常用焊接方法办法

常用焊接方法办法
常用焊接方法办法

常用焊接方法手册

一、什么是钎焊?钎焊是如何分类的?钎焊的接头形式有何特点?

钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。

依照钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。

(1)软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70 MPa)。

(2)硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200 MPa)。

钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采纳搭接接头和套件镶接,以弥补钎焊强度的不足。

二、电弧焊的分类有哪些,有什么优点?

利用电弧作为热源的熔焊方法,称为电弧焊。可分为手工电弧焊、埋弧自动焊和气体爱护焊等三种。手工自动焊的最大优点是设备简单,应用灵活、方便,适用面广,可焊接各种焊接位置和直缝、环缝及各种曲线焊缝。尤其适用于操作不变的场合和短小焊缝的焊接;埋弧自动焊具有生产率高、焊缝质量好、劳动条件好等特点;气体爱护焊具有爱护效果好、电弧稳定、热量集中等特点。

三、焊条电弧焊时,低碳钢焊接接头的组成、各区域金属的组织与性能有何特点?

(1)焊接接头由焊缝金属和热阻碍区组成。

1)焊缝金属:焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。

2)热阻碍区:在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。

(2)低碳钢的热阻碍区分为熔合区、过热区、正火区和部分相变区。

1)熔合区位于焊缝与差不多金属之间,部分金属焙化部分未熔,也称半熔化区。加热温度约为1 490~1 530°C,此区成分及组织极不均匀,强度下降,塑性专门差,是产生裂纹及局部脆性破坏的发源地。

2)过热区紧靠着熔合区,加热温度约为1 100~1 490°C。由于温度大大超过Ac3,奥氏体晶粒急剧长大,形成过热组织,使塑性大大降低,冲击韧性值下降25%~75%左右。

3)正火区加热温度约为850~1 100°C,属于正常的正火加热温度范围。冷却后得到均匀细小的铁素体和珠光体组织,其力学性能优于母材。

4)部分相变区加热温度约为727~850°C。只有部分组织发生转变,冷却后组织不均匀,力学性能较差。

四、什么是电阻焊?电阻焊分为哪几种类型、分不用于何种场合?

电阻焊是利用电流通过工件及焊接接触面间所产生的电阻热,将焊件加热至塑性或局部熔化状态,再施加压力形成焊接接头的焊接方法。

电阻焊分为点焊、缝焊和对焊3种形式。

(1)点焊:将焊件压紧在两个柱状电极之间,通电加热,使焊件在接触处熔化形成熔核,然后断电,并在压力下凝固结晶,形成组织致密的焊点。

点焊适用于焊接4 mm以下的薄板(搭接)和钢筋,广泛用于汽车、飞机、电子、仪表和日常生活用品的生产。

(2)缝焊:缝焊与点焊相似,所不同的是用旋转的盘状电极代替柱状电极。叠合的工件在圆盘间受压通电,并随圆盘的转动而送进,形成连续焊缝。

缝焊适宜于焊接厚度在3 mm以下的薄板搭接,要紧应用于生产密封性容器和管道等。

(3)对焊:依照焊接工艺过程不同,对焊可分为电阻对焊和闪光对焊。

1)电阻对焊焊接过程是先施加顶锻压力(10~15 MPa),使工件接头紧密接触,通电加热至塑性状态,然后施加顶锻压力(30~50 MPa),同时断电,使焊件接触处在压力下产生塑性变形而焊合。

电阻对焊操作简便,接头外形光滑,但对焊件端面加工和清理要求较高,否则会造成接触面加热不均匀,产生氧化物夹杂、焊不透等缺陷,阻碍焊接质量。因此,电阻对焊一般只用于焊接直径小于20 mm、截面简单和受力不大的工件。

2)闪光对焊焊接过程是先通电,再使两焊件轻微接触,由于焊件表面不平,使接触点通过的电流密度专门大,金属迅速熔化、气化、爆破,飞溅出火花,造成闪光现象。接着移动焊件,产生新的接触点,闪光现象不断发生,待两焊件端面全部熔化时,迅速加压,随即断电并接着加压,使焊件焊合。

闪光对焊的接头质量好,对接头表面的焊前清理要求不高。常用于焊同意力较大的重要工件。闪光对焊不仅能焊接同种金属,也能焊接铝钢、铝铜等异种金属,能够焊接0.01 mm的金属丝,也能够焊接直径500 mm的管子及截面为20 000 mm2的板材。

五、激光焊的差不多原理是什么?有何特点及用途?

激光焊利用聚焦的激光束作为能源轰击工件所产生的热量进行焊接。

激光焊具有如下特点:

1)激光束能量密度大,加热过程极短,焊点小,热阻碍区窄,焊接变形小,焊件尺寸精度高;

2)能够焊接常规焊接方法难以焊接的材料,如焊接钨、鉬、钽、锆等难熔金属;

3)能够在空气中焊接有色金属,而不需外加爱护气体;

4)激光焊设备较复杂,成本高。

激光焊能够焊接低合金高强度钢、不锈钢及铜、镍、钛合金等;异种金属以及非金属材料(如陶瓷、有机玻璃等);目前要紧用于电子仪表、航空、航天、原子核反应堆等领域。

六、电子束焊的差不多原理是什么?有何特点及用途?

电子束焊利用在真空中利用聚焦的高速电子束轰击焊接表面,使之瞬间熔化并形成焊接接头。

电子束焊具有以下特点:

1)能量密度大,电子穿透力强;

2)焊接速度快,热阻碍取消,焊接变形小;

3)真空爱护好,焊缝质量高,特不适用于活波金属的焊接。

电子束焊用于焊接低合金钢、有色金属、难熔金属、复合材料、异种材料等,薄板、厚板均可。特不适用于焊接厚件及要求变形专门小的焊件、真空中使用器件、周密微型器件等。

车架的焊接变形及减小变形的措施

摩托车车架多数采纳复杂管、板式焊接结构,是摩托车的支撑骨架,在整车中既要满足众多车体零件安装的要求,又要保证车辆行驶平稳,因此对车架的结构尺寸和形状精度要求较高。摩托车车架焊接后往往会出现变形,不但直接阻碍整车装配及整车性能,还可能降低车架结构的承载能力引发事故,因此制造中限制和消除焊接变形特不重要。操纵摩托车车架的焊接变形要紧从设计和工艺2个方面解决,现探讨如何操纵车架焊接变形的措施。

阻碍车架变形的因素和焊接变形的种类

1、阻碍因素

阻碍车架焊接变形的因素有专门多,要紧有以下几点:

a)焊接工艺方法:不同的焊接方法将产生不同的温度场,形成的热变形也不相同。一般来讲自动焊比手工焊加热集中,受势区窄,变形较小;CO2气体爱护焊焊丝细,电流密度大,加热集中,变形小,比手工焊更适合于车架焊接。

各种焊接方法的比较

各种焊接方法的比较 2012-02-21 21:50 从原理、特点,冶金反应,熔滴过渡,电弧控制,焊接材料,从原理、特点,冶金反应,熔滴过渡,电弧控制,焊接材料,适用范围等方面比较各种焊接方法。 一、埋弧焊Submerged Metal Arc Welding (SMAW) 埋弧焊是以颗粒状焊剂为保护介质,电弧掩藏在焊剂层下的一种熔化极电焊接方法。埋弧焊的施焊过程由三个环节组成:1 在焊件待焊接缝处均匀堆敷足够的颗粒状焊剂;2 导电嘴和焊件分别接通焊接电源两级以产生焊接电弧;3 自动送进焊丝并移动电弧实施焊接。 埋弧焊的主要特点如下:1、电弧性能独特(1)焊缝质量高熔渣隔绝空气保护效果好,电弧区主要成分为CO2,焊缝金属中含氮量、含氧量大大降低,焊接参数自动调节,电弧行走机械化,熔池存在时间长,冶金反应充分,抗风能力强,所以焊缝成分稳定,力学性能好;(2)劳动条件好熔渣隔离弧光有利于焊接操作;机械化行走,劳动强度较低。2、弧柱电场强度较高比之熔化极气体保护焊有如下特点:(1)设备调节性能好,由于电场强度较高,自动调节系统的灵敏度较高,使焊接过程的稳定性提高;(2)焊接电流下限较高。3、生产效率高由于焊丝导电长度缩短,电流和电流密度显著提高,使电弧的熔透能力和焊丝的熔敷速率大大提高;又由于焊剂和熔渣的隔热作用,总的热效率大大增加,使焊接速度大大提高。 冶金反应:焊剂参与冶金反应,Si 、Mn被还原,C 部分烧毁,限制杂质S、P 去H,防止产生氢气孔。 熔滴过渡:渣壁过渡 电源:直流电源用于小电流情况,等速送丝,自身电弧调节;大电流一般用交流电源,变速送丝(SAW 焊丝一般较粗),弧压反馈电弧调节焊接材料:焊丝和焊剂。焊丝和焊剂的选配必须保证获得高质量的焊接接头,同时又要尽可能减低成本,还要注意适用的电流种类和极性。 适用范围:由于埋弧焊熔深大、生产率高、机械操作的程度高,因而适于焊接中厚板结构的长焊缝。在造船、锅炉与压力容器、桥梁、超重机械、核电站结构、海洋结构、武器等制造部门有着广泛的应用,是当今焊接生产中最普遍使用的焊接方法之一。埋弧焊除了用于金属结构中构件的连接外,还可在基体金属表面堆焊耐磨或耐腐蚀的合金层。随着焊接冶金技术与焊接材料生产技术的发展,埋弧焊能焊的材料已从碳素结构钢发展到低合金结构钢、不锈钢、耐热钢等以及某些有色金属,如镍基合金、钛合金、铜合金等。

其它常用焊接方法

?电阻焊 ?摩擦焊 ?钎焊 ?电渣焊 ?真空电子束焊接 ?激光焊接电阻焊是利用电流通过焊件及其接触处所产生的电阻热 将焊件局部加热到塑性或熔化状态 然后在压力下形成焊接接头的焊接方法。 电阻焊在焊接过程中产生的热量 可用焦耳 楞次定律计算 Q=I2Rt 式中 Q——电阻焊时所产生的电阻热 J I——焊接电流 A R——工件的总电阻 包括工件本身的电阻和工件间的接触电阻 Ω t——通电时间 s。 由于工件的总电阻很小 为使工件在极短时间内(0.01 s到几秒)迅速加热 必须采用很大的焊接电流(几千到几万安培)。电阻焊特点优点 生产率高、焊接变形小、劳动条件好、不需另加焊接材料、操作简便、易实现机械化等。缺点 其设备较一般熔焊复杂、耗电量大、适用的接头形式与可焊工件厚度(或断面尺寸)受到限制。分类电阻焊分为点焊、缝焊和对焊三种形式。 一、点焊点焊是利用柱状电极加压通电 在搭接工件接触面之间 焊成一个个焊点的焊接方法 如图4-24所示。点焊时 先加压使两个工件紧密 接触 然后接通电流。由于两工件接 触处电阻较大 电流流过所产生的电 阻热使该处温度迅速升高 局部金属 可达熔点温度 被熔化形成液态熔核。 断电后 继续保持压力或加大压 力 使熔核在压力下凝固结晶 形成 组织致密的焊点。而电极与工件间的 接触处 所产生的热量因被导热性好 的铜(或铜合金)电极及冷却水传走 因此温升有限 不会出现焊合现象。焊完一个点后 电极将移至另一点进行焊接。当焊接下一个点时 有一部分电流会流经已焊好的焊点 称为分流现象。 分流将使焊接处电流减小 影响焊接质量。因此两个相邻 焊点之间应有一定距离。工件厚度越大 焊件导电性越好 则 分流现象越严重 故点距应加大。不同材料及不同厚度工件上焊点间最小距离如表4—7所示。影响点焊质量的主要因素有 焊接电流、通电时间、电极压力及工件表面清理情况等。 根据焊接时间的长短和电流大小 常把点焊焊接规范分为 硬规范和软规范。 硬规范 硬规范是指在较短时间内通以大电流的规范。 它的生产率高 焊件变形小 电极磨损慢 但要求设备功 率大 规范应控制精确。适合焊接导热性能较好的金属。软规范 软规范是指在较长时间内通以较小电流的规范。它的生产率低 但可选用功率小的设备焊接较厚的工件。适合焊接有淬硬倾向的金属。电极压力的选择 点焊电极压力应保证工件紧密接触顺利通电 同时依靠压力消除熔核凝固时可能产生的缩孔和缩松。工件厚度越大 材料高温强度越大(如耐热钢) 电极压力也应越大。但压力过大时 将使焊件电阻减小 从电极散失的 热量将增加 也使电极在工件表面的压坑加深。 因此电极压力应选择合适。焊件的表面状态对焊接质量影响 如焊件表面存在氧

常用焊接方法—焊接工艺

常用焊接方法——焊接工艺 我公司是生产自动焊接设备的大型厂家。作为公司员工,就更应该了解常用焊接方法及焊接工艺。结合设备调试,这里将常用的埋弧焊、气体保护焊、钨极氩弧焊作为简要的讲述,以供有关人员参考。 一、埋弧焊 电弧在焊剂层下燃烧进行焊接的方法称为埋弧焊。主要优点:劳动条件好,节省焊接材料和电能,焊缝质量好,生产效率高等。但不适合薄板焊接。(当焊接电流小于100A时,电弧稳定性差,目前板厚小于1mm的薄板还无法采用埋弧焊)只限于水平或倾斜度不大的位置施焊。 埋弧焊是高效焊接常用方法之一。主要用于:焊接各种钢板结构。焊接碳素结构钢、低合金结构钢、不锈钢、耐热钢和复合材料以及堆焊耐磨、耐蚀合金等。 焊接工艺参数对焊接质量影响较大的有:焊接电流、电弧电压、焊接速度、焊丝直径与伸出长度、焊丝倾角、装配间隙与坡口大小等。此外焊剂层厚度及粒度对焊接质量也有影响。下面分别讲述它们对焊接质量的影响: 1.焊接电流: 焊接电流是决定熔深的主要因素。在一定范围内,焊接电流增加,焊缝的熔深和余高都增加。而焊缝的宽度增加不大。增大焊接电流能提高生产率,但在一定的焊接速度下,焊接电流过大会使热影响区过大,并产生焊瘤及焊件被烧穿等缺陷。若焊接电流过小,测熔深不足,

熔合不好、未焊透和夹渣,并使焊缝成形变坏。 2.电弧电压: 电弧电压是决定熔宽的主要因素。电弧电压增加时,弧长增加,熔深减小,焊缝宽度变宽,余高减小,电弧电压过大,溶剂熔化量增加,电弧不稳,严重时会产生咬边和气孔等。 3.焊接速度: 焊接速度增加,母材熔合比较小。焊接速度过高时,会产生咬边,未焊透,电弧偏吹和气孔等缺陷,焊缝余高大而窄成形不好。 4.焊丝直径与伸出长度: 当焊接电流不变时,减小焊丝直径,电流密度增加,熔深增大,成形系数减小。焊丝伸出长度增加时,熔深速度和余高都增加。 5.焊丝倾角: 焊丝前倾,焊缝成形系数增加,熔深变浅,焊缝宽度增加。焊丝后倾,熔深与余高增,。熔宽明显减小,焊缝成形不变。 6.装配间隙与坡口: 在其他工艺参数不变的条件下,装配间隙与坡口角度增大时,熔合比与余高减小,熔深增大,焊缝厚度基本保持不变。 7、焊机层厚度与粒度: 焊剂层太薄时,容易露弧,电弧保护不好,容易产生气孔或裂纹。焊剂层太厚,焊缝变窄,成形不好。 一般情况下,焊剂粒度对焊缝成形影响不大,但采用小直径焊丝焊薄板时,焊剂粒度对焊缝成形就有影响。若焊剂颗粒太大,电弧不

常用焊接设备说明

钨极氩弧焊 钨极氩弧焊是气体保护焊中的一种方法,也叫TIG焊,这种方法以燃烧于非熔化极与工件之间的电弧作为热源来进行焊接。钨极氩弧焊可焊易氧化的有色金属及其合金、不锈钢、高温合金、钛及钛合金等。钨极氩弧焊能够焊接各种接头形式的焊缝,焊缝优良、美观、平滑、均匀,特别适用于薄板焊接;焊接时几乎不发生飞溅或烟尘;容易观察和操作;被焊工件可开坡口或不开坡口;焊接时可填充焊丝或不填充焊丝。采用钨极氩弧焊,电弧稳定、热量集中、合金元素烧损小、焊缝的质量高,可靠性高,可以焊接重要构件,可用于核电站及航空、航天工业,是一种高效、优质、经济节能的工艺方法。但钨极氩弧焊焊缝容易受风或外界气流的影响,生产效率低,生产成本较高。根据电流种类,钨极氩弧焊又分为直流钨极氩弧焊、直流脉冲钨极氩弧焊和交流钨极氩弧焊,它们各有不同的工艺特点,应用于不同的场合。 钨极氩弧焊机钨极氩弧焊实际操作

用手工操纵焊条进行焊接的电弧焊方法称为手弧焊,它是利用焊条和焊件之间产生的电弧将焊条和焊件局部加热到熔化状态,焊条端部熔化后的熔滴和熔化的线母材融合一起形成熔池,随着电弧向前移动,熔池液态金属逐步冷却结晶,形成焊缝。 手弧焊的优点是使用的设备简单,方法简便灵活,适应性强,对大部分金属材料的焊接均适用。缺点是生产率较低,特别是在焊接厚板多层焊时,焊接质量不够稳定;可焊最小厚度为 1.0mm,一般易掌握的最小焊接厚度为 1.5mm;对焊工的操作技术要求高,焊接质量在一定程度上决定于焊工的操作技术;对于活泼金属(Ti、Nb、Zr等)和难熔金属(如Mo)由于其保护效果较差,焊接质量达不到要求,不能采用手弧焊。另外对于低熔点金属(如Pb、Sn、Zn)及其合金由于电弧温度太高,也不可能用手弧焊。 手弧焊的主要设备是电焊机,电弧焊时所用的电焊机实际上就是一种弧焊电源,按产生电流种类不同,这种电源可分为弧焊变压器(交流)和直流弧焊发电机及弧焊整流器(直流)。手弧焊适用于碳钢、低合金钢、不锈钢、铜及铜合金等金属材料的焊接。 直流电焊机交流电焊机手弧焊实际操作

基础工业的常用焊接方法

基础工业的常用焊接方法 文章是一篇叙实性的文字,作者是焊接专业本科,后来却从焊接工艺工程师逐步走向了生产管理岗位,自从1998年来到上海这个飞速发展的大城市,我先后经历了好几家单位,除了第一家单位是国家统分的国营船厂之外,其它公司均为行业较知名的外资企业。作者在学习和工作的同时,更多的看到了如何应用先进技术和不断自我升级到世界最新工艺和管理水平的管理模式。在我的工作中,见到了多种的常用的基础工业的焊接方法和应用。以下就我的一些实际工作经历进行一个粗略的介绍。 标签:弧焊;CO2气保焊;螺柱焊SW 作者以切身工作经历来给基础工业中的焊接应用做一个快速扫描。先来讲述船厂。在这个领域我国焊接方面的专业人才非常之多,像上海八大船厂,船舶设计研究院,船级社等单位,汇集了设计,工艺,检验等各种焊接相关人才。作者曾经工作的是一家坐落在江苏省扬州市的国营船厂,主要的产品是集装箱船的分段制造,以双层底,舷侧为主。所采用的主要焊接方法是: a.埋弧自动焊SAW。主要应用在内甲板的平板拼焊上。它需要用直径3.2mm 的J422焊条打底焊接,再埋弧自动焊一次和盖面一次,焊接是当时要使用一种HJ431的焊剂,焊丝是一种H08Mn2SiA的4mm焊丝材料。当时我们还买了一种陶瓷衬垫贴在焊缝的反面,保证了反面的成型效果。总的来说,这在当时是一种高效率的焊接方法。相对来说,它的焊接热变形还是有点大的,焊完之后必须要做火工矫正,由于分段是立体的,矫正需要分几次进行,并且每次要做分段水平测量。除去16mm以上的较厚钢板,这种焊接方法正在被后文中要提到等离子焊所替代。 b.普通手工电弧焊SMAW。这个太常见了,直流焊机,酸性碱性焊条,多年变化不大除了焊接的体积比以前要小了很多,这里就不做介绍了。 c.重力铁粉焊条立焊。当时由于立焊运条效率低下,船厂的工艺部门引进了这种焊接方式,它可以自上而下的焊接,由于自身含铁量高,带有一定的重力下堆敷效果。后来就再没见过这种焊接方法。 d.CO2气保焊GMAW(MIG)。90年代焊接技校生从进船厂实习开始,就是从事梁体,工字钢的焊接。当时算是比较先进的焊接工艺了,正在大面积推广和取代手工电弧焊。 第二讲集装箱厂。集装箱的制造见证了我国外贸的突飞猛进,很有代表意义。作者所工作的这家集装箱公司在中集(CIMC)发达以前曾是世界上最大的集装箱制造商,有着经多年设计和完善的焊接流水线。它的主要产品包括20’/40’普箱,高箱,45’,48’,53’特种箱,及开顶,侧开门,框架箱等多种结构特种箱,也制作集装箱底盘。它的焊接方法有:

常用焊接方法及特点

常用焊接方法及特点

常用焊接方法及特点 一、什么是钎焊?钎焊是如何分类的?钎焊的接头形式有何特点? 钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。 根据钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。 (1)软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70 MPa)。 (2)硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200 MPa)。 钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采用搭接接头和套件镶接,以弥补钎焊强度的不足。 二、电弧焊的分类有哪些,有什么优点? 利用电弧作为热源的熔焊方法,称为电弧焊。可分为手工电弧焊、埋弧自动焊和气体保护焊等三种。手工自动焊的最大优点是设备简单,应用灵活、方便,适用面广,可焊接各种焊接位置和直缝、环缝及各种曲线焊缝。尤其适用于操作不变的场合和短小焊缝的焊接;埋弧自动焊具有生产率高、焊缝质量好、劳动条件好等特点;气体保护焊具有保护效果好、电弧稳定、热量集中等特点。 三、焊条电弧焊时,低碳钢焊接接头的组成、各区域金属的组织与性能有何特点? (1)焊接接头由焊缝金属和热影响区组成。 1)焊缝金属:焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。 2)热影响区:在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。 (2)低碳钢的热影响区分为熔合区、过热区、正火区和部分相变区。 1)熔合区位于焊缝与基本金属之间,部分金属焙化部分未熔,也称半熔化区。加热温度约为1 490~1 530°C,此区成分及组织极不均匀,强度下降,塑性很差,是产生裂纹及局部脆性破坏的发源地。 2)过热区紧靠着熔合区,加热温度约为1 100~1 490°C。由于温度大大超过Ac3,奥氏体晶粒急剧长大,形成过热组织,使塑性大大降低,冲击韧性值下降25%~75%左右。 3)正火区加热温度约为850~1 100°C,属于正常的正火加热温度范围。冷却后得到均匀细小的铁素体和珠光体组织,其力学性能优于母材。 4)部分相变区加热温度约为727~850°C。只有部分组织发生转变,冷却后组织不均匀,力学性能较差。 四、什么是电阻焊?电阻焊分为哪几种类型、分别用于何种场合? 电阻焊是利用电流通过工件及焊接接触面间所产生的电阻热,将焊件加热至塑性或局部熔化状态,再施加压力形成焊接接头的焊接方法。 电阻焊分为点焊、缝焊和对焊3种形式。 (1)点焊:将焊件压紧在两个柱状电极之间,通电加热,使焊件在接触处熔化形成熔核,然后断电,并在压力下凝固结晶,形成组织致密的焊点。 点焊适用于焊接4 mm以下的薄板(搭接)和钢筋,广泛用于汽车、飞机、电子、仪表和日常生活用品的生产。 (2)缝焊:缝焊与点焊相似,所不同的是用旋转的盘状电极代替柱状电极。叠合的工件在圆盘间受压通电,并随圆盘的转动而送进,形成连续焊缝。

常见的焊接缺陷及处理办法

常见的焊接缺陷及处理办法 一、外部缺陷 一)、焊缝成型差 1、现象 焊缝波纹粗劣,焊缝不均匀、不整齐,焊缝与母材不圆滑过渡,焊接接头差,焊缝高低不平。 2、原因分析 焊缝成型差的原因有:焊件坡口角度不当或装配间隙不均匀;焊口清理不干净;焊接电流过大或过小;焊接中运条(枪)速度过快或过慢;焊条(枪)摆动幅度过大或过小;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴焊件的坡口角度和装配间隙必须符合图纸设计或所执行标准的要求。 ⑵焊件坡口打磨清理干净,无锈、无垢、无脂等污物杂质,露出金属光泽。 ⑶加强焊接联系,提高焊接操作水平,熟悉焊接施工环境。 ⑷根据不同的焊接位置、焊接方法、不同的对口间隙等,按照焊接工艺卡和操作技能要求,选择合理的焊接电流参数、施焊速度和焊条(枪)的角度。 4、治理措施 ⑴加强焊后自检和专检,发现问题及时处理; ⑵对于焊缝成型差的焊缝,进行打磨、补焊; ⑶达不到验收标准要求,成型太差的焊缝实行割口或换件重焊; ⑷加强焊接验收标准的学习,严格按照标准施工。 二)、焊缝余高不合格 1、现象 管道焊口和板对接焊缝余高大于 3 ㎜;局部出现负余高;余高差过大;角焊缝高度不够或 焊角尺寸过大,余高差过大。 2、原因分析 焊接电流选择不当;运条(枪)速度不均匀,过快或过慢;焊条(枪)摆动幅度不均匀;焊条(枪)施焊角度选择不当等。 3、防治措施 ⑴根据不同焊接位置、焊接方法,选择合理的焊接电流参数; ⑵增强焊工责任心,焊接速度适合所选的焊接电流,运条(枪)速度均匀,避免忽快忽慢; ⑶焊条(枪)摆动幅度不一致,摆动速度合理、均匀; ⑷注意保持正确的焊条(枪)角度。 4、治理措施 ⑴加强焊工操作技能培训,提高焊缝盖面水平; ⑵对焊缝进行必要的打磨和补焊; ⑶加强焊后检查,发现问题及时处理; ⑷技术员的交底中,对焊角角度要求做详细说明。 三)、焊缝宽窄差不合格 1、现象 焊缝边缘不匀直,焊缝宽窄差大于 3 ㎜。 2、原因分析 焊条(枪)摆动幅度不一致,部分地方幅度过大,部分地方摆动过小;焊条(枪)角度不合适;焊接位置困难,妨碍焊接人员视线。

焊接的正确方法和步骤

(1)焊前处理步骤 焊接前,应对元器件引脚或电路板的焊接部位进行处理,一般有“刮”、“镀”、“测”三个步骤: “刮”:就是在焊接前做好焊接部位的清洁工作。一般采用的工具是小刀和细砂纸,对集成电路的引脚、印制电路板进行清理,去除其上的污垢,清理完后 一般还需要往待拆元器件上涂上助焊剂。 “镀”:就是在刮净的元器件部位上镀锡。具体做法是蘸松香酒精溶液涂在刮净的元器件焊接部位上,再将带锡的热烙铁头压在其上,并转动元器件,使其 均匀地镀上一层很薄的锡层。 “测”:就是利用万用表检测所有镀锡的元器件是否质量可靠,若有质量不可靠或已损坏的元器件,应用同规格元器件替换。 (2)焊接步骤 做好焊前处理之后,就可进行正式焊接。 不同的焊接对象,其需要的电烙铁工作温度也不相同。判断烙铁头的温度时,可将电烙铁碰触松香,若有“吱吱”的声音,说明温度合适;若没有声音,仅能 使松香勉强熔化,则说明温度太低;若烙铁头一碰上松香就大量冒烟,则说明温 度太高。 一般来讲,焊接的步骤主要有三步: (1)烙铁头上先熔化少量的焊锡和松香,将烙铁头和焊锡丝同时对准焊点。 (2)在烙铁头上的助焊剂尚未挥发完时,将烙铁头和焊锡丝同时接触焊点,开始熔化焊锡。 (3)当焊锡浸润整个焊点后,同时移开烙铁头和焊锡丝。 焊接过程一般以2~3s为宜。焊接集成电路时,要严格控制焊料和助焊剂的用量。为了避免因电烙铁绝缘不良或内部发热器对外壳感应电压而损坏集成电路,实际 应用中常采用拔下电烙铁的电源插头趁热焊接的方法。 电烙铁虚焊及其防治方法 焊接时,应保证每个焊点焊接牢固、接触良好,锡点应光亮、圆滑无毛刺, 锡量适中。锡和被焊物熔合牢固,不应有虚焊。所谓虚焊,是指焊点处只有少量 锡焊住,造成接触不良,时通时断。为避免虚焊,应注意以下几点:(1)保证金属表面清洁

各种常见钢材的焊接焊条及焊接工艺选用一览表

各种常见钢材的焊接焊条及焊接工艺选用一览表 序号材质 焊接工艺及焊接材料焊接检验方法及数量 工艺方 法 焊丝焊条 光谱 检验 及复 查 无损检验 1 1Cr18Ni9Ti 对于管壁 厚度 ≤6mm 的管道, 采用全氩 焊接方 法,对于 管道壁 厚>7mm 的管道可 以才用氩 电联焊的 焊接方 法。对于 采用不锈 钢焊条的 焊缝可以 不进行热 处理,其 它焊缝根 据管道壁 厚进行选 择是否采 用预热、 热处理等 工艺。H1Cr19Ni9Ti、 H0Cr18Ni9Ti A137、A132 合金 焊缝 需要 进行 100 %光 谱复 查检 验 根据温度与 压力两个参 数定 2 0Cr19Ni9 H1Cr19Ni9、 H0Cr20Ni10 A102、 A107、132 3 0Cr18Ni11Nb H1Cr19Ni10Nb、 H1Cr19Ni9Ti A137、A132 4 0Cr18Ni11Ti H1Cr19Ni10Nb、 H1Cr19Ni9Ti A137、A132 5 0Cr23Ni13 H1Cr24Ni13、 H0Cr25Ni13 A407 6 1Cr20Ni14Si2 H1Cr24Ni13、 H0Cr25Ni13 A407 7 0Cr25Ni20 H1Cr25Ni20、 H0Cr25Ni13 A407 8 12Cr1MoVG TIG-R31 R317 9 12Cr2Mo TIG-R40 R407 10 10CrMo910 TIG-R40 R407 11 SA335P22 TIG-R40 R407 12 15CrMo (WC6) TIG-R30 R307 13 SA335P11、SA182F11、 SA335P12 TIG-R30 R307 14 15CrMo+12Cr1MoVG TIG-R30 R307 15 20+12Cr1MoVG TIG-J50 J507 16 20+SA335P22 TIG-J50 J507 17 20+15CrMoG TIG-J50 J507 18 SA335P22+15CrMo TIG-R30 R307 19 SA335P22+12Cr1MoV TIG-R31 R317 20 12Cr1MoV+1Cr18Ni9Ti H1Cr24Ni13、 H0Cr25Ni13 A302、A307 A335P11+1Cr18Ni9Ti H1Cr24Ni13、 H0Cr25Ni13 A302、A307 #20+1Cr18Ni9Ti H1Cr24Ni13、 H0Cr25Ni13 A302、A307 21 12Cr1MoV+12Cr1MoV TIG-R31 R317

常用焊接方法办法

常用焊接方法手册 一、什么是钎焊?钎焊是如何分类的?钎焊的接头形式有何特点? 钎焊是利用熔点比母材低的金属作为钎料,加热后,钎料熔化,焊件不熔化,利用液态钎料润湿母材,填充接头间隙并与母材相互扩散,将焊件牢固的连接在一起。 依照钎料熔点的不同,将钎焊分为软钎焊和硬钎焊。 (1)软钎焊:软钎焊的钎料熔点低于450°C,接头强度较低(小于70 MPa)。 (2)硬钎焊:硬钎焊的钎料熔点高于450°C,接头强度较高(大于200 MPa)。 钎焊接头的承载能力与接头连接面大小有关。因此,钎焊一般采纳搭接接头和套件镶接,以弥补钎焊强度的不足。 二、电弧焊的分类有哪些,有什么优点?

利用电弧作为热源的熔焊方法,称为电弧焊。可分为手工电弧焊、埋弧自动焊和气体爱护焊等三种。手工自动焊的最大优点是设备简单,应用灵活、方便,适用面广,可焊接各种焊接位置和直缝、环缝及各种曲线焊缝。尤其适用于操作不变的场合和短小焊缝的焊接;埋弧自动焊具有生产率高、焊缝质量好、劳动条件好等特点;气体爱护焊具有爱护效果好、电弧稳定、热量集中等特点。 三、焊条电弧焊时,低碳钢焊接接头的组成、各区域金属的组织与性能有何特点? (1)焊接接头由焊缝金属和热阻碍区组成。 1)焊缝金属:焊接加热时,焊缝处的温度在液相线以上,母材与填充金属形成共同熔池,冷凝后成为铸态组织。在冷却过程中,液态金属自熔合区向焊缝的中心方向结晶,形成柱状晶组织。由于焊条芯及药皮在焊接过程中具有合金化作用,焊缝金属的化学成分往往优于母材,只要焊条和焊接工艺参数选择合理,焊缝金属的强度一般不低于母材强度。 2)热阻碍区:在焊接过程中,焊缝两侧金属因焊接热作用而产生组织和性能变化的区域。

各种焊接方法的代号(实操分享)

代号焊接方法 1 电弧焊 11 无气体保护电弧焊 111 手弧焊 112 重力焊 113 光焊丝电弧焊 114 药芯焊丝电弧焊 115 涂层焊丝电弧焊 116 熔化极电弧点焊 118 躺焊 12 埋弧焊 121 丝极埋弧焊 122 带极埋弧焊 13 熔化极气体保护电弧焊 131 MIG焊:熔化极惰性气体保护焊(含熔化极Ar弧焊) 135 MAG焊:熔化极非惰性气体保护焊(含CO 保护焊) 2 136 非惰性气体保护药芯焊丝电弧焊 137 非惰性气体保护熔化极电弧点焊 14 非熔化极气体保护电弧焊 141 TIG焊:钨极惰性气体保护焊(含钨极Ar弧焊) 142 TIG点焊 149 原子氢焊 15 等离子弧焊 151 大电流等离子弧焊 152 微束等离子弧焊 153 等离子弧粉末堆焊(喷焊) 154 等离子弧填丝堆焊(冷、热丝) 155 等离子弧MIG焊 156 等离子弧点焊 18 其它电弧焊方法 181 碳弧焊 185 旋弧焊 2 电阻焊 21 点焊 22 缝焊 221 搭接缝焊 223 加带缝焊 23 凸焊 24 闪光焊

25 电阻对焊 29 其它电阻焊方法 291 高频电阻焊 3 气焊 31 氧-燃气焊 311 氧-乙炔焊 312 氧-丙烷焊 313 氢-氧焊 32 空气-燃气焊 321 空气-乙炔焊 322 空气-丙烷焊 33 氧-乙炔喷焊(堆焊) 4 压焊 41 超声波焊 42 摩擦焊 43 锻焊 44 高机械能焊 441 爆炸焊 45 扩散焊 47 气压焊 48 冷压焊 7 其它焊接方法 71 铝热焊 72 电渣焊 73 气电立焊 74 感应焊 75 光束焊 751 激光焊 752 弧光光束焊 753 红外线焊 76 电子束焊 77 储能焊 78 螺柱焊 781 螺柱电弧焊 782 螺柱电阻焊 9 硬钎焊、软钎焊、钎接焊91 硬钎焊 911 红外线硬钎焊 912 火焰硬钎焊

常用焊接方法代号【太全了】

常用焊接方法代号 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 焊接符号包含许多信息,而且相当复杂,实际生产中大多数的焊接设计人员只是使用了其中 很少一部分,这其中最重要之一是焊接方法代号,包括英文代号和数字代号. 焊接方法数字代号英文代号电弧焊 1 AW 焊条电弧焊(手弧焊)111 SMAW 药芯焊丝电弧焊114 FCAW 融化极电弧电焊116 埋弧焊12 SAW 丝极埋弧焊121 SAW 带极埋弧焊122 S-SAW 熔化极惰性气体保护焊131 MIG 熔化极非惰性气体保护焊135 MAG

非熔化极气体保护电弧焊14 钨极惰性气体保护焊141 TIG 等离子弧焊15 PAW 微束等离子弧焊152 M- PAW 等离子填丝堆焊154 电阻焊 2 RW 电阻点焊21 RSW 缝焊22 RSEW 搭接缝焊221 凸焊23 PW 闪光对焊24 FW 电阻对焊25 UW 其他电阻焊方法29 高频电阻焊291 RW-HF

气焊 3 OFW 氧—乙炔焊311 OAW 压焊 4 PW 超声波焊41 USW 摩擦焊42 FRW 扩散焊45 DFW 冷压焊48 CW 其他焊接方法7 电渣焊72 ESW 电子束焊76 EBW 硬钎焊、软钎焊9 B,S 硬钎焊91 B 火焰硬钎焊912 BT 炉中硬钎焊913 FB

盐浴硬钎焊915 感应硬钎焊916 IB 超声波硬钎焊917 USB 电阻硬钎焊918 RB 真空硬钎焊924 VB 软钎焊94 S 火焰软钎焊942 TS 炉中软钎焊943 FS 浸沾软钎焊944 DS 感应软钎焊946 IS 烙铁软钎焊952 INS 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理! 更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

焊接的正确方法和步骤

焊接的正确方法和步骤 Revised as of 23 November 2020

(1)焊前处理步骤 焊接前,应对元器件引脚或电路板的焊接部位进行处理,一般有“刮”、“镀”、“测”三个步骤: “刮”:就是在焊接前做好焊接部位的清洁工作。一般采用的工具是小刀和细砂纸,对集成电路的引脚、印制电路板进行清理,去除其上的污垢,清理完后一般还需要往待拆元器件上涂上助焊剂。 “镀”:就是在刮净的元器件部位上镀锡。具体做法是蘸松香酒精溶液涂在刮净的元器件焊接部位上,再将带锡的热烙铁头压在其上,并转动元器件,使其均匀地镀上一层很薄的锡层。 “测”:就是利用万用表检测所有镀锡的元器件是否质量可靠,若有质量不可靠或已损坏的元器件,应用同规格元器件替换。 (2)焊接步骤 做好焊前处理之后,就可进行正式焊接。 不同的焊接对象,其需要的电烙铁工作温度也不相同。判断烙铁头的温度时,可将电烙铁碰触松香,若有“吱吱”的声音,说明温度合适;若没有声音,仅能使松香勉强熔化,则说明温度太低;若烙铁头一碰上松香就大量冒烟,则说明温度太高。 一般来讲,焊接的步骤主要有三步: (1)烙铁头上先熔化少量的焊锡和松香,将烙铁头和焊锡丝同时对准焊点。 (2)在烙铁头上的助焊剂尚未挥发完时,将烙铁头和焊锡丝同时接触焊点,开始熔化焊锡。 (3)当焊锡浸润整个焊点后,同时移开烙铁头和焊锡丝。 焊接过程一般以2~3s为宜。焊接集成电路时,要严格控制焊料和助焊剂的用量。为了避免因电烙铁绝缘不良或内部发热器对外壳感应电压而损坏集成电路,实际应用中常采用拔下电烙铁的电源插头趁热焊接的方法。 电烙铁虚焊及其防治方法 焊接时,应保证每个焊点焊接牢固、接触良好,锡点应光亮、圆滑无毛刺,锡量适中。锡和被焊物熔合牢固,不应有虚焊。所谓虚焊,是指焊点处只有少量锡焊住,造成接触不良,时通时断。为避免虚焊,应注意以下几点: (1)保证金属表面清洁

各种焊接方法简析讲义

第一章焊接概述 焊接是一种不可拆卸的连接方法,是金属热加工方法之一。焊接与铸造、锻压、热处理、金属切削等加工方法一样,是机器制造、石油化工、矿山、冶金、航空、航天、造船、电子、核能等工业部门中的一种基本生产手段。没有现代焊接技术的发展,就没有现代的工业和科学技术的发展。 第一节焊接的种类 焊接:是指通过适当的物理化学过程(加热或加压),使两个工件产生原子(或分子)之间结合力而连成一体的加工方法。 一、焊接方法的分类 一焊条电弧焊(ARC) 一熔化极一一埋弧焊 一CO2电弧焊(MAG) 氩气电弧焊(MIG) 一电弧焊一 一钨极氩弧焊(TIG) 一非熔化极一一原子氢焊 一等离子弧焊 一熔化焊接一螺柱焊 一氧氢 一气焊一一氧乙炔 一空气乙炔 一铝热焊 一电渣焊 基本焊接方法一一电子束焊 一激光焊 一电阻点、缝焊 一电阻对焊 一冷压焊 一压力焊接一一超声波焊 一爆炸焊 一锻焊 一扩散焊 一磨擦焊 一火焰钎焊 一感应钎焊 一钎焊一一炉钎焊 一盐浴钎焊 一电子束钎焊

二、焊接方法的特点 1、焊接过程的本质 就是采用加热、加压或两者并用的办法,使两个分离表面的金属原子之间接达到晶格距离并形成结合力。按照焊接过程中金属所处的状态不同,可以把焊接方法分为熔焊、压焊和钎焊三类。 2、熔焊: 是在焊接过程中,将焊接接头加热至熔化状态,不加压完成焊接的方法。 3、压焊: 是在焊接过程中,对焊件施加压力(加热或不加热,)以完成焊接的方法。 4、钎焊: 是采用比母材熔点低的金属材料,将焊件和钎料加热至高于钎料熔点,低于母材熔点 的温度,利用液态钎润湿母材,填充接头间隙并母材互相扩散实现联接焊件的方法。 二、电弧焊 1、什么是电弧: 电在空气中流动引发气体放电产生的一种发光放热现象。 2、什么是电弧焊: 是指用电弧供给加热能量,使工件熔合在一起,达到原子间接合的焊接方法。电弧焊是焊接方法中应用最为广泛的一种。据一些工业发达国家的统计,电弧焊在焊接生产总量中所占比例一般都在60%以上。根据其工艺特点不同,电弧焊可分为焊条电弧焊、埋弧焊、气体保护电弧焊和等离子弧焊等多种。 四、四种常用的弧焊方式 1、手弧焊: 使用焊钳夹住焊条进行焊接的方法; 2、氩弧焊: 用工业钨或活性钨作不熔化电级,惰性气体氩气作保护气的焊接方法。简称 TIG。 3、二氧化碳气体保护焊: 用金属焊丝作为熔化电极,惰性气体(CO2)作保护的弧焊接方法。简称 MIG。 4、埋弧焊: 在颗粒助焊剂层下,利用焊丝与母材间电弧的热量,进行焊接的焊接方法。

常用焊接规范

常规平焊的焊接方法 平焊 平焊时,由于焊缝处在水平位置,熔滴主要靠自重自然过渡,所以操作比较容易,允许用较大直径的焊条和较大的电流,故生产率高。如果参数选择及操作不当,容易在根部形成未焊透或焊瘤。运条及焊条角度不正确时,熔渣和铁水易出现混在一起分不清的现象,或熔渣超前形成夹渣。 平焊又分为平对接焊和平角接焊。 1.平对接焊 (1)不开坡口的平对接焊 当焊件厚度小于6mm时,一般采用不开坡口对接。 焊接正面焊缝时,宜用直径为3~4mm的焊条,采用短弧焊接,并应使熔深达到板厚的2/3,焊缝宽度为5~8mm,余高应小于1.5mm,如图2-1所示。 对不重要的焊件,在焊接反面的封底焊缝前,可不必铲除焊根,但应将正面 焊缝下面的熔渣彻底清除干净,然后用3mm焊条进行焊接,电流可以稍大些。 焊接时所用的运条方法均为直线形,焊条角度如图2-2所示。 在焊接正面焊缝时,运条速度应慢些,以获得较大的熔深和宽度;焊反面封 底焊缝时,则运条速度要稍快些,以获得较小的焊缝宽度。

图2-2平面对接焊的焊条角度 运条时,若发现熔渣和铁水混合不清,即可把电弧稍微拉长一些,同时将焊条向 前倾斜,并往熔池后面推送熔渣,随着这个动作,熔渣就被推送到熔池后面去了, 如图2-3所示。 图2-3 推送熔渣的方法 3 2 1 4 图2-4 对接多层焊 (2)开坡口的平对接焊 当焊件厚度等于或大于6mm时,因为电弧的热量很难使焊缝的根部焊透,所以应开坡口。开坡口对接接头的焊接,可采用多层焊法(图2-4)或多层多道焊法(图2-5)。

123456789101112 图2-5 对接多层多道焊 多层焊时,对 第一层的打底焊道应选用直径较小的焊条,运条方法应以间隙大小而定,当间隙小时可用直线形,间隙较大时则采用直线往返形,以免烧穿。当间隙很大而无法一次焊成时,就采用三点焊法(图2-6)。先将坡口两侧各焊上一道焊缝(图2-6中1、2),使间隙变小,然后再进行图2-6中缝3的敷焊,从而形成由焊缝1、2、3共同组成的一个整体焊缝。但是,在一般情况下,不应采用三点焊法。 3 12 图2-6 三点焊法的施焊次序 在焊第二层时,先将第一层熔渣清除干净,随后用直径较大的焊条和较大的焊接电流进行焊接。用直线形、幅度较小的月牙形或锯齿形运条法,并应采用短弧焊接。以后各层焊接,均可采用月牙形或锯齿形运条法,不过其摆动幅度应随焊接层数的增加而逐渐加宽。焊条摆动时,必须在坡口两边稍作停留,否则容易产生边缘熔合不良及夹渣等缺陷。 为了保证质量和防止变形,应使层与层之间的焊接方向相反,焊缝接头也应相互错开。 多层多道焊的焊接方法与多层焊相似,所不同的是因为一道焊缝不能达到所要求的宽度,而必须由数条窄焊道并列组成,以达到较大的焊缝宽度(图2-5)。焊接时采用直线形运条法。

常见的焊接方法

常见焊接方法 埋弧焊--是以连续送时的焊丝作为电极和填充金属。 优点: 1)熔敷速度高,生产效率高;2)焊接质量好,容易实现机械化、自动化;3)无辐射和噪音,是一种安全、绿色的焊接方法。 缺点: 1)受焊接位置限制,常用于平焊和平角焊位置的焊接,不适合焊小、薄件;2)不便观察,需要焊缝自动跟踪装置,对装配精度要求高;3)设备一次性投资大。 应用: 埋弧焊已广泛用于碳钢、低合金结构钢和不锈钢的焊接。由于熔渣可降低接头冷却速度,故某些高强度结构钢、高碳钢等也可采用埋弧焊焊接。 钨极气体保护电弧焊(TIG)--是一种不熔化极气体保护电弧焊,是利用钨极和工件之间的电弧使金属熔化而形成焊缝的。

优点: a、惰性气体不与金属发生任何化学反应,也不溶于金属,为获得高质量的焊缝提供了良好条件。 b、焊接工艺性能好,明弧,能观察电弧及熔池,即使在小的电流下电弧仍然燃烧稳定,焊接过程无飞溅,焊缝成型美观。 c、容易调节和控制焊接热输入,适合于薄板或对热敏感材料的焊接。 d、电弧具有阴极清理作用。 e、适用于全位置焊,是实现单面焊双面成型的理想方法。 缺点: a、熔深较浅,焊接速度较慢,焊接生产率较低。 b、钨极载流能力有限,过大的电流会使焊接接头的力学性能降低,特别是塑性和冲击韧度降低。 c、对工件的表面要求较高。 d、焊接时气体的保护效果受周围气流的影响较大,需采取防护措施。 f、生产成本较高。 应用: 这种方法几乎可以用于所有金属的连接,尤其适用于焊接铝、镁这些能形成难熔氧化物的金属以及象钛和锆这些活泼金属。这种焊接方法的焊缝质量高,但与其它电弧焊相比,其焊接速度较慢。 等离子弧焊--是一种不熔化极电弧焊。

电阻焊常用方法

电阻焊常用方法:点焊、缝焊、凸焊、对焊 一、点焊 点焊是将焊件装配成搭接接头,并压紧在两柱状电极之间,利用电阻热熔化母材金属,形成焊点的电阻焊方法。点焊主要用于薄板焊接。 点焊的工艺过程: 1、预压,保证工件接触良好。 2、通电,使焊接处形成熔核及塑性环。 3、断电锻压,使熔核在压力继续作用下冷却结晶,形成组织致密、无缩孔、裂纹的焊点。 二、缝焊 缝焊的过程与点焊相似,只是以旋转的圆盘状滚轮电极代替柱状电极,将焊件装配成搭接或对接接头,并置于两滚轮电极之间,滚轮加压焊件并转动,连续或断续送电,形成一条连续焊缝的电阻焊方法。

缝焊主要用于焊接焊缝较为规则、要求密封的结构,板厚一般在3mm以下。 三、对焊 对焊是使焊件沿整个接触面焊合的电阻焊方法。 四、凸焊 凸焊是点焊的一种变型形式;在一个工件上有预制的凸点,凸焊时,一次可在接头处形成一个或多个熔核。 1、电阻对焊 电阻对焊是将焊件装配成对接接头,使其端面紧密接触,利用电阻热加热至塑性状态,然后断电并迅速施加顶锻力完成焊接的方法, 电阻对焊主要用于截面简单、直径或边长小于20mm和强度要求不太高的焊件。

2、闪光对焊 闪光对焊是将焊件装配成对接接头,接通电源,使其端面逐渐移近达到局部接触,利用电阻热加热这些接触点,在大电流作用下,产生闪光,使端面金属熔化,直至端部在一定深度范围内达到预定温度时,断电并迅速施加顶锻力完成焊接的方法。 闪光焊的接头质量比电阻焊好,焊缝力学性能与母材相当,而且焊前不需要清理接头的预焊表面。闪光对焊常用于重要焊件的焊接。可焊同种金属,也可焊异种金属;可焊0.01mm 的金属丝,也可焊20000mm的金属棒和型材。 电阻焊接的品质是由以下4个要素决定的: 1.电流, 2.通电时间, 3.加压力, 4.电阻顶端直径

焊接工艺介绍

焊接工艺介绍 一、概述 二、CO2气体保护焊 三、点焊 四、电极

一、概述 1、焊接工艺的基本概念 焊接工艺是根据产品的生产性质、图样和技术要求,结合现有条件,运用现代焊接技术知识和先进生产经验,确定出的产品加工方法和程序,是焊接过程中的一整套技术规定。包括焊前准备、焊接材料、焊接设备、焊接方法、焊接顺序、焊接操作的最佳选择以及焊后处理等。制订焊接工艺是焊接生产的关键环节,其合理与否直接影响产品制造质量、劳动生产率和制造成本,而且是管理生产、设计焊接工装和焊接车间的主要依据。 焊接结构生产的一船工艺过程如图所示。焊接是整个过程中的核心丁序,焊前准备和焊后处理的各个工序都是围绕着获得符合焊接质量要求的产品而做的工作。质量检验贯穿于整个生产过程,以控制和保证焊接生产的质量。每个工序的具体内容,由产品的结构特点、复杂程度、技术要求和生产量的大小等因素决定。 2 焊接工艺的发展概况 焊接方法是焊接工艺的核心内容,其发展过程代表了焊接工艺的进展情况。焊接方法的发明年代及发明国家见表2.1.1。按照焊接过程的特点,焊接分为熔焊、压焊和钎焊三大类,每一类根据工艺特点又分为若干不同方法,见图2.1.2。 目前许多新的焊接工艺正逐步用于焊接生产,极大地提高了焊接生产率和焊接质量。在重型机械、冶金矿山机械、工程机械、电站锅炉压力容器、石油化工、机车车辆、汽车等行业中普遍采用了数控切割技术、

埋弧自动焊、电渣焊、CO2气体保护焊、TIG焊、MIG焊、电阻焊和钎焊等焊接方法并具有成套的焊接工艺装备。尤其是汽车生产线中采用了co 2气体保护焊、TIG焊、MIG焊等焊接机器人、电阻焊机器人和自动生产线,大大提高了焊接质量和生产效率,焊接机械化、自动化水平己达到总焊接工作量的35%一45%。与工业发达国家相比,我国的焊接机械化和自动化水平还较低,按熔化焊来计算,目前日本为67%,德国为80%.美国为56%,原苏联为40%,而我国还不到20%,其主要原因是我国焊接生产主要还靠手工电弧焊,自动化水平高的气体保护焊和埋弧自动焊应用少。从焊接生产工艺装备水平来看,我国近年来,生产了成套的焊接工艺装备和焊接生产线,也有的厂家从国外引进了自动化水平较高的焊接辅助装置、焊接质量和生产效率有了很大提高。 计算机控制系统在焊接生产工艺中的应用、在国外已经比较普遍,除用于焊接工艺参数的控制之外,还可用于整条生产线、焊机的群控。它还可以根据材料厚度自动选择并预置焊接工艺参数.对焊接过程实现自适应控制、最佳控制以及智能控制等。 研究开发具有智能的焊接机器人,特别是具有自动路径规划,自动校正轨迹,自动控制熔深的机器人将是近期和21世纪的重点方向。 电子束、激光、等离子等高能束流用于焊接,可以完成难熔合金和难焊材料的焊接,焊接熔深大、热影响区小、焊缝性能好、焊接变形小、精度高,并具有较高的生产率。必将在核、航空、航天、汽车等工业中得到广泛的应用,推进焊接工艺的进步。 采用复合热源焊接是焊接工艺的又一发展动向。利用复合热源焊接

常见焊接缺陷及处理方法

二氧化碳气保焊常用焊接参考参数以及相应的影响 ?电流及焊丝直径,在输出功率相同时,电流相对增加焊丝融化速度。 ?材料厚度〈5mm时,焊接电流小于200A,焊丝Φ1.0, ?5mm〈材料厚度〈10mm时,焊接电流小于250A,焊丝Φ1.0、Φ1.2 ?10mm〈材料厚度〈16mm时,焊接电流小于300A,焊丝Φ1.0、Φ1.2 ?16mm〈材料厚度〈30mm时,焊接电流小于360A,焊丝Φ1.2 ?电压:在输出功率相同时,电压相对增加焊缝熔深,并使得焊缝趋向不稳定。 ?〈300A时,焊接电压=(0.05X焊接电流+14±2)伏, ?〉300A时,焊接电压=(0.05X焊接电流+14±2)伏, ?保护气体的影响: ?CO2影响焊接时焊丝的融化速度和冷却速度,相对提高焊接效率,焊接薄板时增加含量会引起焊接不稳定。?Ar降低焊接时焊缝的冷却速度,增强焊接的稳定性。 ?气压和流速过低或者过高容易引起焊接的气孔等缺陷。

焊缝冷叠加 外观剖切面冷叠加 缺陷判断:观察焊道之间以及焊缝和基材之间是否存在尖锐的缝隙,一般发生在多道焊的角焊缝上。 缺陷成因:焊缝一层层冷堆在一起,焊缝之间未融合,主要原因为电压偏低、焊速过慢以及摆幅过大。

处理办法:打磨或者其他方式去除不良的焊缝段,重新焊接。 焊缝单侧焊透 外观剖切面单侧焊透

缺陷判断:从外观上不能做出有效判断,在观察剖切面时发现零件一侧有融透一侧未融合(即保持焊前零件外形)。缺陷成因:焊接的二侧基材不相同时焊枪的指向不合理以及焊接电压选择不合理。 处理办法:打磨或者其他方式去除不良的焊缝段,重新调整焊枪的指向、增加焊接电流电压焊接。

相关文档
最新文档