等式与不等式的相互转化

等式与不等式的相互转化
等式与不等式的相互转化

《矩阵的秩的等式及不等式的证明》

摘要 矩阵的秩是矩阵的一个重要特征,它具有许多的重要性质.本文总结归纳出了有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,即从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.本文主要解决以下几个问题:用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;用线性空间的方法证明矩阵秩的等式和不等式问题;用向量组秩的理论证明矩阵秩的等式和不等式问题;用矩阵分块法证明秩的等式和不等式问题.

目录 第一章绪论 (1) 第二章预备知识 (2) 第三章用矩阵的秩的理论证明秩的等式和不等式 (3) 第四章用线性空间的理论证明秩的等式和不等式 (6) 第五章用向量组秩的理论证明秩的等式和不等式 (10) 第六章用矩阵分块法证明秩的等式和不等式 (15) 第七章小结 (23) 参考文献 (24) 致谢 (25)

第一章绪论 矩阵的秩是矩阵的一个重要特征,是矩阵理论中研究的一个重要内容,它具有许多的重要性质.研究矩阵的秩对于解决矩阵的很多问题具有重要意义.矩阵的秩的等式及不等式的证明对于学习矩阵也是重点和难点,初学者在做这方面的题目往往不知如何下手.笔者归纳了矩阵的秩的常见等式和不等式以及与之相关的一些结论,并从向量组、线性方程组、矩阵分块、矩阵初等变换等角度探索了多种证明方法,它有助于学习者加深对秩的理解和知识的运用,也方便教师教学. 目前对矩阵秩的研究已经比较成熟了,但是由于秩是矩阵论里的一个基本而重要的概念,它仍然有着重要的研究价值,有关它的论文时见报端.很多国内外的有关数学书籍杂志对矩阵的秩都有讲述,如苏育才、姜翠波、张跃辉在《矩阵论》(科学出版社、2006年5月出版)中较完整地给出了矩阵秩的理论.北京大学数学系前代数小组编写的《高等代数》(高等教育出版社,2003年7月出版)也介绍了秩的一些性质.但是对秩的等式及不等式的介绍都比较分散,不全面也没有系统化,不方便初学者全面掌握秩的性质.因此有必要对矩阵的秩的等式和不等式进行一个归总,便于学习和掌握. 本文通过查阅文献资料,总结归纳出有关矩阵的秩的等式和不等式命题,以及证明这些命题常用的证明方法,从向量组、线性方程组、线性空间同构、矩阵分块、矩阵初等变换等角度给出多种证明方法.主要内容有:(1)用矩阵已知的秩的理论证明矩阵秩的等式和不等式问题;(2)用线性空间的方法证明矩阵秩的等式和不等式问题;(3)用向量组秩的理论证明矩阵秩的等式和不等式问题;(4)用矩阵分块法证明秩的等式和不等式问题.

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

矩阵的秩与向量组的秩一致

矩阵的“秩”,是线性代数第一部分的核心概念。 “矩阵的秩与向量组的秩一致。矩阵的秩就是其行(或列)向量组的秩。”怎样证明?就当做习题练一练。 设矩阵A的秩为r ,则A必有一个r 阶子式不为0,而所有 r + 1阶子式全为 0 逻辑1——r 阶子式不为0,则 r个r 维向量线性无关。 分析这是格莱姆法则推论,带来的直接判别方法。 (画外音:r个未知量 r个方程的齐次线性方程组仅有0 解的充分必要条件是其系数行列式不为0) 逻辑思维链——这r 个r 维向量与A 的行(或列)向量组有何关系? 逻辑2——(“线性无关,延长无关。”定理)—— 已知一个n 维向量组线性无关,如果在相同的位置,给组内每个向量都增加一个分量,则所得的n + 1维向量组也线性无关。 分析不妨认为给线性无关的n 维向量组a1,a 2,…,a k 的每个向量都加上第n + 1个分量,形成一个n + 1 维向量组b1,b 2,…,b k

若有一组不全为零的数c1,c2,…,c k ,使得c1b1+ c2b 2+ ---+ c k b k = 0 ,如何证明“这组常数只能全为0”? 每个向量有n + 1 分量,向量“线性组合为0”实际上是n + 1个等式。前n 个等式即 c1 a1+ c2a2+ ---+ c k a k = 0 由已知线性无关即得,这组常数只能全为0,而最后那个(第n + 1个)等式自然成立。 逻辑3 ——将线性无关的 r个r 维向量,逐次延长为矩阵A 的r 个行向量(或列向量),它们线性无关。 (潜台词:简而言之,不为0的r阶子式所在的r个行向量(或列向量)线性无关。) 逻辑思维链(关键问题)——这r 个行向量是行向量组的最大无关组吗? 唯一信息——A的所有r + 1阶子式全为0 分析不妨设不为0 的r 阶子式就由这r 个行的左起前r 个分量排成。(画外音:画个示意图最好。)

矩阵秩的基本不等式

1 矩阵秩的基本不等式 定理1:设,m n A R ∈,,n s B R ∈,则{}()()()min (),()r A r B n r AB r A r B +-≤≤。 证明:由于0Bx =的解一定是0ABx =的解,因此0Bx =的基础解系为0ABx =的基础解系的一部分。于是,()()s r B s r AB -≤-,即()()r AB r B ≤。 ()()()()()()T T T T r AB r AB r B A r A r A ==≤=。 这样,我们就证明了()()r AB r A ≤,()()r AB r B ≤,故{}()min (),()r AB r A r B ≤。 我们假设1x ,2x ,……,()s r B x -,()1s r B x -+,……,()s r AB x -为0ABx =的基础解系。其中,0i Bx =,1()i s r B ≤≤-;0j Bx ≠,()1()s r B j s r AB -+≤≤-。 下面,我们来证明向量组{} ()()1 s r AB j j s r B Bx -=-+是线性无关的。事实上,假设数j k , ()1()s r B j s r AB -+≤≤-,使得 ()()1 ()s r AB j j j s r B k Bx -=-+∑ ,于是() ()1 0s r AB j j s r B B x -=-+=∑ 。 这样, () ()1 0s r AB j j s r B x -=-+=∑ 为0Bx =的解。于是,存在数j k ,1()j s r B ≤≤-,使得 ()() ()1 1 ()s r AB s r B j j j j s r B j x k x --=-+== -∑ ∑,即()1 0s r AB j j j k x -==∑ 。由于向量组{} ()1 s r AB j j x -=线性无关,因 此,0j k =,()1()s r B j s r AB -+≤≤-。于是,向量组{}() ()1 s r AB j j s r B Bx -=-+线性无关。 又由于()0j j A Bx ABx ==,()1()s r B j s r AB -+≤≤-,因此{}() ()1 s r AB j j s r B Bx -=-+为 0Ax =的基础解系的一部分。于是, []()()11()()()s r AB s r B r B r AB n r A ---++=-≤- 即()()()r AB r A r B n ≥+-。 推论1:若,m n A R ∈,,n s B R ∈满足0AB =,则()()r A r B n +≤。 证明:0()()()r AB r A r B n =≥+-,于是()()r A r B n +≤。

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

使用定积分巧妙证明一类和式不等式

使用黎曼和巧妙证明一类和式不等式 摘要:借助黎曼和几何意义得到一类和式不等式的巧妙证明方法:考虑通过图像看出逼近定积分的过程中产生的一系列黎曼和总是大于或小于定积分值,从而建立黎曼和与定积分的不等关系,而和式又常常就是黎曼和,这样便建立了和式和定积分的不等关系,和式不等式便得以简化。 使用黎曼和精确放缩特性做加强命题:通过取出某些项使其不参与定积分的放缩来加强不等式。 关键词:定积分,黎曼和,和式不等式,证明与加强。 对于和式不等式,由于其变幻较为复杂,构造较为精巧,通常不易证明。针对一类有特殊特征的和式不等式,除了使用通常的构造、不等式放缩以外,还可以用黎曼和巧妙证明,从而免去繁杂的构造和放缩,使其证明更加简洁优美。 黎曼和:对一个在闭区间[,]a b 有定义的实值函数f ,f 关于取样分割0,,n x x 、01,,n t t - 的黎曼和 定义为以下和式: 直观地说就是以标记点i t 到x 轴的距离为高,以分割的子区间为长的矩形的面积,它是求积分时在过程的中间形态,当n →+∞,矩形宽0→,则黎曼和就接近于定积分值。 例一(2012天津高考理科数学,20,第(3)问)证明12 2ln(21)21 n i n i =<+-∑( )- *()n N ∈ 分析:本题作为第三小题,原解答使用了第二问的结论,进行构造颇为繁琐,若撇开前两问, 单对此不等式分析,发现12 ln(21)221 n i n i =?<++-∑ 原式,左边是分式的累加,右边是对数函数,联想到1ln ||dx x C x =+?,因而一个简洁的证明就是取2 21 i -的不足黎曼和 证明:1 1 1 2 22 2121n n i dx i i ++=>--∑ ?由于 ……① 112222212121 n n i dx i n x +=∴+<-+-∑ ? 222 ln(21)2121 n i n i n =∴+<+-+∑ 222ln(21)22121 n i n i n =∴++2<++-+∑ 122ln(21)22121n i n i n =+<++-+∑即,舍去 221n + 即证得12ln(21)221 n i n i =<++-∑

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

矩阵的秩的相关不等式的归纳小结

矩阵的秩的相关不等式的归 纳小结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

矩阵的秩的相关不等式的归纳小结 林松 (莆田学院数学系,福建,莆田) 摘要:利用分块矩阵,证明一些矩阵的秩的相关不等式,观察矩阵在运算后秩的变化,归纳出常见的有关矩阵的秩的不等式,由此引出等式成立的条件。 关键词:矩阵的秩,矩阵的初等变换 引言:矩阵的秩是指矩阵中行(或列)向量组的秩,与之等价的说法通常是指矩阵中不为零的子式的最高阶数,是矩阵最重要的数字特征之一。利用分块矩阵,把子式看成元素,可将高阶矩阵的运算化为较低阶矩阵的运算,也为矩阵的秩的一些常见不等式的证明带来了方便。本文将讨论矩阵的秩的一些常见不等式,并由此引出一些秩的不等式等号成立的等价条件。 一基本的定理 1 设A是数域P上n m ?矩阵,于是 ?矩阵,B是数域上m s 秩(AB)≤min [秩(A),秩(B)],即乘积的秩不超过个因子的秩 2设A与B是m n ?矩阵,秩(A±B)≤秩(A)+秩(B) 二常见的秩的不等式 1 设A与B为n阶方阵,证明若AB = 0,则 r(A) + r(B) ≤ n 证:设r(A) = r,r(B )= s,则由AB = 0,知,B的每一列向量都是以A为系数方阵的齐次线性方程组的解向量。 当r = n时,由于该齐次方程组只要零解,故此时 B = 0,即此时r(A) = n,r(B) = 0,结论成立。 当r〈 n 时,该齐次线性方程组的基础解系中含n-r个向量,

从而B 的列向量组的秩≤n-r,即r (B )≤ n-r 所以 r(A) + r(B) ≤ n 2设A 为m n ?矩阵,B 为n s ?矩阵,证明不等式r(AB)≤r(A)+r(B)-n 证:设E 为n 阶单位矩阵, S E 为S 阶单位方阵,则由于 000S E B A AB A E E E B ??????= ? ? ?-?????? 而 0S E B E ?? ?-?? 可逆,故 r(A)+r(B) ≥ 秩 0A E B ?? ? ?? =秩 0A AB E ?? ???=秩 0 0AB E ?? ??? =r(AB)+r(E) =r(AB)+n 从而r(AB) ≥ r(A) + r(B) - n 3设A ,B 都是n 阶方阵,E 是n 阶单位方阵,证明 秩(AB-E )≤秩(A-E )+秩(B-E ) 证:因为0A E B E B E --?? ? -??00B E ?? ???00AB E B E -?? = ?-?? 故秩(AB-E )≤秩00AB E B E -?? ?-??≤秩0A E B E B E --?? ?-?? =秩(A-E )+秩(B-E ) 因此 秩(AB-E )≤秩(A-E )+秩(B-E ) 4 设A ,B ,C 依次为,,m n n s s t ???的矩阵,证明 r(ABC) ≥ r(AB) + r(BC) - r(B)

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

矩阵秩的一些著名结论

引言 矩阵的秩是高等代数中一个应用及其广泛的理论,有关矩阵的秩的等式或不 等式的证明,常常和向量组的秩,线性方程组的解等密切相关,推证有难度也有技巧。熟练掌握关于矩阵秩的一些结论及其证明技巧,对有关理论的学习会有很大的裨益。矩阵A 中的最大阶不为零的子式的阶数就称为矩阵A 的秩,记为r(A).一些平凡的理论及概念读者可参阅一些权威教材,这里只对一些经典的理论做一讨论. 1. 证明: 设B A ,为两个同阶矩阵,则有r(A ﹢B)≤r(A)﹢r(B) 证 设A =(α1,α 2 ,…, αn ), B =() ββ βn ,...,,2 1 则 A +B =( α1 +β1 ,α2 +β 2 ,…, αn +βn ) 不妨设A 列向量的极大线性无关组为 α1 ,α 2 ,…, α r . (1≤r ≤n); B 列向量的极大线性无关组为β1,β2,…βs . (1≤s ≤n). 则k i i 1 =αα1 +α 2 2 k i +…+ α r ir k ; βi =β1 1 l i +β 2 2 l i +…+ β s is l ; 则 αi +β i = k i 1 α1 +α 2 2 k i +…+αr ir k +β1 1 l i +β 2 2 l i +…+ β s is l ; 即A +B 的列向量可由 α1 ,α 2 ,…, α r , β 1 , β 2 ,… β s 线性表出, 故)()()(B +A =+≤B +A r r s r r . 2. 若AB =O ,则)()(B r A r +n ≤. 证 记 ),...,,(2 1 ββ βn B =,由AB =O ,知B 的每一列都是O =AX 解, 即O =A β i ,i =1,2,…,n 又因O =AX 的基础解系所含向量个数为)(A r n -, 换言之, O =AX 的所有解所构成的向量组的秩为)(A r n -.故≤)(B r )(A r n -, 即)()(B r A r +n ≤.

几类定积分不等式的证明

万方数据

万方数据

几类定积分不等式的证明 作者:王阳, 崔春红 作者单位:河北农业大学中兽医学院,河北定州,073000 刊名: 和田师范专科学校学报 英文刊名:JOURNAL OF HOTAN TEACHERS COLLEGE 年,卷(期):2009,28(3) 被引用次数:0次 参考文献(4条) 1.白银凤微积分及其应用 2001 2.刘连福.许文林高等数学 2007 3.詹瑞清高等数学全真课堂 2003 4.沈燮吕.邵品宗数学分析纵横谈 1991 相似文献(10条) 1.期刊论文杜红敏.Du Hong-min浅谈定积分在不等式证明与因式分解中应用-中国科教创新导刊2009,""(3) 定积分是高中新课程体系中一个新增加的重要内容,很多教师在该部分内容的教学时都与高中其他知识点割裂开未,殊不知,定积分在高中阶段解题中具有广泛的应用,本文以定积分在不等式证明和因式分解中应用为例,探讨定积分在高中解题中的应用. 2.期刊论文陈欢定积分的一个不等式及其应用-福州大学学报(自然科学版)2003,31(6) 线性是定积分最重要的性质之一,在此基础上定性地分析了形如gfn的函数的定积分的随着n的变化趋势,得到一个定理,并利用这个定理重新证明了Holder不等式. 3.期刊论文嵇国平.Ji Guoping定积分在不等式上的应用-常州师范专科学校学报2003,21(2) 不等式的证明是中学教学的一个重要内容,同时也是一个数学难点.由于微积分部分内容逐步渗透到中学数学中,用定积分方法解决不等式证明已成为可能. 4.期刊论文张惠玲.ZHANG Hui-ling定积分中不等式性质的研究-西安航空技术高等专科学校学报2009,27(3) 关于不等式的性质结论中等号成立的问题,在定积分中,进行了研究与探讨,并举例说明了它的应用. 5.期刊论文冯其明含∑nk=1f(k/n)的不等式的一种证法-高等数学研究2003,6(4) 利用定积分的定义及其几何意义可证明一些含∑nk=1f(k)/(n)的不等式. 6.期刊论文侯晓星.HOU Xiao-xing含定积分的不等式证明-泰州职业技术学院学报2005,5(4) 定积分不等式的证明是常见的一种题型.通过对典型例题的分析,利用换元法将被积函数转化为非负函数,或将定积分不等式视为数值不等式,再利用函数的单调性等,论述了含定积分的不等式证明的一般规律及求证方法. 7.期刊论文程仁华.李丽定积分的定义与某些重要不等式的推广应用-景德镇高专学报2004,19(4) 本文通n个正数的调和平均值、几何平均值、算术平均值及k次幂平均值的关系,并利用定积分的定义和连续函数极限的性质推导出函数的上述四种平均值之间的类似关系. 8.期刊论文沈凤英.孙存金.SHEN Feng-ying.SUN Cun-jin Schwarz不等式及旋转体侧面积的计算问题-苏州市职业大学学报2006,17(4) 文章应用Schwarz不等式的知识,给出了旋转体侧面积计算公式的一个新颖的证明,并同时指出用定积分计算旋转体侧面积时应该避免发生的错误. 9.期刊论文林银河关于Minkowski不等式的讨论-丽水师范专科学校学报2003,25(5) 在有关定积分不等式中,Minkowski不等式占有重要地位.将<数学分析>中提到的Minkowski不等式推广到更加一般的情形,从而改进已有的结论. 10.期刊论文刘放不等式(1/n+1+1/n+2+…+1/2n)2《1/2的六种不同证法-宜宾学院学报2003,6(6) 给出了不等式((1)/(n+1)+(1)/(n+2)+…+(1)/(2n))2<(1)/(2)的六种不同证法. 本文链接:https://www.360docs.net/doc/4110301266.html,/Periodical_htsfgdzkxxxb-hwb200903135.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:05ca550e-ea59-4c55-8af2-9da600b00ff2,下载时间:2010年7月 1日

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.360docs.net/doc/4110301266.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.360docs.net/doc/4110301266.html,) 原文地址: https://www.360docs.net/doc/4110301266.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

1求下列向量组的秩与一个极大线性无关组

习题4.3 1.求下列向量组的秩与一个极大线性无关组: (1) []12,1,3,1T α=-, []23,1,2,0T α=-, []31,3,4,2T α=-,[]44,3,1,1T α=-. (2) []11,1,1,1T α=, []21,1,1,1T α=--, []31,1,1,1T α=--,[]41,1,1,1T α=---. (3) []11,1,2,4T α=-, []20,3,1,2T α=,[]33,0,7,14T α=, []41,1,2,0T α=-,[]52,1,5,6T α=. 分析 向量组的秩等于该向量组构成的矩阵的秩, 所以求向量组的秩可以转化为求矩阵的秩. 先把向量构成矩阵通过矩阵的初等行变换成阶梯形, 通过阶梯形便可得到矩阵的秩, 它也就是该向量组的秩, 而阶梯形的阶梯头所在的列对应的向量便构成该向量组的一个极大线性无关组. 解 (1) []1 23 423141133113301123241000010210000αααα--???????? ---??? ?=??→????????--???? , 所以该向量组的秩为2, 且1α, 2α为它的一个极大线性无关组. (2) []1 23 41111111111110 1011111001111110001αααα--???? ????---??? ?=??→???? ---???? --???? , 所以该向量组的秩为4, 且1α,2α,3α,4α为它的一个极大线性无关组. (3) []1 234 51031 21 0312130110110121725000104214060 0000ααααα???? ????--? ???=??→???? ??? ? ???? , 所以该向量组的秩为3, 且1α,2α,4α为它的一个极大线性无关组. 2.计算下列向量组的秩,并判断该向量组是否线性相关. (1) []11,1,2,3,4T α=-,[]23,7,8,9,13T α=-,

不等式的证明方法习题精选精讲

不等式性质的应用 不等式的性质是解不等式、证明不等式的基础和依据。教材中列举了不等式的性质,由这些性质是可以继续推导出其它有关性质。教材中所列举的性质是最基本、最重要的,对此,不仅要掌握性质的内容,还要掌握性质的证明方法,理解掌握性质成立的条件,把握性质之间的关联。只有理解好,才能牢固记忆及正确运用。 1.不等式性质成立的条件 运用不等式的基本性质解答不等式问题,要注意不等式成立的条件,否则将会出现一些错误。对表达不等式性质的各不等式,要注意“箭头”是单向的还是双向的,也就是说每条性质是否具有可逆性。 例1:若0< B .a b a 11>- C .||||b a > D .22b a > 解:∵0<->-b a 。 由b a -< -11,b a 11>,∴(A )成立。 由0<< b a ,||||b a >,∴(C )成立。 由0>->-b a ,2 2 )()(b a ->-,2 2b a >,∴(D )成立。 ∵0<->-a b a , )(11b a a --<-,b a a ->11,∴(B )不成立。 故应选B 。 例2:判断下列命题是否正确,并说明理由。 (1)若0<c ,在2 2c b c a >两边同乘以2 c ,不等式方向不变。∴b a >。 (3)错误。b a b a 1 1,成立条件是0>ab 。 (4)错误。b a >,bd ac d c >?>,当a ,b ,c ,d 均为正数时成立。 2.不等式性质在不等式等价问题中的应用 例3:下列不等式中不等价的是( ) (1)2232 >-+x x 与0432 >-+x x (2)13 8112++ >++ x x x 与82>x (3)35 7354-+>-+x x x 与74>x (4) 023 >-+x x 与0)2)(3(>-+x x A .(2) B .(3) C .(4) D .(2)(3) 解:(1)0432232 2 >-+?>-+x x x x 。 (2)482>?>x x ,44,11 3 8112>?>-≠?++>++ x x x x x x 。

定积分证明题方法总结六

定积分证明题方法总结六篇 定积分是历年数学的考查重点,其中定积分的证明是考查难点,同学们经常会感觉无从下手,小编特意为大家总结了定积分的计算方法,希望对同学们有帮助。 篇一:定积分计算方法总结一、不定积分计算方法 1. 凑微分法 2. 裂项法 3. 变量代换法 1) 三角代换 2) 根幂代换 3) 倒代换 4. 配方后积分 5. 有理化 6. 和差化积法 7. 分部积分法(反、对、幂、指、三) 8. 降幂法 二、定积分的计算方法 1. 利用函数奇偶性 2. 利用函数周期性 3. 参考不定积分计算方法 三、定积分与极限

1. 积和式极限 2. 利用积分中值定理或微分中值定理求极限 3. 洛必达法则 4. 等价无穷小 四、定积分的估值及其不等式的应用 1. 不计算积分,比较积分值的大小 1) 比较定理:若在同一区间[a,b]上,总有 f(x)>=g(x),则 >= ()dx 2) 利用被积函数所满足的不等式比较之 a) b) 当0 2. 估计具体函数定积分的值 积分估值定理:设f(x)在[a,b]上连续,且其最大值为M,最小值为m则 M(b-a) 3. 具体函数的定积分不等式证法 1) 积分估值定理 2) 放缩法 3) 柯西积分不等式 ≤ % 4. 抽象函数的定积分不等式的证法 1) 拉格朗日中值定理和导数的有界性 2) 积分中值定理 3) 常数变易法 4) 利用泰勒公式展开法

五、变限积分的导数方法 篇二:定积分知识点总结 1、经验总结 (1) 定积分的定义:分割—近似代替—求和—取极限 (2)定积分几何意义: ①f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积 ab ②f(x)dx(f(x)0)表示y=f(x)与x轴,x=a,x=b所围成曲边梯形的面积的相a 反数 (3)定积分的基本性质: ①kf(x)dx=kf(x)dx aabb ②[f1(x)f2(x)]dx=f1(x)dxf2(x)dx aaa ③f(x)dx=f(x)dx+f(x)dx aac (4)求定积分的方法:baf(x)dx=limf(i)xi ni=1nbbbbbcb ①定义法:分割—近似代替—求和—取极限②利用定积分几何意义 ’③微积分基本公式f(x)F(b)-F(a),其中F(x)=f(x) ba 篇三:定积分计算方法总结 1、原函数存在定理 ●定理如果函数f(x)在区间I上连续,那么在区间I上

一个不等式的七种证明方法

一个不等式的七种证明方法 证明不等式就是证明所给不等式在给定条件下恒成立.由于不等式的形式是多种多样的,因此,不等式的证明方法也可谓是千姿百态.针对不等式证明,要具体问题具体分析,灵活选用证明方法,提高代数变形,推理论证能力,一题多解,有助于我们对辩证唯物主义观点有进一步的认识. 题目:已知a ,b ,c ,d ∈R ,求证:ac +bd ≤))((2222d c b a ++ 分析一:用分析法 证法一:(1)当ac +bd ≤0时,显然成立. (2)当ac +bd >0时,欲证原不等式成立, 只需证(ac +bd )2≤(a 2+b 2)(c 2+d 2) 即证a 2c 2+2abcd +b 2d 2≤a 2c 2+a 2d 2+b 2c 2+b 2d 2 即证2abcd ≤b 2c 2+a 2d 2 即证0≤(bc -ad )2 因为a ,b ,c ,d ∈R ,所以上式恒成立, 综合(1)、(2)可知:原不等式成立. 分析二:用综合法 证法二: (a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2 =(a 2c 2+2abcd +b 2d 2)+(b 2c 2-2abcd +a 2d 2)

=(ac +bd )2+(bc -ad )2≥(ac +bd )2 ∴))((2222d c b a ++≥|ac +bd |≥ac +bd . 故命题得证. 分析三:用比较法 证法三:∵(a 2+b 2)(c 2+d 2)-(ac +bd )2=(bc -ad )2≥0, ∴(a 2+b 2)(c 2+d 2)≥(ac +bd )2 ∴))((2222d c b a ++≥|ac +bd |≥ac +bd , 即ac +bd ≤))((2222d c b a ++. 分析四:用放缩法 证法四:为了避免讨论,由ac +bd ≤|ac +bd |, 可以试证(ac +bd )2≤(a 2+b 2)(c 2+d 2). 由证法1可知上式成立,从而有了证法四. 分析五:用三角代换法 证法五:不妨设???==???==ββ ααsin cos ,sin cos 2 211r d r c r b r a (r 1,r 2均为变量). 则ac +bd =r 1r 2cos αcos β+r 1r 2sin αsin β=r 1r 2cos (α-β) 又|r 1r 2|=|r 1|·|r 2|=))((22222222d c b a d c b a ++=+?+ 及r 1r cos (α-β)≤|r 1r 2| 所以ac +bd ≤))((2222d c b a ++. 分析六:用换元法

相关文档
最新文档