数码相机技术光电转化部分的原理

数码相机技术光电转化部分的原理
数码相机技术光电转化部分的原理

数码相机技术光电转化部分的原理

1)CCD 影像传感技术

CCD 器件通过光电效应收集电荷,每行像素的电荷随时钟信号被送到模拟移位寄存器上,然后串行转换为电压。大多数硅片面积用于光子收集。高的填充系数给了良好的光电效率。在设计中,CCD器件有极高的信噪比和高电荷转换效率。要实现这一目标,需要专门处理器、高电压、多重电源和偏置。CCD 器件高的光电效果可使阵列紧密排列,并在适当大额面积上,构成高分辨率的阵列。当代CCD 的典型技术水平是,在160 mm2上使用4~5 μm技术。但是CCD 最小面积由收集光的要求和光学系统决定,而不是由电路特性决定。CCD 结构同当代技术CMOS 不兼容。CCD 生产过程复杂、产量低,导致了高成本。它不像CMOS 具有大规模生产的长处,所以CCD 器件的价格仍很昂贵。

1 )CCD 的物理基础——MIS 结构

CCD(Charge Coupled De vice)是按照一定规律紧密排列起来的金属—绝缘体—半导体(MIS)电容阵列组成的。MIS电容结构是CCD的基本组成部分,CCD的工作原理是建立在MIS电容理论知识上,依靠在MIS电容器上贮存荷电载流子和转运荷电载流子。因此,MIS电容结构,它十分类似于金属—绝缘体—金属(MIM)平行板电容器,但有许多不同之处。例如,在MIM电容器的两个金属极板上施加电压时,充电电荷分布在紧靠绝缘体的金属极板的原子层厚度内,其电压全部降落在绝缘体内。而对MIS电容器施加电压时,因半导体中的电荷密度远小于金属的电荷密度,所以在半导体一侧,其电荷分布在半导体表面一定厚度的层内,所加的电压一部分降落在绝缘层内,另一部分则降落在半导体表面的空间电荷层中。同时在半导体中有两种极性不同的载流子——电子和空穴,而且其浓度相差很大(如在硅中,多子和少子浓度往往相差1010倍),因此,在MIS电容器上施加极性相反的电压时,半导体表面电荷层各处的电荷极性、分布和厚度大不相同。通常可见光的CCD是以硅为基体材料的,绝缘体就是硅的氧化物,所以常为MOS 电容结构。

2 )CCD 的组成及其工作原理

CCD 主要由3 个部分组成,即信号输入部分、信号电荷转移部分和信号输出部分。

a、输入部分

输入部分的作用是将信号电荷引入CCD 的第一个转移栅下的势阱中。引入的方式取决于应用。在滤波、延迟线和存储器应用情况下是用电注入的方法将电荷提供给CCD,在数码摄像应用中是依靠光注入的方式引入。电注入电路是CCD 器件不可缺少的电路。即使是CCD 摄像器件,信号电荷来自光注入,也需要电注入电路来实现“回零”运行或检测。所以,所有CCD 器件中都带有输入电路。光注入,这是摄像器件所必须采取的唯一的注入方法。这时输入二极管由光敏元件代替。固体图像器件的光敏元件主要有:光电导体、MOS 电容器(MOS 二

极管)、pn 结光电二极管和肖特基势垒光电二极管。摄像时光照射到光敏面上,光子被光敏元件吸收,产生电子—空穴对,多数载流子进入耗尽区以外的衬底,然后通过接地消失,少数载流子便被收集到势阱中成为信号电荷。当输入栅开启后,第一个转移栅上加以时钟电压时,这些代表光信号的少数载流子就会进入到转移栅下的势阱中,完成光注入的过程。

b、信号转移部分

信号转移部分的作用是存储和转移信号电荷。转移部分是由一串紧密排列的MOS 电容器构成,根据电荷总是要向最小位能方向移动的原理工作的。转移时,只要转移前方电极上的电压高,电极下的势阱深,电荷就会不断的向前运动。通常是将重复频率相同、波形相同并且彼此之间有固定相位关系和多相时钟脉冲(数字脉冲)分组依次加在CCD 转移部分的电极上,使电极上的电压按一定规律变化,进而在半导体表面形成一系列分布不对称的势阱。信号电荷包运动的前方总是有一个较深的势阱处于等待状态,于是电荷包便可沿着势阱中存储的时间,受限于势阱的热弛豫时间,它必须小于热弛豫时间,所以CCD 是在非平衡状态下工作的一种功能器件。

c、输出部分

输出部分由一个输出二极管、输出栅和一个输出耦合电路组成,其作用是将CCD 最后一个转移栅下势阱的信号电荷引出,并检测出电荷包所输出的图像信息。最简单的输出电路是通过二极管检出,输出栅采用直流偏置;输出二极管处于反相偏置状态,到达最后一个转移栅下的电荷包,通过输出栅下“通道”,到达反向偏置的二极管并检出,从而产生一个尖峰波,此波形受偏置电阻(R)、寄生电容(C)以及电荷耦合器件工作频率的影响。这种电路简单,但噪声较大,很少采用。现在多采用浮置栅输出技术,它包括两个MOSFET,并兼有输出检测和前置放大的作用。

3)CCD 阵列性能参数

对于一个成像器件,其性能参数主要包括灵敏度、分辨率、动态范围、光谱响应、暗电流等,CCD 阵列虽然在器件结构和工作方式都有所不同,但上述参数仍是CCD 阵列的主要性能参数。

( 1 )响应度或灵敏度

响应度定义为每单位光强或单位曝光量所得到的有效信号电压.灵敏度则表示在一定的曝光量下,像元势阱中所采集的光生电荷与入射到像元表面上的光子数之比. 响应度由灵敏度和输出极的电荷( 电压) 转移能力决定。

( 2 )光谱响应

光谱响应表示CCD 对于各种单色光的相对响应能力,响应度最大的波长称为峰值响应波长,而把响应度等于峰值响应的50%所对应的波长范围称为光谱响应范围。( 3 )光响应非均匀性(PRNU)

光响应非均匀性表示CCD 阵列的各个像元在均匀光源照射下, 有可能输出不相

等的信号电压.

( 4 )分辨率、动态范围、暗电流、瑕点数(blemish)

分辨率:它反映了CCD 阵列对物像明暗细节的分辨能力,是CCD阵列作为图像传感元件的重要参数.

动态范围:光动态范围的定义为使CCD 达到饱和输出的最大光强与使CCD 达到噪声输出的光强之比.

暗电流:暗电流是指没有光照射时,CCD 阵列输出信号,这种信号电流的大小由CCD内部多种噪声决定.

瑕点数(blemish) :瑕点数是指CCD 阵列的各个像元在均匀光源的照射下,个别像元的输出比光响应非均匀性引起的输出降低情况还要严重,甚至根本无反应,这种像元就被看成瑕点. 通常CCD 器件的质量是按照阵列内可能存在的瑕点数来划分等级

光电成像原理及技术课后题答案

光电成像原理及技术课后题 答案 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

第一章 5.光学成像系统与光电成像系统的成像过程各有什么特点在光电成像系统性能评价方面通常从哪几方面考虑 答:a、两者都有光学元件并且其目的都是成像。而区别是光电成像系统中多了光电装换器。 b、灵敏度的限制,夜间无照明时人的视觉能力很差; 分辨力的限制,没有足够的视角和对比度就难以辨认; 时间上的限制,变化过去的影像无法存留在视觉上; 空间上的限制,隔开的空间人眼将无法观察; 光谱上的限制,人眼只对电磁波谱中很窄的可见光区感兴趣。 6.反映光电成像系统光电转换能力的参数有哪些?表达形式有哪些答:转换系数:输入物理量与输出物理量之间的依从关系。 在直视型光电成像器件用于增强可见光图像时,被定义为电镀增益G 光电灵敏度: 或者: 8.怎样评价光电成像系统的光学性能有哪些方法和描述方式 答,利用分辨力和光学传递函数来描述。 分辨力是以人眼作为接收器所判定的极限分辨力。通常用光电成像系统在一定距离内能够分辨的等宽黑白条纹来表示。 光学传递函数:输出图像频谱与输入图像频谱之比的函数。对于具有线性及时间、空间不变性成像条件的光电成像过程,完全可以用光学传递函数来 定量描述其成像特性。

第二章 6.影响光电成像系统分辨景物细节的主要因素有哪些? 答:景物细节的辐射亮度(或单位面积的辐射强度); 景物细节对光电成像系统接受孔径的张角; 景物细节与背景之间的辐射对比度。 第三章 13.根据物体的辐射发射率可见物体分为哪几种类型? 答:根据辐射发射率的不同一般将辐射体分为三类: 黑体,=1; 灰体,<1,与波长无关; 选择体,<1且随波长和温度而变化。 14.试简述黑体辐射的几个定律,并讨论其物理意义。 答:普朗克公式: 普朗克公式描述了黑体辐射的光谱分布规律,是黑体理论的基础。 斯蒂芬-波尔滋蔓公式: 表明黑体在单位面积上单位时间内辐射的总能量与黑体温度T的四次方成正比。 维恩位移定律: 他表示当黑体的温度升高时,其光谱辐射的峰值波长向短波方向移动。 最大辐射定律: 一定温度下,黑体最大辐射出射度与温度的五次方成正比。 第五章

万能转换开关原理图

万能转换开关的工作原理及符号表示 教程来源:本站原创作者:未知点击:2301 更新时间:2009-3-4 16:14:36 万能转换开关是一种多档式、控制多回路的主令电器。万能转换开关主要用于各种控制线路的转换、电压表、电流表的换相测量控制、配电装置线路的转换和遥控等。万能转换开关还可以用于直接控制小容量电动机的起动、调速和换向。 如图1所示为万能转换开关单层的结构示意图。 常用产品有LW5和LW6系列。LW5系列可控制5.5kW及以下的小容量电动机;LW6系列只能控制2.2kW 及以下的小容量电动机。用于可逆运行控制时,只有在电动机停车后才允许反向起动。LW5系列万能转换开关按手柄的操作方式可分为自复式和自定位式两种。所谓自复式是指用手拨动手柄于某一档位时,手松开后,手柄自动返回原位;定位式则是指手柄被置于某档位时,不能自动返回原位而停在该档位。 万能转换开关的手柄操作位置是以角度表示的。不同型号的万能转换开关的手柄有不同万能转换开关的触点,电路图中的图形符号如图2所示。但由于其触点的分合状态与操作手柄的位置有关,所以,除在电路图中画出触点图形符号外,还应画出操作手柄与触点分合状态的关系。图中当万能转换开关打向左45°时,触点1-2、3-4、5-6闭合,触点7-8打开;打向0°时,只有触点5-6闭合,右45°时,触点7-8闭合,其余打开。

正泰万能转换开关接点图编码规则 技术交流2010-01-14 20:51:56 阅读1518 评论5 字号:大中小订阅 万能转换开关是一种手动操作的低压电器产品,它是基于通过凸轮控制各对触头从而实现对各个独立线路进行控制的目的,由于它的控制靠凸轮来实现,因此俗称凸轮开关。凸轮开关根据控制的对象和使用的场合不同,大体可以分为万能转换开 关和组合开关。 凸轮开关大体由操作机构、定位助力机构、接触系统三个部分组成。其中接触系统可以由独立接触单位进行线性叠加,每一个接触单元(一节)有两个独立的接触组(1-2、3-4)组成,那么根据排列组合,一个接触单元(一节)可以由4种情况(1-2通3-4断、1-2断3-4断、1-2通3-4通、1-2断3-4通)那么对于n节产品在某个档位的通断情况有4n情况,假如开关有m档,则这个开关理论上存在着m*4n种通断情况。正因为具有如此其他任何开关都不具备的优势,因此被称为万能转换开关。当然接点通断情况十分的复杂,导致顾客在进行产品选择的时候难以下手,即使技术人员也为难。我们正泰由于顾客特殊定做的产品接点图情况十分的普遍,常常由于我们技术人员没有比较可行的接点编码方法,致使产品无法具备具体的产品规格型号,一则导致最终客户无法接线使用,同时没有具体的规格型号,顾客在下次订货时需要重新提供接点情况,延长了产品交付时间,造成顾客退单甚至投诉。为了更好的管理转换开关同时为以后进行软件自动编码准备,这几天将开关做了整理,并查找一些资料,现将这几天对转换开关的编码规则作一个介绍,供大家参考改进。 接点图按产品结构从上至下排列:手柄代号、面板代号、定位特征代号、接触系统(各对触头编号)。这样的分布符合我们的装配习惯,装配时可以完全按照接点图至下而上(反之亦然)对各个部件进行一一对应安装),极大的提高了装配效率 同时便于装配检验。编码过程如下:

光电转换原理

光纤系统光接收部分光电转换原理 光接收机是光纤通信系统的重要组成部分,其作用是将来自光纤的光信号转换成电信号,恢复光载波所携带的原信号。图4.3.1-8给出了数字光接收机的组成框图。 1.光检测器 光电检测器是光接收机的第一个关键部件,其作用是将由光纤传送来的光信号转换成电信号。光电检测器主要有PIN光电二极管和雪崩光电二极管APD两种。PIN管使用简单,只需10~20V 的反向偏压,但PIN管没有增益。APD管具有10~200倍的增益,可以提高光接收机的灵敏度,但需要几十伏以上的偏压,增益特性受温度的影响较严重 2、前臵放大器 经光电检测器检测到的微弱的信号电流,流经负载电阻建立起信号电压后,由前臵放大器进行预放大。除光电检测器性能优劣影响光接收机的灵敏度之外,前臵放大器对光接收机的灵敏度有十分重要的影响。为此,前臵放大器必须是低噪声、宽频带的放大器。 3.主放大器 主放大器用来提供高的增益,将前臵放大器的输出信号放大到适合判决电路所需的电平。前臵放大器的输出信号电平一般为mV量级,而主放大器的输出信号电平一般为1~3V。 4、均衡器 光在光纤中传输时,由于将受到色散的影响,信号将发生畸变与展宽,使码元间相互影响,出现误码。均衡器的作用是对主放大器输出的失真的数字脉冲信号进行整形,使之成为最有利于判决、码间干扰最小的波形,通常为升余弦波 5、判决再生与定时提取 判决即是用一判决电平与均衡器输出信号进行比较,当在判决时刻输出的电压信号比判决电平高,则判断为“1”码,否则判断为“0”码。这样,可在判决再生电路的输出端得到一个和发送端发出的数字脉冲信号基本是一致由矩形脉冲组成的数字脉冲序列。为了精确地确定“判决时刻”,就需要从信号码流中提取准确的定时信息用来标定,以保证和发送端一致。这个工作由“定时提取”电路来完成。 6、峰值检波器与AGC放大器

光电显示技术期末复习资料

光电显示技术期末复习资料 第一章绪论 (2) 1、光电显示器件有哪些分类? (3) 2、表征显示器件的主要性能指标有哪些? (3) 3、简述色彩再现原理。 (3) 4、人眼的视觉特性 (3) 5、简述人眼的视觉原理。 (4) 第二章液晶显示技术(LCD) (4) 1、简述液晶的种类与特点。 (4) 2、简述热致液晶分类和特点。 (5) 3、试述液晶显示器的特点。 (5) 4、什么是液晶的电光效应? (5) 5、LCD显示产生交叉效应的原因是什么? 用什么方法克服交叉效应? (5) 6、液晶有哪些主要的物理特性? (5) 7、简述TFT-LCD的工作原理。 (6) 8、简述TN-LCD的基本结构及工作原理。 (6) 9、液晶显示器驱动方法有哪几种方式? (7) 10、液晶显示控制器有哪些特性? (7) 11、自然光和偏振光的区别是什么?简述偏振光的分类及线偏振光的特点。 (7) 12、LCD结构和显示原理。 (7) 第四章发光二极管LED和有机发光二极管OLED显示技术 (10) 1、简述有机发光二极管显示器发光过程。 (10) 2、以ITO阳极-空穴传输层-发光层-电子传输层-金属阴极结构OLED为 例说明每一功能层的作用,并简述其工作原理。 (10) 3、简述影响OLED发光效率的主要因素和提高发光效率的措施。 (11) 4、OLED如何实现彩色显示? (11) 5、简述LED工作原理。 (11) 6、简述LED驱动方式。 (12) 7、OLED的结构与工作原理。 (12) 8、OLED的特点有哪些? (12) 第六章激光显示技术(LDT) (12) 1、激光具有哪些特性? (13) 2、激光用于显示具有哪些优势? (13) 第七章新型光电显示技术 (13) 1、场致发射显示(FED)结构及工作原理 (13) 2、真空荧光显示器(VFD)结构及工作原理 (14) 第八章大屏幕显示技术 (14) 1、DLP特点及工作原理 (14) 2、LCOS特点及工作原理 (15)

光伏系统以及提高光伏系统光电转化效率的方法与相关技术

本技术公开了光伏系统以及提高光伏系统光电转化效率的方法。其中,光伏系统包括安装场地、光伏组件以及辐射制冷层,辐射制冷层至少部分地覆盖安装场地的表面,光伏组件设于安装场地内,辐射制冷层适于反射太阳光中的至少部分光线,并能够以红外辐射的方式将安装场地内的热量通过大气窗口向太空发射。本技术的辐射制冷层一方面反射太阳辐射以减少安装场地对热量的吸收,另一方面通过红外辐射的方式将安装场地的热量发射出,从而使安装场地形成相对于周围环境独立的“冷岛”,利用冷岛效应降低光伏组件周围环境的温度,使得设置在安装场地内的光伏组件可以在相对较低的环境温度下工作,有利于提高炎热天气下光伏组件的光电转化效率以及使用寿命。 权利要求书 1.一种光伏系统,其特征在于,包括安装场地、光伏组件以及辐射制冷层,所述辐射制冷层至少部分地覆盖所述安装场地的表面,使所述安装场地形成相对于周围环境独立的冷岛,所述光伏组件设于所述安装场地内,所述辐射制冷层适于反射太阳光中的至少部分光线,并能够以红外辐射的方式将所述安装场地内的热量通过大气窗口向太空发射,所述安装场地内所述光伏组件的安装面积不超过所述辐射制冷层表面积的75%。 2.根据权利要求1所述的光伏系统,其特征在于,所述安装场地内所述光伏组件的安装面积不超过所述辐射制冷层表面积的50%。 3.根据权利要求1所述的光伏系统,其特征在于,所述安装场地的表面包括混凝土地面、混凝土屋面、沥青地面、沥青屋面、混砖地面、混砖屋面、岩石地面、岩石屋面、琉璃瓦、彩钢瓦、粘土瓦中的一种或多种。 4.根据权利要求1所述的光伏系统,其特征在于,所述光伏系统还包括安装支架,所述安装

支架用于安装、支撑所述光伏组件,所述安装支架包括固定底座,所述辐射制冷层还覆盖所述固定底座;所述光伏系统还包括逆变器,所述辐射制冷层还覆盖所述逆变器。 5.根据权利要求1所述的光伏系统,其特征在于,所述光伏组件选自单面发电组件、双面发电组件中的一种或多种。 6.根据权利要求1-5任一所述的光伏系统,其特征在于,所述安装场地在所述辐射制冷 层的下方具有储冷空间,所述储冷空间为密闭腔体。 7.根据权利要求1-5任一所述的光伏系统,其特征在于,所述辐射制冷层为辐射制冷涂料形成的涂层,所述辐射制冷涂料包括颗粒填料以及辐射制冷功能树脂,所述颗粒填料分散于所述辐射制冷功能树脂中,所述辐射制冷层在7μm~14μm波段的红外发射率大于80%,所述辐射制冷层对太阳光的反射率大于80%。 8.一种提高光伏系统光电转化效率的方法,其特征在于,包括步骤:在用于安装光伏组 件的场地表面设置辐射制冷层,所述辐射制冷层适于反射太阳光中的至少部分光线,并能够以红外辐射的方式将所述安装场地内的热量通过大气窗口向太空发射。 9.根据权利要求8所述的提高光伏系统光电转化效率的方法,其特征在于,还包括步骤:在用于支撑所述光伏组件的安装支架表面和/或光伏系统的功能部件表面设置所述辐射制冷层,所述功能部件包括储能系统、控制系统、逆变器中的一种或多种。 10.根据权利要求8或9所述的提高光伏系统光电转化效率的方法,其特征在于,所述辐射制冷层由辐射制冷涂料干燥或固化形成。 技术说明书

光电显示技术实验讲义

实验一有机发光器件(OLED)参数测量 一、实验目的: 1.了解有机发光显示器件的工作原理及相关特性; 2.掌握OLED性能参数的测量方法; 二、实验原理简介: 1979年,柯达公司华裔科学家邓青云(Dr. C. W. Tang)博士发现黑暗中的有机蓄电池在发光,对有机发光器件的研究由此开始,邓博士被誉为OLED之父。 OLED (Organic Light Emitting Display,中文名有机发光显示器)是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。OLED用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。 图1:OLED结构示意图 与LCD相比,OLED具有主动发光,无视角问题,重量轻,厚度小,高亮度,高发光效率,发光材料丰富,易实现彩色显示,响应速度快,动态画面质量高,使用温度范围广,可实现柔软显示,工艺简单,成本低,抗震能力强等一系列的优点。 如果一个有机层用两个不同的有机层来代替,就可以取得更好的效果:当正极的边界层供应载流子时,负极一侧非常适合输送电子,载流子在两个有机层中间通过时,会受到阻隔,直至会出现反方向运动的载流子,这样,效率就明显提高了。很薄的边界层重新结合后,产生细小的亮点,就能发光。如果有三个有机层,分别用于输送电子、输送载流子和发光,效率就会更高。

为提高电子的注入效率,OLED阴极材料的功函数需尽可能的低,功函数越低,发光亮度越高,使用寿命越长。可以使用Ag 、Al 、Li 、Mg 、Ca 、In等单层金属阴极,也可以将性质活泼的低功函数金属和化学性能较稳定的高功函数金属一起蒸发形成合金阴极。如Mg: Ag(10: 1),Li:Al (0.6%Li),功函数分别为3.7eV和3.2eV,合金阴极可以提高器件的量子效率和稳定性,同时能在有机膜上形成稳定坚固的金属薄膜。此外还有层状阴极和掺杂复合型电极。层状阴极由一层极薄的绝缘材料如LiF, Li2O,MgO,Al2O3等和外面一层较厚的Al组成,其电子注入性能较纯Al电极高,可得到更高的发光效率和更好的I-V特性曲线。掺杂复合型电极将掺杂有低功函数金属的有机层夹在阴极和有机发光层之间,可大大改善器件性能,其典型器件是ITO/NPD/AlQ/AlQ(Li)/Al,最大亮度可达30000Cd/m2,如无掺Li层器件,亮度为3400Cd/m2。 为提高空穴的注入效率,要求阳极的功函数尽可能高。作为显示器件还要求阳极透明,一般采用的有Au、透明导电聚合物(如聚苯胺)和ITO导电玻璃,常用ITO玻璃。 载流子输送层主要是空穴输送材料(HTM)和电子输运材料(ETM)。空穴输送材料(HTM)需要有高的热稳定性,与阳极形成小的势垒,能真空蒸镀形成无针孔薄膜。最常用的HTM均为芳香多胺类化合物,主要是三芳胺衍生物。TPD:N,N′-双(3-甲基苯基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺NPD: N,N′-双(1-奈基)-N,N′-二苯基-1,1′-二苯基-4,4′-二胺。电子输运材料(ETM)要求有适当的电子输运能力,有好的成膜性和稳定性。ETM一般采用具有大的共扼平面的芳香族化合物如8-羟基喹啉铝(AlQ),1,2,4一三唑衍生物(1,2, 4-Triazoles,TAZ),PBD,Beq2,DPVBi等,它们同时又是好的发光材料。 OLED的发光材料应满足下列条件: 1)高量子效率的荧光特性,荧光光谱主要分布400-700nm可见光区域。 2)良好的半导体特性,即具有高的导电率,能传导电子或空穴或两者兼有。 3)好的成膜性,在几十纳米的薄层中不产生针孔。 4)良好的热稳定性。 按化合物的分子结构,有机发光材料一般分为两大类: 1) 高分子聚合物,分子量10000-100000,通常是导电共轭聚合物或半导体共轭聚合物,可用旋涂方法成膜,制作简单,成本低,但其纯度不易提高,在耐久性,亮度和颜色方面比小分子有机化合物差。 2) 小分子有机化合物,分子量为500-2000,能用真空蒸镀方法成膜,按分子结构又分为两类:有机小分子化合物和配合物。 有机小分子发光材料主要为有机染料,具有化学修饰性强,选择范围广,易于提纯,量子效率高,可产生红、绿、蓝、黄等各种颜色发射峰等优点,但大多数有机染料在固态时存在浓度淬灭等问题,导致发射峰变宽或红移,所以一般将它们以低浓度方式掺杂在具有某种载流子性质的主体中,主体材料通常与ETM和HTM层采用相同的材料。掺杂的有机染料,应满足以下条件: a. 具有高的荧光量子效率 b. 染料的吸收光谱与主体的发射光谱有好的重叠,即主体与染料能量适配,从主体到染料能有效地能量传递; c. 红绿兰色的发射峰尽可能窄,以获得好的色纯;

光电成像原理与技术考试要点.pdf

光电成像原理与技术考试要点 第一章: 1.试述光电成像技术对视见光谱域的延伸以及所受到的限制。 答:[1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间 的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。 对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的 图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。 目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X 射线(Roentgen 射线)与y 射线(Gamma 射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2. 光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制? 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以 捕捉人眼无法分辨的细节(4)可以将超快速现象存储下来 3. 光电成像器件可分为哪两大类?各有什么特点? 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 4. 什么是变像管?什么是像增强器?试比较二者的异同。 答:[1]变像管:接收非可见辐射图像,如红外变像管等,特点是入射图像和出射图像的光谱不同。[2]像增强器:接收微弱可见光辐射图像,如带有微通道板的像增强器等,特点是入射图像极其微弱,经过器件内部电子图像能量增强后通过荧光屏输出人眼能够正常观看的光学图像。[3]异同、相同点:二者均属于直视型光电成像器件。不同点:主要是二者工作波段不同,变像管主要完成图像的电磁波谱转换,像增强器主要完成图像的亮度增强。 5. 反映光电成像系统光电转换能力的参数有哪些? 答:[1]转换系数(增益)[2]光电灵敏度(响应度)-峰值波长,截止波长 6. 光电成像过程通常包括哪几种噪声? 答:主要包括:(1)散粒噪声(2)产生一复合噪声(3)温度噪声(4)热噪声(5)低频噪声(1/f 噪声)(6)介质损耗噪声(7)电荷藕合器件(CCD)的转移噪声 第二章: 1. 人眼的视觉分为哪三种响应?明、暗适应各指什么? 答:[1]三种响应:明视觉、暗视觉、中介视觉。人眼的明暗视觉适应分为明适应和暗适应[2]明适应:对视场亮度由暗突然到亮的适应,大约需要2~3 min[3]暗适应:对视场亮度由亮突然到暗的适应,暗适应通常需要45 min,充分暗适应则需要一个多小时。 2. 何为人眼的绝对视觉阈、阈值对比度和光谱灵敏度? 答:[1]人眼的绝对视觉阈:在充分暗适应的状态下,全黑视场中,人眼感觉到的最小光刺激值。[2]阈值对比度:时间不限,使用双眼探测一个亮度大于背景亮度的圆盘,察觉概率为50%时,不同背景亮度下的对比度。[3]光谱灵敏度(光谱光视效率):人眼对各种不同波长的辐射光有不同的灵敏度(响应)。 3. 试述人眼的分辨力的定义及其特点。 答:[1]定义:人眼能区分两发光点的最小角距离称为极限分辨角θ,其倒数为人眼分辨力。

光电转换原理及电光转换原理

二、光电转换原理及电光转换原理 1.光电转换原理 光电转换是靠摄像管来完成的,其结构如图1-4所示: 图1-4 光电导摄像管 ⑴组成 ①电子枪灯丝用来加热阴极 阴极发射电子 栅极控制电子流的大小 (第一阳极)加速极(A1),加有300V电压 (第二阳极)聚焦极(A2)加有0-300V 的电压 网电极与A2 连在一起,在靶前形成均匀减速电场, 从而使电子束在靶面能均匀垂直上靶。 ②光敏靶 光敏靶是由几层不同的半导体材料构成的,其厚度只有10-20μm。 朝向景物的一侧是信号板也叫信号电极,它是喷涂在玻璃上的一层透明 金属导电层,在信号板的另一侧,则蒸镀了一层具有内光电效应的光敏半 导体材料。该材料在光的照射下电导率增加(即电阻减少),被摄景物各部 分亮度不同,靶面上各部分的电导率相应变化,与较亮像素对应的靶单元 电阻较小,而且各靶单元相互绝缘。于是图像上的不同亮度就变成了靶面 上各单元的不同电导率(即电阻)。 ⑵工作过程 当摄像管加上正常的工作电压时,阴极便向外发射电子,并在加速极和 聚焦电场的作用下,形成很细的一束电子流射向靶面,如图1-5 所示。 当电子束射向靶面某点时,便把该点对应的等效电阻R接入信号检,并 与负载电阻RL、电源 E 构成一个回路。如下图,于是回路便有电流产生,即I=E/(RL +R1)) 当对应的像素发生变化时,R 便发生变化,于是I 也发生变化。I 流过 负载RL 时,在RL 两端形成变化的电压VRL,由于这个电压反应了对应像素亮度随时间的变化,因而便为图像信号。 当在偏转磁场的作用下,电子束按照从左到右,从上到下的规律扫描靶 面上各像素点时,便把按平面分布的各个像素的亮度依次转换成按时间顺 序传送的电信号,实现了图像的分解与光电转换。 图1-5 光电转换原理示意图 ⑶图像信号的极性 ①正极性。被摄景物上的像素越亮,对应的信号电平越高,称正极性。 ②负极性。被摄景物上的像素越亮,对应的信号电平越低,称负极性。2.电光转换原理 电光转换是靠显像管来完成的。其结构如下图1-6所示。 图1-6显像管结构示意图 ⑴结构 ①电子枪 灯丝阴极栅极加速极(第一阳极)二、四阳极(高 压阳极)聚焦极(第三阳极) ②玻璃外壳

光电转换器说明

光电转换器说明(光纤收发器) 1、光电转换器与光纤收发器是同一个概念。它分为①单纤收发器②双纤收发器。 单纤收发器只有一种型号就是单纤单模收发器; 双纤收发器又分为双纤单模收发器(两个光口不一样)和双纤多模收发器(两个光口一样)。 2、维修设备时首先判断电源未带负载和带负载时的电压是否为(5±0.25)V。若不是在这个范围时,则表明电源坏。所有光转的电源工作电压都是在这个范围内,否则光转都不能正常工作。 3、TX端表示发射端,RX端表示接收端。两光转设备的TX端只能与另一端设备的RX端对接。 4、SM表示单模,连接线只能采用黄色的光纤; MM表示多模,连接线只能采用桔红色的光纤。 5、单纤收发器测试使用时一边用的是1310nm,则另一边必须是用1550nm测试使用,即:单纤收发器必须是1310nm与1550nm配对使用。 6、双纤收发器使用时,单模收发器只能与单模收发器配对使用,且使用的光纤线只能用SM(黄色)的光纤线;多模收发器只能与多模收发器配对使用,且使用时只能采用MM(桔红色)的光纤线。 7、双纤单模收发器不能与双纤多模收发器配对使用。 8、双纤多模收发器有1310nm和850nm两种,两种一定要型号相同才能配对使用;双纤单模收发器有1310nm和1550nm两种,两种可

以相互交叉使用或成双使用。 9、单模收发器有分传输距离,上下传输距离的设备均可配对使用,但必须连接两设备的光纤线长度应小于两设备的最小传输距离。 例如:传输距离为25km的设备可以跟传输距离为40km的设备配对使用,但连接两设备的光纤线长度应小于25km。 10、双纤多模收发器只有一种传输距离2km。 11、光转通电时,眼睛不能对准光头模块,原因是光头有激光射出,容易伤害眼睛。 12 说明如下: (1)PWR:电源指示灯,通电时灯亮,断电时灯灭。 (2)MON:多功能状态指示;光端口联接正常时长亮,其他的绿灯慢闪或快闪均表示RX或TX的一端没有接好。 (3)TSP:RJ45口链接速率指示;100M灯亮,10M灯灭。 (4)FXL:光端口连通亮,数据传输时闪烁;①绿灯慢闪,表示接收端断路②绿灯快闪,表示发射端断路。 (5)TDP:RJ45口通讯方式指示;全双工灯亮,半双工灯灭。(6)TXL:RJ45口连通亮,数据传输时闪烁。

光电显示技术课程标准

广州康大职业技术学院 《光电显示技术》课程标准 一、基本信息 适用对象:应用电子技术专业学生 制定时间:2010年6月 学分:3 学时:56 课程代码: 所属系部:自动化系 制定人:吴闽 批准人:陶廷甫 二、课程的目标 1、专业能力目标 (1)掌握光电显示技术的基本原理,各种显示器件的驱动方法,相应的电路技术、特性与应用。 (2)从工程技术应用的角度出发,使学生掌握常见半导体光电器件的工作原理,理解半导体光电器件中的基本物理概念。 (3)了解半导体光电器件的发展水平,为后读课程学习和工程的实践应用打下基础。 2、方法能力目标 (1)通过本课程的学习,应使学生对光电子技术中的基本概念、基本技术和基本器件有比较全面、系统的认识。 (2)培养学生分析和解决工程技术问题的能力,为进一步学习相关专业课程打下基础。 3、社会能力目标 (1)灵活运用已学理论知识,分析问题和解决问题的能力; (2)敢为人先、勇于创新的开拓精神。 (3)学习和掌握最新专业知识的能力。 三、整体教学设计思路 1、课程定位 本课程重点介绍电子显示技术及其在各领域的应用,对现有的电子显示技术进行了全面的讲解和比较,重点介绍了液晶显示;等离子体显示;发光二极管显示;激光显示等显示技术,并介绍了与显示技术有关的人眼生理学、光度学、色度学及显示系统参数、图像质量评价等内容。主要内容

有:绪论;视觉特性与光度学、色度学原理;显示系统的要求与图象质量评价;真空阴极射线管显示技术;液晶显示;等离子体显示;电致发光显示;发光二极管显示;激光显示;投影显示等。 2、课程开发思路 激光器的发明,解决了光频载波的产生问题,从此电子技术的各种基本概念几乎都移植到了光频段,电子学与光学之间的鸿沟在概念上消失了,产生了光频段的电子技术,即光电子技术。当然由于波段不同,电子学波段和光频段在相应器件的结构上完全不同。尽管如此,从电子学频段扩展的意义上讲,光电子技术就是电子技术在光频段的开拓和发展;从技术发展的角度上讲,光电子技术也是电子技术与光学技术相结合的产物。为了使这门课程的教学达到预定的能力目标,在课程教学内容的选取上,从使用者的角度出发,坚持理论联系实际,以技术应用为主,着眼于提高学生选择正确的光电器件、解决实际工程中检测项目的目的来实施教学。 四、教学内容 1.学时分配

光电成像原理复习指南(含答案)

复习指南 注:答案差不多能在书上找到的都标注页数了,实在找不到的或者PPT上的才打在题后面了,用红色和题干区分。特此感谢为完善本文档所做出贡献的各位大哥。(页码标的是白廷柱、金伟其编著的光电成像原理与技术一书) 1.光电成像系统有哪几部分组成?试述光电成像对视见光谱域的延伸以及所受到的限制(长波限制和短波限制)。(辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。P2-4) 答:辐射源,传输介质,光学成像系统,光电转换器件,信息处理装置。 [1]电磁波的波动方程该方程电磁波传递图像信息物空间和像空间的定量关系,通过经典电磁场理论可以处理电磁波全部的成像问题 [2]收到的限制:当电磁波的波长增大时,所能获得的图像分辨力将显著降低。对波长超过毫米量级的电磁波而言,用有限孔径和焦距的成像系统所获得的图像分辨力将会很低。因此实际上己排除了波长较长的电磁波的成像作用。目前光电成像对光谱长波阔的延伸仅扩展到亚毫米波成像。除了衍射造成分辨力下降限制了将长波电磁波用于成像外,用于成像的电磁波也存在一个短波限。通常把这个短波限确定在X 射线(Roentgen 射线)与y 射线(Gamma 射线)波段。这是因为波长更短的辐射具有极强的穿透能力,所以,宇宙射线难以在普通条件下聚焦成像。 2.光电成像技术在哪些领域得到广泛的应用?光电成像技术突破了人眼的哪些限制?(P5) 答:[1]应用:(1)人眼的视觉特性(2)各种辐射源及目标、背景特性(3)大气光学特性对辐射传输的影响(4)成像光学系统(5)光辐射探测器及致冷器(6)信号的电子学处理(7)图像的显示 [2]突破了人眼的限制:(1)可以拓展人眼对不可见辐射的接受能力(2)可以拓展人眼对微弱光图像的探测能力(3)可以捕捉人眼无法分辨的细节( 4)可以将超快速现象存储下来 3.光电成像器件可分为哪两大类?各有什么特点?(P8)固体成像器件主要有哪两类?(P9,CCD CMOS) 答:[1]直视型:用于直接观察的仪器中,器件本身具有图像的转换、增强及显示等部分,可直接显示输出图像,通常使用光电发射效应,也成像管.[2]电视型:于电视摄像和热成像系统中。器件本身的功能是完成将二维空间的可见光图像或辐射图像转换成一维时间的视频电信号使用光电发射效应或光电导效应,不直接显示图像. 电荷耦合器件,简称CCD;自扫描光电二极管阵列,简称SSPD,又称MOS图像传感器 4.什么是像管?由哪几部分组成?(P8第一段后部) 器件本身具有图像的转换、增强及显示等部分,它的工作方式是:通过外光电效应将入射的辐射图像转换为电子图像,而后由电场或电磁场的聚焦加速作用进行能量增强以及通过二次发射作用进行电子倍增,经过增强的电子图像轰击荧光屏,激发荧光屏产生可见光图像。这样的器件通常称为像管。 基本结构包括有:光电发射体、电子光学系统、微通道板(电子倍增器件)、荧光屏以及保持高真空工作环境的管壳等。 5.像管的成像包括哪些物理过程?其相应的物理依据是什么?(P8第一段工作方式) (1)像管的成像过程包括3个过程 A、将接收的微弱的可见光图像或不可见的辐射图像转换成电子图 像B、使电子图像聚焦成像并获得能量增强或数量倍增C、将获得增强后的电子图像转

Orcad16.5原理图转PADS_Logic原理图方法

Orcad16.5原理图转PADS logic原理图方法 在将Cadence公司的Orcad16.5原理图文件转成PADS logic原理图时,需要经过以下三个步骤: (1)将Orcad16.5原理图文件另存为低版本Orcad16.2原理图文件,文件后缀名为.dsn; (2)在PADS logic软件中打开Orcad16.2原理图文件,并将其另存为PADS logic原理图文件,文件后缀名为.sch;转换后得到的PADS logic原理图文件除了在文件属性方面是Logic原理图文件后,其仍然具备Orcad16.2原理图文件的特点。例如,在Orcad16.2原理图文件中存在原理图分层结构,而Logic 不存在该结构。但是由于两种软件的原理图兼容,因此,在Orcad16.2原理图中出现的符号仍然可以在PADS logic中打开,但是PADS Logic本身可能没有该符号或者该符号异于Orcad16.2原理图符号(例如,两种软件的接地符号、电源符号、换页连接符等就不一样)。因此,转换后得到的Logic原理图文件并不能直接使用,需要进一步修改为标准PADS logic原理图文件。 (3)在PADS logic中新建一个原理图文件,然后将转换后得到的Logic原理图文件复制到该原理图中,这时发生一个很有意思的现象:将原有Logic 原理图文件粘贴到该原理图中时,原Orcad16.2原理图符号竟然变成了Logic 本身的原理图符号(例如,接地符号、电源符号、换页连接符变成Logic原理图符号)。在此基础上,用Logic中的元件替换转换后原理图文件中的符号即可。将该文件进行修改并保存,即可得到最终的标准Logic原理图文件。 对于由Protel99se原理图文件转换后得到的PADS logic原理图文件,也存在上述步骤(2)提到的问题,因此也可以用上述步骤(3)来解决。 温馨提示: 在将Orcad16.2原理图文件转换后得到的PADS logic原理图文件在局部一些地方跟原有Orcad16.2原理图文件有差异,这时需要对转换后得到的原理文件进行小范围修改,以保证原始设计文件在Logic中真实展现。需要特别注意的几个地方是: ?电源网络的名称:将Orcad16.2原理图文件转换成PADS logic原理图文 件后,原有文件的电源网络可能会发生变化,这时需要特别注意; ?换页连接符:将Orcad16.2原理图文件转换成PADS logic原理图文件后, 原有文件的换页连接符被完整保留,而它并不是Logic中的换页连接符, 因此要对换页连接符进行修改; ?接地符号:将Orcad16.2原理图文件转换成PADS logic原理图文件后, 原有文件的接地符号被完整保留,而它并不是Logic中的接地符号,因 此要对接地符号进行修改; ?电阻和电容:将Orcad16.2原理图文件转换成PADS logic原理图文件后, 原有文件的电阻和电容符号被完整保留,而它并不是Logic中的电阻和 电容符号,因此要对电阻和电容符号进行修改; ?元件类型的替换:将Orcad16.2原理图文件转换成PADS logic原理图文 件后,原有文件的元件符号被完整保留,而该元件在Logic中可能不存 在,因此要对原理图中的元件进行替换。 ?如果Orcad16.5原理图文件是分层结构,要特别注意顶层模块相互之间 的连接关系,如果两个模块中直接相连的网络的名称不一致,在PADS

编码器工作原理,光电编码器的工作原理分析

编码器工作原理,光电编码器的工作原理分析 编码器工作原理 绝对脉冲编码器:APC 增量脉冲编码器:SPC 两者一般都应用于速度控制或位置控制系统的检测元件. 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 增量型编码器与绝对型编码器的区分 编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器(旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过 零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线, 一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设 备接口应与编码器对应。 信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块 与高速模块之分,开关频率有低有高。

光电成像技术玉林师范学院期末考试

1.简述: (1)CMOS器件和CCD器件的工作原理上有什么相同点和不同点; 答:CMOS图像传感器的光电转换原理与CCD基本相同,其光敏单元受到光照后产生光生电子。而信号的读出方法却与CCD不同,每个CMOS源像素传感单元都有自己的缓冲放大器,而且可以被单独选址和读出,工作时仅需工作电压信号,而CCD读取信号需要多路外部驱动。 (2)在应用上各自有什么优缺点,以及各自的应用领域是什么 答:优缺点比较:CMOS与CCD图像传感器相比,具有功耗低、摄像系统尺寸小,可将图像处理电路与MOS图像传感器集成在一个芯片上等优点,但其图像质量(特别是低亮度环境下)与系统灵活性与CCD的相比相对较低。灵敏度代表传感器的光敏单元收集光子产生电荷信号的能力,而CCD灵敏度较CMOS高30%~50%。电子-电压转换率表示每个信号电子转换为电压信号的大小,由于CMOS在像元中采用高增益低功耗互补放大器结构,其电压转换率略优于CCD。 运用的领域:CMOS传感器在低端成像系统中具有广泛运用,如数码相机,微型和超微型摄像机。CCD在工业生产中的应用广泛,如冶金部门中的各种管、线轧制过程中的尺寸测量。 (3)全球生产CMOS器件和CCD几件的企业有哪些分别位于哪些国家,并对先关企业进行简要描述。 2、简要概述《光电成像原理与技术》各章的主要内容,并用自己的语言陈述各章之间的联系(文字在1000字以上)。 答: 1.光电成像技术的产生及发展,光电成像对视见光谱域的延伸,光电成像技术的应用范畴,光电成像器件的分类,光电成像器件的特性。 2.] 3.人眼的视觉特性与图像探测:人眼的视觉特性与模型,图像探测理论与图像探测方程,目标的探测与识别。 4.辐射源与典型景物辐射:辐射度量及光度量,朗伯辐射体及其辐射特性,黑体辐射定律,辐射源及其特性。 5.辐射在大气中的传输:大气的构成,大气消光及大气窗口,大气吸收和散射的计算,大气消光对光电成像系统性能的影响。 6.直视型电真空成像器件成像物理:像管成像的物理过程,像管结构类型与性能参数,辐射图像的光电转换,电子图像的成像理论,电子图像的发光显示,光学图像的传像与电子图像的倍增。 7.直视型光电成像系统与特性分析:直视型光电成像系统的原理,夜视光电成像系统的主要部件及特性,直视型夜视成像系统的总体设计,夜视系统的作用距离。 8.电视型电真空成像器件成像物理:电视摄像的基本原理,摄像管的主要性能参数,摄像管的分类,热释电摄像管,电子枪简介。 9.固体成像器件成像原理及应用: CCD的物理基础与工作原理, CDD的结构与特性,CCD 成像原理,增强型(微光)电荷耦合成像器件,CCD的应用,CMOS成像器件及其应用。10.电视型光电成像系统与特性分析:电视系统的组成与工作原理,电视型微光成像系统(微光电视),成像光子计数探测系统。 11.红外热成像器件成像物理:红外探测器的分类,红外探测器的工作条件与性能参数,光电导型红外探测器,光伏型红外探测器,红外焦平面阵列探测器,非制冷红外焦平面陈列探测器,量子阱红外探测器。

最新光电显示技术实验讲义

光电显示技术实验讲 义

实验一有机发光器件(OLED)参数测量 一、实验目的: 1.了解有机发光显示器件的工作原理及相关特性; 2.掌握OLED性能参数的测量方法; 二、实验原理简介: 1979年,柯达公司华裔科学家邓青云(Dr. C. W. Tang)博士发现黑暗中的有机蓄电池在发光,对有机发光器件的研究由此开始,邓博士被誉为OLED之父。 OLED (Organic Light Emitting Display,中文名有机发光显示器)是指有机半导体材料和发光材料在电场驱动下,通过载流子注入和复合导致发光的现象。OLED用ITO透明电极和金属电极分别作为器件的阳极和阴极,在一定电压驱动下,电子和空穴分别从阴极和阳极注入到电子和空穴传输层,电子和空穴分别经过电子和空穴传输层迁移到发光层,并在发光层中相遇,形成激子并使发光分子激发,后者经过辐射弛豫而发出可见光。辐射光可从ITO一侧观察到,金属电极膜同时也起了反射层的作用。

图1:OLED结构示意图 与LCD相比,OLED具有主动发光,无视角问题,重量轻,厚度小,高亮度,高发光效率,发光材料丰富,易实现彩色显示,响应速度快,动态画面质量高,使用温度范围广,可实现柔软显示,工艺简单,成本低,抗震能力强等一系列的优点。 如果一个有机层用两个不同的有机层来代替,就可以取得更好的效果:当正极的边界层供应载流子时,负极一侧非常适合输送电子,载流子在两个有机层中间通过时,会受到阻隔,直至会出现反方向运动的载流子,这样,效率就明显提高了。很薄的边界层重新结合后,产生细小的亮点,就能发光。如果有三个有机层,分别用于输送电子、输送载流子和发光,效率就会更高。 为提高电子的注入效率,OLED阴极材料的功函数需尽可能的低,功函数越低,发光亮度越高,使用寿命越长。可以使用Ag 、Al 、Li 、Mg 、Ca 、In等单层金属阴极,也可以将性质活泼的低功函数金属和化学性能较稳定的高功函数金属一起蒸发形成合金阴极。如Mg: Ag(10: 1),Li:Al (0.6%Li),功函数分别

图像光电转换的基本过程

图像光电转换的基本过程

————————————————————————————————作者:————————————————————————————————日期:

图像光电转换的基本过程 电视图像的传送是基于光电转换原理,而实现光电转换的关键器件是发送端的摄像管和接收端的显像管。 1. 图像的分解 电视系统处理和传送的对象是光的景物,景物存在于三维空间,其光学特性(即景物的亮度和色度信息)不仅随空间位置的不同而不同,而且还与时间有关系(静止景物除外)。因此,景物信息是三维空间和时间的函数,可用光学信息表达式为:。 但是目前的电视系统仍为平面彩色电视,只传输景物的二维光学信息,因此上式中的z可不考虑。另外,这里仅讨论黑白平面活动图像,只需传输各像素的亮度信息,其光学信息表达式简化为:。 但是,亮度仍然是x、y、t的三维函数,而经传输通道传送的电信号为电压(或电流),只能是时间的一维函数为:。实现转换的方法是:将景物信息分解成很多小点,这样

就能以每个小点为单位进行光电转换和传送。因此,对于每个小点来说,其光学特性以及经光电转换得到的电信号就只与时间有关了,也就是将景物信息转化成时间的一维函数。 将景物图像化整为零的方法称为图像的分解,分解之后的小点称为像素。所谓像素,就是组成图像的元素,即基本单位,具有单值的亮度信息和空间位置。一幅电视图像由许许多多个像素组成,电视系统能够分解的像素数越多,图像就越清晰、细腻。在我国的黑白广播电视标准中,一幅图像包含大约40~50万个像素。图像的结构—导学。 图像的分解是在摄像端的光电转换和扫描过程中完成的。在接收端,通过显示装置的扫描和电光转换作用,这些被分解的像素又会在屏幕上合成出原来的图像,从而实现电视的全过程。 2.图像的传送 一幅图像由许多像素组成,这些像素的亮度信息经光电转换之后变成相应的电信号。电视系统的任务是将各像素的变换成, 实现转换的方式,有同时传输制和顺序传输制。 ●像素信息同时传输制

相关文档
最新文档