和实验研究相结合的方法,研究和开发具有高选择性、高吸附容量、低解吸能耗的新型吸附分离材料。测定CO2在吸附材料中的吸附基础物性数据,阐明吸附材料结构与其吸附分离CO2性能的内在相关性,为吸附分离整体过程设计提供依据,并最终确立高性能低成本的吸附材料体系。

(2)吸附分离过程优化技术研究

优化设计CO2吸附分离过程的工艺流程,建立实验室规模和中间

实验装臵,研究确定低操作能耗的工艺参数;开发流程模拟程序并优化分离过程;在确立吸附材料结构和性能与关键设备适配性的基础上,建立从吸附剂研制到吸附塔设计优化的技术平台,形成吸附法捕集CO2的集成新技术。进行中间试验,进行相关的技术经济可行性评价。

主要考核指标:

(1)针对燃煤电厂等工业过程产生的含CO2气体,开发1~2项具有自主知识产权的、国际先进水平的新型高效吸附剂。

(2)通过过程模拟优化和中间实验,形成变压或变温耦合吸附/脱附的CO2捕集集成新技术。

(3)中间试验规模和指标为:

常压(1bar),气体处理量≥20万标准立方米/年,对吸附剂的指标要求是在气体含8~15%CO2的情况下对CO2的吸附量≥0.035~0.066克/克;

试验总体技术经济指标为:CO2的捕获率≥90%,捕集成本比现有吸附技术的可比成本下降20%以上。

(4)申请发明专利2~3项。

课题实施年限:

2008年5月至2010年12月

课题经费来源及构成

本课题国拨专项经费控制额不超过600万元,要求承担单位自筹或配套研究经费不少于300万元。

课题三、二氧化碳的封存技术

研究目标:

针对温室气体二氧化碳减排的迫切需求,对陆地或海底地质咸水层的CO2封存技术进行研究。瞄准国外发展的最新动向,研发具有自主知识产权的先进实用的CO2封存技术。通过关键技术突破,发展适合我国地质条件的低成本、实用性CO2封存技术。

研究内容:

(1)咸水层封存能力评价技术

研究CO2封存条件下温度、压力等物理参数、流体化学组成、骨架岩石的矿物组成(包括新生矿物),以及地球化学作用过程(包括溶解和缓冲、矿物沉淀过程)对于固碳(碳捕获)的影响机制,发展咸水层介质CO2封存能力的评价技术。

(2)咸水层CO2封存体的安全性评价技术

研究咸水层地下水循环属性对于封存安全性的影响。研究不同沉积类型盖层的力学性质及其对封存体封闭性的影响。通过岩石力学实验和模拟,研究CO2封存体的水文地质结构对高压突破的影响及盖层破坏机理与过程。开发封存压力影响下毛细作用对CO2扩散影响的模拟和评价技术。研究咸水层渗透性及边界条件对CO2运移的影响。

(3)咸水层CO2封存效果的监测技术

研究超临界态CO2、水和烃等多相流体在低pH值的酸性环境中与介质作用机理,开发多相多场耦合模拟技术,研究封存效果与环境安全性评价指标,开发CO2封存环境安全性的示踪、监测与探测技术。

主要考核指标:

(1)开发一套可用于咸水层CO2地质封存物理模拟研究的实验装臵和封存效果监测评价的分析测试流程。

(2)开发一套可用于咸水层CO2地质封存条件下超临界CO2、咸水与岩石相互作用及CO2在咸水层内运移模拟的数值模拟系统。

(3)开展咸水层CO2封存技术现场试验研究;试验需有注入与观测井,封存地质条件超过CO2的临界点即温度>31℃、压力>74bar,CO2注入量>100吨,在观测井中可检测到回归CO2。

(4)申请发明专利2~3项。

课题实施年限:

2008年5月至2010年12月

课题经费来源及构成

本课题国拨专项经费控制额不超过700万元,要求承担单位自筹或配套研究经费不少于350万元。

三、注意事项

1.本重点项目下设3个课题,申请单位需针对单个课题提出申请。评审过程以课题为单元分别进行,择优确定各课题的承担单位。

2. 凡在中华人民共和国境内注册一年以上,具有独立法人资格的企业(不包括外国独资企业和外资控股企业)、事业单位均可承担本项目课题。

3.重点项目课题责任人必须是法人,法人是当然的课题依托单位,且须指定一名自然人担任课题组长。课题组长应具有中华人民共和国国籍,年龄在55周岁以下(截止指南发布之日),具有高级职称或博士学位,每年(含跨年度连续)离职或出国的时间不超过半年,过去三年内没有863计划信用管理不良记录。

4.对于港澳台优秀科技人员、海外优秀华人学者(包括取得外国国籍和永久居留权的),再满足年龄、职称(学位)等基本条件时,只要正式受聘于课题依托单位,且协议期或聘任期覆盖课题执行期,每年在课题依托单位工作时间不少于6个月,也可作为课题组长。在

课题申请时,由课题依托单位出具相关证明材料。

5. 课题组长申请及负责的科技部三大计划(863计划、科技支撑计划和973计划)在研课题累计不得超过一项,同时可参加一项课题(申请或在研);每个参加课题的技术人员最多只能参与三大计划中两项课题的工作。科技部及所属事业单位借调的与863计划相关的人员不能申请或参加申请。

6.本重点项目各课题鼓励产学研单位联合申请。

7.申报程序和要求:

本项目通过国家科技计划项目申报中心统一申报。申请指南在科技部及863计划网站上公开发布。

碳收集中的二氧化碳捕获封存技术(CCS)

碳收集中的二氧化碳捕获封存技术(CCS) CO2作为含碳能源消耗过程中产生的最主要温室气体,设法对其进行节能减排而捕捉和封存成为各国关注的焦点。本文综述了碳捕获和碳封存的技术方法,以及CCS技术在储存方面存在的问题。 CCS技术概述 二氧化碳(CO2)捕获和封存技术(Carbon Capture and Storage)简称CCS技术。CCS 技术是减少排放二氧化碳,迈向低碳,应对全球气候变暖的重要手段。 CCS技术是将工业和有关能源产业所生产的二氧化碳分离出来,再通过碳储存手段,将其输送并封存到海底或地下等与大气隔绝的地方。通过此过程,CO2将被压缩、输送并封存在地质构造、海洋、碳酸盐矿石中,或是用于工业流程。 它主要用于处理大型的CO2点源排放,例如大型化石燃料或生物能源设施,主要CO2排放型工业、天然气生产、合成燃料工厂以及基于化石燃料的制氢工厂等。 CCS技术目前仍有很多亟待解决的问题,包括: ①二氧化碳的永久安全埋存; ②二氧化碳能否对环境产生负面影响,特别是生物多样性; ③如何采取国际协商一致的程序以独立核查监测二氧化碳的相关活动; ④怎样降低碳捕集埋存的成本,以大规模实施这一技术等。

找到解决这些问题的方法需要进行相应的工业实践及理论研究。 在理论上,CO2的捕获封存技术包含了捕获和封存两个方面。碳捕获分为燃烧前捕获、富氧燃烧捕获和燃烧后捕获。碳封存方式有地质封存、工业利用、矿石碳化及生态封存等,其中地质封存是主流方式。 碳捕获 1.燃烧前捕集技术 燃烧前捕集技术的反应阶段如下: 首先化石燃料先同氧气或者蒸汽反应,产生以CO2和H2为主的混合气体(称为合成气)。 待合成气冷却后,再经过蒸汽转化反应,使合成气中的CO转化为CO2,并产生更多的H2。 最后,将H2从CO2与H2的混合气中分离,干燥的混合气中CO2的含量可达15%~60%,总压力2~7MPa。 CO2从混合气体中分离并捕获和存储,H2被用作燃气联合循环的燃料送入燃气轮机,进行燃气轮机与蒸汽轮机联合循环发电。这一过程也就是考虑了碳的捕获和存储的煤气化联合循环发电(IGCC)。 从CO2和H2的混合气中分离CO2的方法包括:变压吸附、化学吸收、物理吸收(常用于具有高的CO2分压或高的总压的混合气的分离)、膜分离(聚合物膜、陶瓷膜)等。

碳捕集与封存技术的现状与发展分析

碳捕集与封存技术的现状与发展分析 王虎齐 中国电能成套设备有限公司,北京市安德里北街15号100011 The Status of Carbon Capture & Storage and development analysis WANG Hu-qi No.15 Andelibei Street Beijing,China ABSTRACT:Global warming has been more and more serious, carbon capture and storage (CCS) technology in future years will be to solve the greenhouse effect of the main means. Although CCS technology has made good progress, CO2 capture, transportation, storage three links of the development of the technology is very rapid, but still faces many problems, such as the high cost, CO2leaks problems, lack of awareness. At present CCS technology is still in the early stages of development, whether can be expected as CCS to cope with climate change in the important transitional emission reduction technology and be large scale application will depend on various factors. KEY WORD: Carbon Capture and Storage;High Cost;CO2 Leaks Program;Lack of Awareness 摘要:全球气候变暖问题已经越来越严重,碳捕集与封存(CCS)技术在未来的若干年后将成为解决温室效应的最主要手段之一。虽然CCS技术取得了长足的进步,CO2捕集、运输、封存三大环节的各种技术发展都很迅猛,但仍面临着很多问题,如成本高昂、CO2泄露问题、认识不足等。目前CCS 技术仍处于发展的早期阶段,CCS 是否能如预期成为应对气候变化中重要的过渡性减排技术并被大规模应用,将取决于多种因素。 关键词:碳捕集与封存;成本高昂;CO2泄露;认识不足 1前言 1896 年,诺贝尔化学奖得主、瑞典化学家 阿伦尼乌斯(S.Arrhenius)提出气候变化的科学假设,认为“化石燃料燃烧将会增加大气中的CO2 浓度,从而导致全球变暖”。2007 年,联合国政府间气候变化专门委员会(IPCC)发布了第四次评估报告,认为气候变化归因于人类活动所排放的温室气体的可能性超过了90%。2009年12 月《联合国气候变化框架公约》第15 次缔约方会议暨《京都议定书》第5次缔约方会议在丹麦首都哥本哈根的落幕,将全球温升控制在2℃以内的目标作为全球共识写入《哥本哈根协定》(Copenhagen Accord),至此,全球应对气候变化的任务上升到了前所未有的高度,关于如何快速推广应对气候变化新技术的讨论也趋于白热化。 提高能效、发展替代能源(包括可再生能源和核能)和CCS 技术是最为重要的三种减排手段。根据国际能源署(IEA,International Energy Agency)的研究,在2℃温升情景下,2020 年、2030 年和2050 年由提高能效带来的减排量将分别占当年能源相关减排量的65%、57% 和54%。但随着提高能效技术的“天花板效应”逐渐显现、替代能源资源由易开发逐渐转为难开发等原因,CCS 的减排贡献将从2020 年占总减排量的3% 上升至2030年的10%,并在2050 年将达到19%,详见表1。

CO2捕捉及封存技术研究进展

CO2捕捉及封存技术研究进展* 钟栋梁1刘道平2邬志敏2 (1.重庆大学动力工程学院,重庆 400030;2.上海理工大学能源与动力工程学院,上海 200093) 摘要重点讨论了CO2捕捉与封存技术,包括针对火力发电厂的后燃烧处理、预燃烧处理和加氧燃烧处理技术,以及针对CO2固定的植树造林、海洋施肥、光合作用、矿物碳化和气体水合物等技术,期望为CO2捕捉与封存技术的研发提供重要参考。 关键词CO2大气环境煤烟气捕捉 Progress in the development of carbon dioxide capture and sequestration technologies Zhong Dongliang1,Liu Daoping2,Wu Zhimin2.(1.School of Power Engineering,Chongqing University,Chongqing 400030;2.School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai 200093) Abstract:The huge amount of CO2 emitted into the atmosphere has been threatening the earth environment seriously. This paper emphatically discussed the technologies of CO2 capture and sequestration, including post-combustion process, pre-combustion process and Oxy-combustion process, which are mainly used in the fossil-fueled power plants. The process such as forestation, ocean fertilization, photosynthesis, mineral carbonation, and gas hydrate are widely used for carbon fixation. The introduction of these technologies is in the hope of making valuable references for the development of carbon dioxide capture and sequestration technologies. Keywords:carbon dioxide;atmospheric environment;coal;flue gas;capture 20世纪世界人口和能源消耗迅速增长。地球总人口翻了四番,超过了62亿。能源消耗从0.9×109 t石油当量(TOE)上升到1.02×1010 t。20世纪的煤炭消耗量占能源消耗总量的43%,石油消耗量占31%,天然气约占15%,而核能和水电的累积总量不超过10%,见图1,因此20世纪也被称作煤炭世纪[1]。本世纪人类社会除了面临能源供应紧张问题,还面临环境保护的巨大压力,尤其是温室效应问题。目前,世界能源消耗的85%来自化石燃料,火力发电厂的CO2排放占全球CO2总排量的40%,其中燃煤发电厂所占比重最大[2]。国际政府间气候变化专门委员会(IPCC)预测,2100年全球平均气温上升1.9 ℃,海平面升高38 m,同时伴随多个物种的灭绝[3]。因此,CO2作为最主要的温室气体,设法对其进行减排、捕捉和封存成为各国关注的焦点,同时也是世界各国科学研究人员急需解决的重大课题。 减少CO2排放量,目前主要有3种方式:(1)降低能源强度;(2)减少碳排放强度;(3)加强CO2隔离。第1种方式要求高效利用现有能源;第2种方式要求使用非化石燃料,例如,使用氢气或可再生能源;第3种方式则要求高度发展CO2分离和捕捉技术。CO2捕捉与封存技术被认为是缓解环境压力的中期解决方案,因为它允许人类继续使用化石能源直到可再生能源技术发展成熟。RIAHI等[4]研究了包含经济、人口及能源需求等因素的CO2 1第一作者:钟栋梁,男,1980年生,博士,研究方向为能源利用及水合物技术研究。 * 国家自然科学基金资助项目(No.50276038)。 1

碳捕捉与封存(CCS)技术

1.碳捕获和存储技术研究进展 一、前言 政府间气候变化专门委员会(IPCC)在第三次评估报告¨中指出,地球气候正经历一次以全球变暖为主要特征的显著变化。而这一气候变化的发生是与大气中温室气体的增加所产生的自然温室效应紧密联系的。CO2是其中对气候变化影响最大的气体,它产生的增温效应 占所有温室气体总增温效应的63%,且在大气中的留存期最长,可达到200年。 一系列的研究表明全球气候变化对自然生态系统造成重大影响,进而威胁到人类社会的生存和发展。为了应对气候变化可能带来的不利影响,20世纪80年代末以来,国际社会对气候变化问题给予了极大的关注和努力。1992年通过的《联合国气候变化框架公约》(以下简称公约)表达了国际社会应对气候变化挑战的行动意愿,是为解决气候变化问题建立的基 本国际政治和法律框架。1997年通过的《京都议定书》(以下简称议定书)规定了2008-2012年全球减少排放温室气体的具体目标,提出了发达国家减少温室气体排放的量化指标,该议定书已于2005年2月16日正式生效。 为了尽可能减少以二氧化碳(CO2)为主的温室气体排放,减缓全球气候变化趋势,人类正在通过持续不断的研究以及国家间合作,从技术、经济、政策、法律等层面探寻长期有效的解决途径。近年来兴起的二氧化碳捕获与封存(ccs)技术成为研究的热点和国际社会减少 温室气体排放的重要策略。 二、碳捕获和存储的科学和方法学问题 碳捕获和存储的种类很多,本文主要介绍地质碳捕获和存储(包括陆地地质结构和海底以下地质结构)及海洋碳捕获和存储。海洋碳捕获和存储主要有2种方式:一是将CO2通过固定管道或移动船舶注入或溶解到水柱中(通常在地下1 km);二是通过固定管道或离岸平台 将其存放于深于3 km的海底。海洋碳捕获和存储及其生态影响仍处于研究阶段,因此,国际社会推动的只是地质碳捕获和存储,本文也不对海洋碳捕获和存储的技术及影响进行研究。 另外,地质碳捕获和存储与陆地、海洋生态系统的固碳是不同的,陆地、海洋生态系统对CO2的吸收是一种自然碳捕获和存储过程。陆地和海洋植物在其生长过程中,需要利用CO2合成有机物,它们能够在一定的浓度范围内吸收CO2。 2.1 碳捕获和存储的概念

二氧化碳的捕集、封存及综合利用

二氧化碳的捕集、封存与综合利用

前言 近年来,温室效应加剧问题使环境与经济可持续发展面临严峻的挑战。因此,引起温室效应和全球气候变化的二氧化碳的减排技术成为各国关注的焦点,如何从源头减少二氧化碳排放和降低大气中二氧化碳的含量成为挑战人类智慧的难题。中国作为一个发展中国家,主要以煤炭的消费为主,主要的CO2排放源为燃煤的发电厂。从总量上看,目前我国的二氧化碳排放量已位居世界第二,预计到2025年,我国的CO2总排放量很可能超过美国,位居世界第一。因此,我国急需对所排放的二氧化碳进行捕获研究,以缓解我国的空气污染压力。目前CO2的应用领域得到了广泛开拓,除了众所周知的碳酸饮料、消防灭火外,工业、农业、国防、医疗等部门都在使用CO2。科学研究己经证明,CO2具有较高的民用和工业价值:以CO2为原料可合成基本化工原料;以CO2为溶剂进行超临界萃取;还可应用于食物工程、激光技术、核工业等尖端高科技领域;近年来开发出的新用途如棚菜气肥、保鲜、生产可降解塑料等也展现出良好发展前景。[1]

1.CO2捕集系统 CO2捕获技术发展的方向是降低技术的投资费用和运行能耗。依据捕获系统的技术基础和适用性,通常将火电厂CO2的捕集系统分为以下4种:燃烧后脱碳、燃烧前脱碳、富氧燃烧技术以及化学链燃烧技术。 1.1 燃烧后脱碳 燃烧后脱碳是指采用适当的方法在燃烧设备后,如电厂的锅炉或者燃气轮机,从排放的烟气中脱除CO2的过程。 在燃烧后捕集技术中,由于烟气中CO2分压通常小于0. 15个大气压,因此需要与CO2结合力较强的化学吸收剂分离捕集CO2,用于CO2捕集的化学吸收剂主要是能与CO2反应生成水溶性复合物的有机醇胺类。目前在CO2捕集方面研究和采用较多是醇胺法(MEA法)。[2] 燃烧后捕集技术是一种成熟的技术,这种技术的主要优点是适用范围广,系统原理简单,对现有电站继承性好。但捕集系统因烟气体积流量大、CO2的分压小,脱碳 的捕集成本较高。 过程的能耗较大,设备的投资和运行成本较高,而造成CO 2 1.2 燃烧前脱碳 燃烧前脱碳就是在碳基原料燃烧前,采用合适的方法将化学能从碳中转移出来,然后将碳与携带能量的其他物质分离,从而达到脱碳的目的。燃烧前分离捕集CO2实质上是H2和CO2的分离,由于合成气的压力一般在2. 7MPa以上(取决于气化工艺),CO2的分压远高于化石燃料在空气燃烧后烟气中的CO2分压。典型的燃烧前CO2捕集流程分三步实施: (1)合成气的制取:将煤炭、石油焦、天然气等燃料与水蒸气、氧气进行不完全的燃烧反应,生成CO和H2的合成气。 (2)水煤气变换:将合成气的CO进一步与水蒸气发生CO变换反应,生成CO2和H2。 (3)H2/CO2分离:将不含能量的CO2同能量载体H2分离,为后续的氢能量利用和CO2封存等作准备。[3] 燃烧前捕集技术的成本比燃烧后捕集技术的成本低,具有较大的发展潜力。

我国碳捕集、利用和封存的现状评估和发展建议

我国碳捕集、利用和封存的现状评估和发展建议 碳捕集、利用和封存(以下简称“CCUS”)技术是未来全球实现大规模减排的关键技术之一,也是我国实现长期绝对减排和能源系统深度低碳转型的重要技术选择。2016年10月,国务院发布了《“十三五”控制温室气体排放工作方案》,提出“在煤基行业和油气开采行业开展碳捕集、利用和封存的规模化产业示范”、“推进工业领域碳捕集、利用和封存试点示范”,为我国下一步发展CCUS指明了方向。本文在深入研究和调研的基础上,总结评估了“十一五”以来我国CCUS的发展状况,分析了我国推动CCUS发展面临的挑战,提出了中长期推动我国CCUS发展的思路和政策建议。 一、我国发展CCUS的重要意义 CCUS是实现我国长期低碳发展的重要选择。国际上将碳捕集与封存(以下简称“CCS”)1作为实现长期绝对减排的重要措施。在国际能源署(IEA)的2℃情景下,到2050年,CCS将贡献1/6的减排量;2015-2050年间,CCS累计减排占全球总累计减排量的14%,其中中国CCS的减排贡献约占1/3。根据西北太平洋实验室及中国科学院武汉岩土力学研究所的测算,中国当前有超过1600个大型CO2排放源,包括火电厂、水泥厂、钢铁厂等,技术上可实现的碳捕集量超过 1 CCS与CCUS称呼略有不同但实质基本相同。国际上常用CCS,主要包括三个环节,即对二氧化碳进 行捕集、运输和地质封存;中国在此基础上,结合本国实际提出CCUS,在原有三个环节基础上增加了CO2 利用环节,可将CO2资源化利用并产生经济效益,在现有技术发展阶段更具有实际操作性。

38亿吨CO2,而通过强化采油、驱煤层气和盐水层封存等方式可封存的容量分别为10、10和1000亿吨CO2。此外,中国源汇匹配条件好,90%以上的大型碳源距潜在封存地在200公里以内。 CCUS是实现我国煤基能源系统低碳转型的必然选择。我国能源结构以煤为主,虽然近些年国家已经采取了极为严格的控煤措施并取得了显著成效,但预计在未来相当长时间内,煤炭消费总量仍将维持相当规模。例如,从发电用能结构看,即便煤炭占比以每年2个百分点的速度下降,降到30%仍需要15-20年的时间。CCUS同煤基能源的发展具有很好的耦合性,尤其在煤化工、火力发电等行业,尽管当前其实施成本仍较高,但如果碳排放的外部成本能被充分考虑并实现其内部化,将极大提升CCUS在这些行业的应用空间。随着国家对碳排放控制要求的不断提升和能源生产消费革命的积极推进,为实现我国能源系统的绿色低碳转型,CCUS应该也必然会成为煤炭合理化和清洁化利用的一个重要举措。 CCUS是促进我国低碳产业发展的重要支撑。尽管我国CCUS技术的发展起步较晚,但国家对CCUS技术的研发和示范非常重视,过去十几年投入了大量科研经费,推动CCUS技术水平不断提升。在碳捕集、利用和封存各个环节的技术水平上,我国都已经与发达国家处于同一水平线。未来如进一步加大CCUS技术示范力度,促进技术应用成本的不断下降,能逐步实现技术的规模化应用,不仅有助于我国在低碳技术领域占据国际制高点,更能带动相关低碳产业的发展和壮大。 CCUS是提升我国能源安全的积极动力。我国政府特别强调要加

二氧化碳的捕集与封存技术

863计划资源环境技术领域重点项目 “二氧化碳的捕集与封存技术”课题申请指南 一、指南说明 全球气候变暖已成为国际热点问题,二氧化碳因具有温室效应被普遍认为是导致全球气候变暖的重要原因之一。如何减少二氧化碳排放,降低大气中二氧化碳浓度,是人类面临的共同难题。研究开发具有我国自主知识产权的、经济高效的二氧化碳捕集与封存技术,推动二氧化碳减排,对于实现我国社会经济可持续发展和营造良好的国际环境具有重要意义。 本项目针对二氧化碳减排的迫切需求,瞄准国际技术前沿,研发吸附、吸收等二氧化碳捕集技术,探索二氧化碳封存技术,为我国二氧化碳减排提供科技支撑,项目下设3个课题。 二、指南内容 课题一、二氧化碳的吸收法捕集技术 研究目标: 研发先进实用的CO2高效吸收溶剂、吸收塔填料以及新型高效吸收分离设备和分离技术,发展CO2吸收分离过程模拟和集成优化新技术,通过关键技术的突破,着重研究解决CO2捕集的高能耗和高费用问题,进行中间试验并进行技术经济与风险评价,形成具有自主知识产权的吸收法捕集CO2的技术方案。 研究内容: (1)新型高效吸收溶剂的研制 针对燃煤电厂等工业的CO2排放源,采用分子模拟、分子设计和

实验研究相结合的方法开发高性能、低能耗和低腐蚀性的化学、物理及化学物理耦合吸收溶剂。测定其中CO2的吸收溶解度和吸收-解吸动力学,建立相应的溶解度和动力学模型,研究吸收性能和溶剂分子结构的定量关系,根据不同气体情况研制和优化溶剂体系,并进行硫、碳一体化脱除、以及膜—吸收耦合等新技术的探索性研究。 (2)特大型吸收设备强化和过程优化 通过先进的实验测量技术、计算流体力学模拟和实验相结合的方法,研究特大型分离设备强化的途径,研制高效吸收塔填料等塔内构件;发展CO2吸收分离过程模拟优化技术,研究节能降耗的新流程,继而形成吸收法捕集CO2的集成技术方案及开发平台。进行中间试验,获取工艺和能耗数据,进行技术经济与风险评价。 主要考核指标: (1)针对燃煤电厂等工业的CO2排放源,研发1~2项具有自主知识产权的、国际先进水平的高效吸收溶剂。 (2)研发1~2项具有自主知识产权的、国际先进水平的高效吸收塔填料。 (3)通过过程模拟优化和中间实验,形成1~2种具有自主知识产权的吸收法捕集CO2的新技术。 (4)中间试验规模和指标: 常压(1bar),试验规模为吸收塔径≥200mm,气体处理量≥60万标准立方米/年,对溶剂的指标要求是在气体含8-15%的CO2的情况下对CO2的循环吸收量≥50~60克/升; 中高压(≥20bar),试验规模为吸收塔径≥60mm,气体处理量≥60万标准立方米/年,对溶剂的指标要求是在气体含30~40%CO2的情况下对CO2的吸收量≥37~50克/升;

浅析碳捕集与封存技术

浅析碳捕集与封存技术 黄丹 20090390105 (郑州大学09级化工与能源学院热能与动力工程一班) 1.摘要 [Abstract] 全球气候变暖问题已经越来越严重,碳捕集与封存(CCS)技术被看作是最具发展前景的解决方案之一,随着研究的不断深入,CCS技术成本将进一步降低。碳捕集工艺按操作时间可分为燃烧前捕集、富氧燃烧捕集和燃烧后捕集,其中最有发展前景的是富氧燃烧捕集。我国在CCS技术的研究上进行了大量工作,CCS技术已被列入“973计划”和“863计划”,但仍面临着很多问题,如二氧化碳泄漏问题、技术难点、建设和运行成本高昂等。好在种种迹象表明,随着全球气候问题的加剧,各国政府越来越重视CCS技术的研发和利用。 【关键词】 CCS技术二氧化碳碳捕集封存 Carbon Capture and Sequestration Technology [Abstract] Carbon capture and sequestration (CCS) technology is seen as one of the most promising solutions to deteriorating climate changes. As research progresses,the cost of CCS is set to decline. By operational time,carbon capture technology can be categorized into pre-combustion capture,enriched oxygen combustion capture and post-combustion capture technologies,of which the enriched oxygen combustion capture technology is the most promising. China has done a lot of work on the research of CCS technology. The development of this technology has been listed in the country′s 973 Plan and 863 Plan. Although substantial advance has been made in CCS technology ,many challenges remain,such as the leakage of CO2,technical bottlenecks and high facility construction and operational costs. The good news is that as global climate problems worsen,governments across the globe are putting increasing emphasis on the research,development and utilization of CCS technology. [Keywords] CCS technology;carbon dioxide;carbon capture;carbon sequestration 2引言 全球气候变暖问题已经越来越严重,目前二氧化碳在大气中的含量水平为百万分之三百八十五,而其正以每年3%的速度增长。按这个速度发展,到2100年,空气中的二氧化碳的聚集量将达到百万分之一千一百,温室效应造成的高温将不适合任何动物的生存,人类社会则将在这一进程中崩溃。然而,时至今日,全球有80%的能源来自煤炭、石油和天然气等化石能源。水电和核能虽然成本并不高,但环境条件限制了其发展规模。至于风能、太阳能和生物质能等新能源,虽然环保前景喜人,但受高成本和技术不成熟等客观因素制约,这些新能源完全取代传统的化石能源仍处于探索阶段,真正做到大规模商业化开发还需很长时间。因此,发展可靠技术、减少化石燃料的温室气体排放是一个明智的“缓兵之计”。

碳捕集与封存技术_CCS_成本及政策分析_张建府

1前言 当前,减排CO 2的呼声日益高涨,其主要排放源是化石燃料的使用。根据国际能源署(IEA)的统计,2008年世界能源需求中,化石能源占到约80%的比例[1]。由于煤炭利用的成本比石油、天然气低很多,且从全球能源储量分布情况来看煤炭资源较为丰富,因此,可以肯定未来一段时期内煤炭利用总量仍将持续增长。特别是像中国、印度等国家煤炭比例占绝对优势,经济的快速增长及对能源安全的考虑都将促进对煤炭的利用。在未来相当长的时间内,我国的一次能源仍将以煤为主。 近年来,国内用于发电的煤炭量占到煤炭消耗总量的一半以上。燃煤发电企业作为CO 2排放的重要来源之一,面临的环保压力逐年增大。在这种形势下,国内相关企业、研究机构积极致力于燃煤发电领域各种CO 2减排技术的研究,包括燃烧前碳捕集、燃烧后碳捕集及纯氧燃烧等。其中,燃烧前碳捕集技术在电力行业中主要应用于整体煤气化联合循环(IGCC)发电厂。 IGCC 发电技术被认为是目前世界上最清洁的燃煤发电技术,其粉尘、SO 2、NO x 等污染物接近零排放。目前,美、欧、日均已建成IGCC 示范电站,并 拟在示范成功之后逐步推广。IGCC 发电技术不仅具有燃料来源广、发电效率提升空间大等优点,而且可以实现燃烧前脱除CO 2,以较低的成本实现 CO 2减排。在未来减排温室气体,应对全球气候变化的过程中,IGCC 具有广泛的应用前景。 本文以从IGCC 电站捕集CO 2,并通过管道运输至油田用于强化采油为例,分析得出IGCC 电站进行碳捕集与封存(CCS)的CO 2减排成本,提出CCS 在中国推广应用的相关政策建议。 2案例分析 2.1IGCC 电站CO 2减排成本 在本文的案例分析中,IGCC 电站设计输出功率为400MW 级,整个系统主要包括空分单元、气化单元、净化单元及动力单元,所选用设备均基于现有技术,气化炉选用水煤浆气化技术,燃气轮机选用F 级燃机,粗煤气净化采用湿法净化工艺,空分系统选用独立的低压空分系统。在进行经济性估算时,假设电厂建设周期为3年,从2007年1月开始 碳捕集与封存技术(CCS)成本及政策分析 张建府 (中国华能集团绿色煤电有限公司,北京100098) 摘要 当前,减排CO 2的呼声日益高涨。在未来相当长的时间内,我国一次能源仍将以煤为主,而用于发电的煤炭量占到煤炭消费总量的一半以上,已成为国内CO 2排放的重要来源。整体煤气化联合循环(IGCC)发电技术不仅具有燃料来源广、发电效率提升空间大等优点,而且能以较低的成本实现CO 2减排。以IGCC 碳捕集结合强化采油为例,分析碳捕集与封存(CCS)全过程CO 2减排成本。结果表明,在IGCC 电站进行碳捕集结合强化采油的情景下,捕集CO 2的IGCC 系统的发电成本低于不捕集CO 2的IGCC 电站的发电成本。CO 2减排成本主要受井口油价及CO 2利用率影响,当井口油价超过14.642美元/bbl 时,CO 2减排成本为负值。CCS 的发展将经历示范、扩大规模和商业化三个阶段,针对不同的发展阶段,政府应分别采取相应的政策措施。在示范阶段,应加强对相关技术研究的支持,提供财政补贴;在扩大规模阶段,应重点采取财政补贴措施,并配以CCS 发电配额标准和CCS 电力贸易体系;在商业化阶段,政府已无需继续提供财政补贴,而CCS 发电配额标准和认证贸易体系仍将是一个有效的方法。 关键词CO 2减排 碳捕集与封存强化采油发电成本政策措施 作者简介:张建府,工程师,2009年获得清华大学热能工程系工学硕士学位,曾参与国内第一台IGCC 电站的技术研发工作。 E-mail :jf.zhang@https://www.360docs.net/doc/407546930.html, SINO-GLOBAL ENERGY ·21· 第3期

二氧化碳捕集、利用与封存技术20160404

二氧化碳捕集、利用与封存技术调研报告 一、调研背景 为减缓全球气候变化趋势,人类正在通过持续不断的研究以及国家间合作,从技术、经济、政策、法律等层面探寻长期有效地减少以二氧化碳为主的温室气体排放的解决途径。中国作为一个发展中国家,在自身扔面临发展经济、改善民生等艰巨情况下仍然对世界做出了到2020年全国单位国内生产总值CO2放比2005年下降40%至45%的承诺,这将会给中国的能源结构产生深渊的影响,也将会给经济发展带来一场深刻的变革。 二、CCUS技术与CCS技术对比 CCS(Carbon Capture and Storage,碳捕获与封存)技术是指通过碳捕捉技术,将工业和有关能源产业所生产的二氧化碳分离出来,再通过碳储存手段。潜在的技术封存方式有:地质封存(在地质构造种,例如石油和天然气田、不可开采的煤田以及深盐沼池构造),海洋封存(直接释放到海洋水体中或海底)以及将CO2固化成无机碳酸盐。 CCUS(Carbon Capture,Utilization and Storage,碳捕集、利用与封存)技术是CCS技术新的发展趋势,即把生产过程中排放的二氧化碳进行提纯,继而投入到新的生产过程中,可以循环再利用,而不是简单地封存。与CCS相比,可以将二氧化碳资源化,能产生经济效益,更具有现实操作性。 中国的首要任务是保障发展,CCS技术建立在高能耗和高成本的基础上,该技术在中国的大范围推广与应用是不可取的,中国当前应当更加重视拓展二氧化碳资源性利用技术的研发。 三、二氧化碳主要捕集方法 目前主流的碳捕集工艺按操作时间可分为3类———燃烧前捕集、燃烧后捕集和富氧燃烧捕集(燃烧中捕集)。三者个有优势,却又各有技术难题尚待解决,目前呈并行发展之势。 燃烧前捕集技术以煤气化联合循环(IGCC)技术为基础,先将煤炭气化呈清洁气体能源,从而把二氧化碳在燃烧前就分离出来,捕进入燃烧过程。而且二氧化碳的浓度和压力会因此提高,分离起来较为方便,是目前运行成本最低廉的捕集技术,问题在于,传统电厂无法用这项技术,而是需要重新建造专门的OGCC电站,其建造成本是现有传统发电厂的2倍以上。 燃烧后捕集可以直接应用于传统电厂,这一技术路线对传统电厂烟气中的二氧化碳进行捕集,投入相对较少。这项技术分支较多,可分为化学吸收法、物理吸收法、膜分离法、化学链分离法等等。其中,化学吸收法被认为市场前景最好,受厂商重视程度也最高,但设备

CO2捕捉

《每日科学》网站7月25日报道称,美国劳伦斯-利弗莫尔国家实验室的研究人员利用离子液体作为二氧化碳吸收剂,开发出一种更清洁、稳定和高效的捕获二氧化碳新方法。该研究成果刊登在最新一期的《ChemSusChem》杂志上。 随着全球气候变暖的加剧,各国都在致力于减少燃烧化石燃料的二氧化碳排放量,碳捕捉技术成为研究的重点。目前的碳捕捉技术主要采用化学吸附法。二氧化碳会和胺类物质发生反应,二者在低温情况下结合,在高温中分离。一般可以使含二氧化碳的废气通过胺液,分离出其中的二氧化碳,之后在适当地方通过加热胺液再将二氧化碳释放。现今少数进行商用碳捕捉的煤电厂都使用单乙醇胺作为二氧化碳吸收剂。但单乙醇胺具有腐蚀性,这种方法也需要使用大型设备,并且只有在二氧化碳处于轻微至中等压力下才有效。因此,其成本、效率都不是很理想。 在过去几年中,该实验室的阿米泰什·梅蒂一直致力于找到新的二氧化碳吸收剂。他测试了几种可有效溶解二氧化碳的离子液体,获得大量有用数据。与典型的有机溶剂不一样,离子液体一般不会成为蒸汽,所以不易产生有害气体,使用方便。梅蒂发现,使用离子液体作为二氧化碳吸收剂,可克服单乙醇胺的诸多缺点,比现今所用之法更清洁、更易于使用。其化学稳定性好、腐蚀性低,蒸汽压几乎为零,可制成膜使用。离子液体种类繁多,有许多种具有潜在的高二氧化碳溶解度的离子可供选择。 梅蒂设计出一种基于量子化学热力学方法的计算工具,可计算出任何溶剂在任意浓度下的二氧化碳化学溶解能力,以测定包括离子液体在内的溶剂的碳捕捉效率。过去几年积累的实验数据证明,这种算法十分准确。 报道称,梅蒂使用这种方法预测出一种新型溶剂,其二氧化碳溶解度是目前实验证实的最有效溶剂的两倍。“离子液体种类繁多,目前所见仅是九牛一毛。”梅蒂希望他的这种精准算法能够帮助科学家发现更好的实用型溶剂,以进一步提高二氧化碳捕获效率。

二氧化碳捕集与封存成本估算

二氧化碳捕集与封存成本估算 一、假想项目 在我国,化石燃料主要用于电力、交通运输和化工等行业。而交通运输业用能较分 散,不易大规模捕集二氧化碳;所以,电力和化工是我国控制二氧化碳排放量的重点行业。由于海洋封存还仅停留在实验室研究阶段,在本文中也未考虑,仅考虑EOR(强化石油开采)、ECBM(强化煤层气开采)和Aqufier(深部盐水层封存)。本文共假想了8 个中国CCS 项目。这些CCS 项目有如下假设:1. 原料均为煤;2. 所有CCS 项目都采用燃烧后脱碳技术,吸收剂为MEA;3. 国内燃煤机组的运行小时数为5500 小时,即负荷运行系数为5500/(24×365)=0.63;4. 合成氨厂负荷运行系数为0.85;5. 燃煤电厂的CO2 排放因子为0.81kg/KWh,合成氨厂的CO2 排放因子为3.8t/t 氨;6. 采用管道运输CO2;7. EOR和ECBM的封存量不大于现行项目的最大封存量,100Mt/y,深部含盐水层封存则不受此限制。 表1假想ccs项目 注释:EOR 二、CCS 项目成本分析 2.1总论 CCS 项目按照过程可分为捕集、压缩、运输和封存四个主要过程。有些文献也将压缩过程合并到捕集过程中。IPCC、Hendriks、David等对CCS 项目进行了经济性分析, 本文将主要参考这些研究成果对中国假想的CCS 项目进行成本分析。 Hendriks研究了燃烧后脱除CO2 的各种过程的碳捕集成本,得出: 对于煤基合成氨厂,变换后的合成气要进行脱硫、脱碳处理而获得氢气,脱硫、脱碳剂均为MEA。脱硫过程中,合成气中大约30-40%的CO2 也会随着H2S 和SO2 等硫化物一起脱除;而在随后的脱碳过程中60-70% 的CO2 会以纯CO2 的形式被脱除。对于60 万吨 合成氨厂,仅有52%的CO2 被捕集,所有的CO2 均可以来自脱碳过程产生的纯CO2,因

碳捕集与封存( CCS)简介

碳捕集与封存(CCS)简介 碳捕集与封存(Carbon Capture and Storage,简称CCS)是指将大型发电厂、钢铁厂、水泥厂、 化工厂等排放的二氧化碳收集起来并封存而与大气隔绝的一种技术。CCS是为了实现温室气体减排、 应对全球气候变化而开发的一项新技术,其重要意义在Array于:它是在继续利用煤、石油等化石能源的同时实现CO2 近零排放的唯一有效技术。 CCS技术包括CO2捕集、运输以及封存三个环节, 每个环节都已有成熟技术,但在串联起来应用于大规模 CO2减排时尚需要通过各种途径降低成本,包括进行技术 改造和将所捕集的一部分CO2提供利用,如用于提高石 油采收率等。 二氧化碳捕集 二氧化碳的捕集方式主要有三种:燃烧前捕集(Pre-combustion)、富氧燃烧(Oxy-fuel combustion)、燃烧后捕集(Post-combustion)。 燃烧前捕集 目前主要采用IGCC(整体煤气化联合循环)发电系统。其过程是在燃烧之前将煤气化成煤气并 净化除去CO2、H2S、NOx及粉尘等,再将煤气分离得到得到H2和CO2。H2作为燃气轮机的燃料,CO2经脱水和压缩后提供封存。伴生的高温废气再利用来产生蒸汽供蒸汽轮机发电。该技术的捕集系统小,效率高、用水少、环保(同时实现脱碳、脱硫、脱硝和除尘),还可与煤化工相结合,实现电、热、化工产品(氢气、甲醇、烯烃)等多联产。IGCC的研发已列入我国“十一五”发展规划纲要和863计划重大项目。 富氧燃烧 采用传统燃煤电站的技术流程,但通过制氧技术,将空气中占大比例的氮气(N2)脱除,直接采用高浓度的氧气(O2)与抽回的部分烟气的混合气体来替代空气,这样得到的烟气中有高浓度的CO2气体,可以直接进行处理和封存。该技术目前尚处于研发阶段,最大的难题是制氧技术的投资 和能耗太高。

烟气中CO2捕获技术与进展

烟气中CO2捕获技术与进展 学院化工学院

专业生物工程 年级2011级 姓名郑曼琳 班级2班 学号3011207300 烟气中CO2捕获技术与进展 郑曼琳 天津大学化工学院生物工程2班 摘要目前温室效应已经严重影响到了人类的生活,而温室气体的排放主要来源于化石燃料的燃烧,虽然世界各国已经开始节能减排,但是CO2的排放量只增无减,由是,CO2的捕获技术营运而生,CCS技术将是现今各国研究重点。文本将重点介绍烟气中CO2的捕获技术与进展。 1. 产生背景 现今的地球环境逐渐恶劣,其中温室效应就是一大环境问题。温室效应是由以CO2为主的温室气体造成,而温室气体温室气体对全球环境的影响主要包括:饮用水的减少、海水的盐浓度增加、海平面的上升、平均气温升高、洋流的变化与厄尔尼诺频发等问题,这些都大大影响了人类的生活。大气中增长的CO2四分之三归因于化石燃料的燃烧,以煤炭、天然气、石油为代表的化石能源占了世界能源结构的85%。1995年至2005年间,CO2平均浓度上升

1.9ppm/年,约为每年4GTc(IPCC,2007)在1970年至2004年间,CO2的排放增加了大约80%(在1990年-2004年间增加了28%),在2004年,CO2的排放占人为GHG总排放的77%。而我国07年我国CO2排放量为59.6亿吨,已位居世界第一。由是,二氧化碳捕获与储存技术应运而生,CO2的捕获和固定是目前唯一可以实现继续使用化石燃料而又不会遭受气候变化威胁的可靠选择。 2. CO2的捕获技术 CO2的分离成本占总的碳捕获和存储成本的很大一部分(约80%),所以首先要找到高效的CO2捕获方法。目前工业上使用比较广泛的CO2捕集和分离技术有许多种,主要包括吸收法,吸附法,膜分离法,微生物固定法等。具体见下表 表1 CO2分离方法及其特点 2.1. 吸收法

二氧化碳的捕集

常用的CO2回收利用方法有: (1)溶剂吸收法:使用溶剂对CO2进行吸收和解吸,CO2浓度可达98%以上。该法只适合于从低浓度 CO2废气中回收CO2,且流程复杂,操作成本高。 (2)变压吸附法:采用固体吸附剂吸附混合气中的 CO2,浓度可达60%以上。该法只适合于从化肥厂变换气中脱除CO2,且CO2浓度太低不能作为产品使用。 (3)有机膜分离法:利用中空纤维膜在高压下分离 CO2,只适用于气源干净、需用CO2浓度不高于90%的场合,目前该技术在国内处于开发阶段。 (4)催化燃烧法:利用催化剂和纯氧气把CO2中的可燃烧杂质转换成CO2和水。该法只能脱除可燃杂质,能耗和成本高,已被淘汰。 上述方法生产的CO2都是气态,都需经吸附精馏法进一步提纯净化、精馏液化,才能进行液态储存和运输。吸附精馏技术是上述方法在接续过程中必须使用的通用技术。 美国电力研究院(EPRI)所作的研究指出,在发电厂中采用氨洗涤可使CO2减少10%,而较老式的MEA(胺洗涤)法可使CO2减少29%。 世界新的CO2回收和捕集技术正在加快发展之中。 1? 脱除CO2新溶剂 巴斯夫公司和日本JGC公司已开始联合开发一种新技术,可使天然气中含有的CO2脱除和贮存费用削减 20%。该项目得到日本经济、贸易和工业省的支持。 CO2可利用吸收剂如单乙醇胺(MEA)从燃烧过程产生的烟气中加以捕集,然而,再生吸收剂需额外耗能,对于MEA,从烟气中回收CO2需耗能约 900kcal/kgCO2,通常这是不经济的。日本三菱重工公司(MHI)与关西电力公司(KEPCO)合作,开发了新工艺,可给CO2回收途径带来新的变化。MHI发现的CO2新吸收剂是称为KS-1和KS-2的位阻胺类,其回收所需能量比MEA所需能量约少20%。因为KS-1和 KS-2对热更稳定、腐蚀性也比MEA小,因此操作时胺类的总损失约为常规吸收剂的1/20。对于能量费用不昂贵的地区,大规模装置使用新的工艺,CO2回收费用(包括压缩所需费用)约为20美元/tCO2,它比基于MEA的常规方法低约30%。MHI已在马来西亚一套尿素装置上验证了这一技术,可从烟气中回收 200tCO2/d。 巴斯夫公司实验室试验表明,采用新型溶剂从发电厂排放物中脱除CO2,具有耐用和耗能少的优点。这种溶剂由巴斯夫公司与欧盟“捕集CO2并贮存”开发项目组共同开发。2006年3月已在位于丹麦Esbjerg(埃斯比约)的世界最大的中型煤发电装置上试用。首次试验采用MEA作为参比溶剂。捕集CO2所用溶剂的重点在于减少脱除CO2所需的能量,如果需要能量太高,会减少电厂的电力产量。例如,燃煤电站使用常规的MEA溶剂捕集CO2,会使发电量减少30%~45%。新开发的溶剂可除去或收集燃烧过程中排放出来的CO2。从电厂排放气中除去CO2,先是用化学溶剂把CO2结合住,然后,溶剂在返回到工艺前释放出这种CO2。为防止CO2跑到大气中,需要将它冷凝和储存,例如,存放在岩石的含水层(砂石含水层)中、矿层中或原来的石油天然气矿层中。但常规的溶剂容易被电厂废气中夹带的氧气分解,这种工艺要达到吸收、释放和储存CO2,需要很大的能量输入。实验室试验表明,巴斯夫开发的胺基新溶剂比常规溶剂要稳定得多,并可使用较长时间,在吸收和释放CO2过程中,耗能也比较低,用新溶剂进行气体洗涤能大大降低除去CO2的费用。 巴斯夫公司、RWE电力公司和林德集团2007年9月底宣布,联手开发并将推广使用从燃煤电厂烟气中捕集CO2的新工艺。目标是先去除,然后在地下贮存超过 90%的CO2。这些公司的合作包括在RWE电力公司德国 Niederaussem的褐煤燃烧发电厂建设和运作中型装置,试验巴斯夫公司用于CO2洗涤的新溶剂。林德公司进行该中型装置的工程建设。目标是到2020年在褐煤燃烧发电厂上商业化应用CO2捕集。一旦中型试验完成,合作方将于2010年对此进行验证,为新工艺的商业化应用提供可靠的设计基准。RWE和巴斯夫公司是30家CO2从捕集到贮存(CASTOR)合作项目的成员,该项目得到了欧盟的资助。2005年,巴斯夫开发了新的

相关文档
最新文档